1
|
Dai Y, Guan X, Guo F, Kong X, Ji S, Shang D, Bai C, Zhang Q, Zhao L. Botanical drugs and their natural compounds: a neglected treasury for inhibiting the carcinogenesis of pancreatic ductal adenocarcinoma. PHARMACEUTICAL BIOLOGY 2024; 62:853-873. [PMID: 39520705 PMCID: PMC11552278 DOI: 10.1080/13880209.2024.2421759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
CONTEXT Pancreatic ductal adenocarcinoma (PDAC), which is characterized by its malignant nature, presents challenges for early detection and is associated with a poor prognosis. Any strategy that can interfere with the beginning or earlier stage of PDAC greatly delays disease progression. In response to this intractable problem, the exploration of new drugs is critical to reduce the incidence of PDAC. OBJECTIVE In this study, we summarize the mechanisms of pancreatitis-induced PDAC and traditional Chinese medicine (TCM) theory and review the roles and mechanisms of botanical drugs and their natural compounds that can inhibit the process of pancreatitis-induced PDAC. METHODS With the keywords 'chronic pancreatitis', 'TCM', 'Chinese medicinal formulae', 'natural compounds', 'PDAC' and 'pancreatic cancer', we conducted an extensive literature search of the PubMed, Web of Science, and other databases to identify studies that effectively prevent PDAC in complex inflammatory microenvironments. RESULTS We summarized the mechanism of pancreatitis-induced PDAC. Persistent inflammatory microenvironments cause multiple changes in the pancreas itself, including tissue damage, abnormal cell differentiation, and even gene mutation. According to TCM, pancreatitis-induced PDAC is the process of 'dampness-heat obstructing the spleen and deficiency due to stagnation' induced by a variety of pathological factors. A variety of botanical drugs and their natural compounds, such as Chaihu classical formulae, flavonoids, phenolics, terpenoids, etc., may be potential drugs to interfere with the development of PDAC via reshaping the inflammatory microenvironment by improving tissue injury and pancreatic fibrosis. CONCLUSIONS Botanical drugs and their natural compounds show great potential for preventing PDAC in complex inflammatory microenvironments.
Collapse
Affiliation(s)
- Yunfei Dai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xi Guan
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Kong
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of pharmacy, Dalian Medical University, Dalian, China
| | - Shuqi Ji
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changchuan Bai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingkai Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Petran EM, Periferakis A, Troumpata L, Periferakis AT, Scheau AE, Badarau IA, Periferakis K, Caruntu A, Savulescu-Fiedler I, Sima RM, Calina D, Constantin C, Neagu M, Caruntu C, Scheau C. Capsaicin: Emerging Pharmacological and Therapeutic Insights. Curr Issues Mol Biol 2024; 46:7895-7943. [PMID: 39194685 DOI: 10.3390/cimb46080468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Capsaicin, the most prominent pungent compound of chilli peppers, has been used in traditional medicine systems for centuries; it already has a number of established clinical and industrial applications. Capsaicin is known to act through the TRPV1 receptor, which exists in various tissues; capsaicin is hepatically metabolised, having a half-life correlated with the method of application. Research on various applications of capsaicin in different formulations is still ongoing. Thus, local capsaicin applications have a pronounced anti-inflammatory effect, while systemic applications have a multitude of different effects because their increased lipophilic character ensures their augmented bioavailability. Furthermore, various teams have documented capsaicin's anti-cancer effects, proven both in vivo and in vitro designs. A notable constraint in the therapeutic effects of capsaicin is its increased toxicity, especially in sensitive tissues. Regarding the traditional applications of capsaicin, apart from all the effects recorded as medicinal effects, the application of capsaicin in acupuncture points has been demonstrated to be effective and the combination of acupuncture and capsaicin warrants further research. Finally, capsaicin has demonstrated antimicrobial effects, which can supplement its anti-inflammatory and anti-carcinogenic actions.
Collapse
Affiliation(s)
- Elena Madalina Petran
- Department of Biochemistry, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children's Hospital, 011743 Bucharest, Romania
| | - Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Romina-Marina Sima
- Department of Obstetrics and Gynecology, The "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- The "Bucur" Maternity, "Saint John" Hospital, 040294 Bucharest, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
3
|
Wang H, Zhang Z, Wu S, Zhu Y, Liang T, Huang X, Yao J. Dietary patterns suggest that dark chocolate intake may have an inhibitory effect on oral cancer: a Mendelian randomization study. Front Nutr 2024; 11:1342163. [PMID: 39027665 PMCID: PMC11255456 DOI: 10.3389/fnut.2024.1342163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
Background Previous studies reported that variations in dietary intake patterns substantially impact human health, specifically tumorigenesis. However, confounding factors in previous cohort studies have obscured the relationship between dietary differences and the risk of oral cancer (OC). Materials and methods We developed an outcome dataset from genome-wide association studies (GWAS) data on three OCs within the GAME-ON project, using GWAS-META merging. We extracted 21 dietary exposures, including 10 dietary patterns, 6 vitamins, and 5 micronutrients, from the UK Biobank database, using the inverse variance weighting method as the primary statistical method. Sensitivity analysis was conducted to detect heterogeneity and pleiotropy. Serum metabolite concentrations were adjusted using multivariate Mendelian randomization. Results Of the 10 analyzed dietary patterns, 8 showed no significant association with the risk of developing OC. Consumption of dark chocolate (inverse variance weighted [IVW]: Odds ratio (OR) = 0.786, 95% confidence interval [CI]: 0.622-0.993, p = 0.044) and sweet pepper exhibited an inverse relationship with OC risk (IVW: OR = 0.757, 95% CI: 0.574-0.997, p = 0.048). Reverse MR analysis revealed no reverse causality. Furthermore, no significant correlation was observed between the intake of 6 vitamins and 5 micronutrients and the risk of developing OC. After using multivariable MR to adjust for serum caffeine, linoleate, theophylline, and theobromine metabolism levels, consuming dark chocolate was unrelated to a decreased risk of OC. After adjusting each serum metabolite individually, the observed p-values deviated from the original values to varying degrees, indicating that the components of dark chocolate could have different effects. Among these components, theophylline demonstrated the most significant inhibitory effect. Conclusion This study demonstrated a causal relationship between the intake of dark chocolate and sweet peppers and a lower risk of OC. The components of dark chocolate could have different effects.
Collapse
Affiliation(s)
- Hongwei Wang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Youjiang Medical University for Nationalities, Baise, China
- Department of Tumor Pathology, The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, Guangxi, China
| | - Zhaoyin Zhang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Youjiang Medical University for Nationalities, Baise, China
- Department of Tumor Pathology, The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, Guangxi, China
| | - Sijie Wu
- Guilin Medical University, Guilin, Guangxi, China
| | - Yuanzhi Zhu
- Youjiang Medical University for Nationalities, Baise, China
| | - Tao Liang
- Youjiang Medical University for Nationalities, Baise, China
| | - Xiong Huang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Youjiang Medical University for Nationalities, Baise, China
- Department of Tumor Pathology, The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, Guangxi, China
| | - Jinguang Yao
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Youjiang Medical University for Nationalities, Baise, China
- Department of Tumor Pathology, The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, Guangxi, China
| |
Collapse
|
4
|
Mondal A, Banerjee S, Terang W, Bishayee A, Zhang J, Ren L, da Silva MN, Bishayee A. Capsaicin: A chili pepper bioactive phytocompound with a potential role in suppressing cancer development and progression. Phytother Res 2024; 38:1191-1223. [PMID: 38176910 DOI: 10.1002/ptr.8107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Cancer profoundly influences morbidity and fatality rates worldwide. Patients often have dismal prognoses despite recent improvements in cancer therapy regimens. However, potent biomolecules derived from natural sources, including medicinal and dietary plants, contain biological and pharmacological properties to prevent and treat various human malignancies. Capsaicin is a bioactive phytocompound present in red hot chili peppers. Capsaicin has demonstrated many biological effects, including antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic capabilities. This review highlights the cellular and molecular pathways through which capsaicin exhibits antineoplastic activities. Our work also depicts the synergistic anticancer properties of capsaicin in conjunction with other natural bioactive components and approved anticancer drugs. Capsaicin inhibits proliferation in various cancerous cells, and its antineoplastic actions in numerous in vitro and in vivo carcinoma models impact oncogenesis, tumor-promoting and suppressor genes, and associated signaling pathways. Capsaicin alone or combined with other phytocompounds or approved antineoplastic drugs triggers cell cycle progression arrest, generating reactive oxygen species and disrupting mitochondrial membrane integrity, ultimately stimulating caspases and promoting death. Furthermore, capsaicin alone or in combination can promote apoptosis in carcinoma cells by enhancing the p53 and c-Myc gene expressions. In conclusion, capsaicin alone or in combination can have enormous potential for cancer prevention and intervention, but further high-quality studies are needed to firmly establish the clinical efficacy of this phytocompound.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Wearank Terang
- Department of Pharmacology, Rahman Institute of Pharmaceutical Sciences and Research, Kamrup, India
| | - Anusha Bishayee
- Department of Statistics and Data Science, College of Arts and Sciences, Cornell University, Ithaca, New York, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Milton Nascimento da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
5
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
6
|
Luján-Méndez F, Roldán-Padrón O, Castro-Ruíz JE, López-Martínez J, García-Gasca T. Capsaicinoids and Their Effects on Cancer: The "Double-Edged Sword" Postulate from the Molecular Scale. Cells 2023; 12:2573. [PMID: 37947651 PMCID: PMC10650825 DOI: 10.3390/cells12212573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to their human consumption, numerous ethnopharmacological uses of chili have emerged throughout history. Today, more than 25 years of basic research accredit a multifaceted bioactivity mainly to capsaicin, highlighting its antitumor properties mediated by cytotoxicity and immunological adjuvancy against at least 74 varieties of cancer, while non-cancer cells tend to have greater tolerance. However, despite the progress regarding the understanding of its mechanisms of action, the benefit and safety of capsaicinoids' pharmacological use remain subjects of discussion, since CAP also promotes epithelial-mesenchymal transition, in an ambivalence that has been referred to as "the double-edge sword". Here, we update the comparative discussion of relevant reports about capsaicinoids' bioactivity in a plethora of experimental models of cancer in terms of selectivity, efficacy, and safety. Through an integration of the underlying mechanisms, as well as inherent aspects of cancer biology, we propose mechanistic models regarding the dichotomy of their effects. Finally, we discuss a selection of in vivo evidence concerning capsaicinoids' immunomodulatory properties against cancer.
Collapse
Affiliation(s)
- Francisco Luján-Méndez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Octavio Roldán-Padrón
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - J. Eduardo Castro-Ruíz
- Escuela de Odontología, Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro 76176, Querétaro, Mexico;
| | - Josué López-Martínez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| |
Collapse
|
7
|
Capodanno Y, Hirth M. Targeting the Cancer-Neuronal Crosstalk in the Pancreatic Cancer Microenvironment. Int J Mol Sci 2023; 24:14989. [PMID: 37834436 PMCID: PMC10573820 DOI: 10.3390/ijms241914989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the most aggressive solid tumors with a dismal prognosis and an increasing incidence. At the time of diagnosis, more than 85% of patients are in an unresectable stage. For these patients, chemotherapy can prolong survival by only a few months. Unfortunately, in recent decades, no groundbreaking therapies have emerged for PDAC, thus raising the question of how to identify novel therapeutic druggable targets to improve prognosis. Recently, the tumor microenvironment and especially its neural component has gained increasing interest in the pancreatic cancer field. A histological hallmark of PDAC is perineural invasion (PNI), whereby cancer cells invade surrounding nerves, providing an alternative route for metastatic spread. The extent of PNI has been positively correlated with early tumor recurrence and reduced overall survival. Multiple studies have shown that mechanisms involved in PNI are also involved in tumor spread and pain generation. Targeting these pathways has shown promising results in alleviating pain and reducing PNI in preclinical models. In this review, we will describe the mechanisms and future treatment strategies to target this mutually trophic interaction between cancer cells to open novel avenues for the treatment of patients diagnosed with PDAC.
Collapse
Affiliation(s)
- Ylenia Capodanno
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69117 Heidelberg, Germany
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Michael Hirth
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Chauvet S, Hubert F, Mann F, Mezache M. Tumorigenesis and axons regulation for the pancreatic cancer: A mathematical approach. J Theor Biol 2023; 556:111301. [PMID: 36270328 DOI: 10.1016/j.jtbi.2022.111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The nervous system is today recognized to play an important role in the development of cancer. Indeed, neurons extend long processes (axons) that grow and infiltrate tumors in order to regulate the progression of the disease in a positive or negative way, depending on the type of neuron considered. Mathematical modeling of this biological process allows to formalize the nerve-tumor interactions and to test hypotheses in silico to better understand this phenomenon. In this work, we introduce a system of differential equations modeling the progression of pancreatic ductal adenocarcinoma (PDAC) coupled with associated changes in axonal innervation. The study of the asymptotic behavior of the model confirms the experimental observations that PDAC development is correlated with the type and densities of axons in the tissue. We study then the identifiability and the sensitivity of the model parameters. The identifiability analysis informs on the adequacy between the parameters of the model and the experimental data and the sensitivity analysis on the most contributing factors on the development of cancer. It leads to significant insights on the main neural checkpoints and mechanisms controlling the progression of pancreatic cancer. Finally, we give an example of a simulation of the effects of partial or complete denervation that sheds lights on complex correlation between the healthy, pre-cancerous and cancerous cell densities and axons with opposite functions.
Collapse
Affiliation(s)
- Sophie Chauvet
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living systems, Marseille, France
| | - Florence Hubert
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M (UMR 7373), Turing Centre for Living systems, Marseille, France
| | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living systems, Marseille, France
| | - Mathieu Mezache
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M (UMR 7373), Turing Centre for Living systems, Marseille, France; Université Paris-Saclay, INRAE, MaIAGE (UR 1404), 78350 Jouy-en-Josas, France.
| |
Collapse
|
9
|
Agrawal MY, Gaikwad S, Srivastava S, Srivastava SK. Research Trend and Detailed Insights into the Molecular Mechanisms of Food Bioactive Compounds against Cancer: A Comprehensive Review with Special Emphasis on Probiotics. Cancers (Basel) 2022; 14:cancers14225482. [PMID: 36428575 PMCID: PMC9688469 DOI: 10.3390/cancers14225482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
In an attempt to find a potential cure for cancer, scientists have been probing the efficacy of the food we eat and its bioactive components. Over the decades, there has been an exponentially increasing trend of research correlating food and cancer. This review explains the molecular mechanisms by which bioactive food components exhibit anticancer effects in several cancer models. These bioactive compounds are mainly plant based or microbiome based. While plants remain the primary source of these phytochemicals, little is known about probiotics, i.e., microbiome sources, and their relationships with cancer. Thus, the molecular mechanisms underlying the anticancer effect of probiotics are discussed in this review. The principal mode of cell death for most food bioactives is found to be apoptosis. Principal oncogenic signaling axes such as Akt/PI3K, JAK/STAT, and NF-κB seem to be modulated due to these bioactives along with certain novel targets that provide a platform for further oncogenic research. It has been observed that probiotics have an immunomodulatory effect leading to their chemopreventive actions. Various foods exhibit better efficacy as complete extracts than their individual phytochemicals, indicating an orchestrated effect of the food components. Combining bioactive agents with available chemotherapies helps synergize the anticancer action of both to overcome drug resistance. Novel techniques to deliver bioactive agents enhance their therapeutic response. Such combinations and novel approaches are also discussed in this review. Notably, most of the food components that have been studied for cancer have shown their efficacy in vivo. This bolsters the claims of these studies and, thus, provides us with hope of discovering anticancer agents in the food that we eat.
Collapse
Affiliation(s)
- Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | | | - Sanjay K. Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Correspondence: ; Tel.: +1-325-696-0464; Fax: +1-325-676-3875
| |
Collapse
|
10
|
Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, Al-Mannai S, Therachiyil L, Mir R, Elfaki I, Mir MM, Jamal F, Masoodi T, Uddin S, Singh M, Haris M, Macha M, Bhat AA. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed Pharmacother 2022; 150:113054. [PMID: 35658225 DOI: 10.1016/j.biopha.2022.113054] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is one of the leading causes of death and significantly burdens the healthcare system. Due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. The use of natural products as anticancer agents is an acceptable therapeutic approach due to accessibility, applicability, and reduced cytotoxicity. Natural products have been an incomparable source of anticancer drugs in the modern era of drug discovery. Along with their derivatives and analogs, natural products play a major role in cancer treatment by modulating the cancer microenvironment and different signaling pathways. These compounds are effective against several signaling pathways, mainly cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch pathway, Wnt pathway, and Hedgehog pathway). The historical record of natural products is strong, but there is a need to investigate the current role of natural products in the discovery and development of cancer drugs and determine the possibility of natural products being an important source of future therapeutic agents. Many target-specific anticancer drugs failed to provide successful results, which accounts for a need to investigate natural products with multi-target characteristics to achieve better outcomes. The potential of natural products to be promising novel compounds for cancer treatment makes them an important area of research. This review explores the significance of natural products in inhibiting the various signaling pathways that serve as drivers of carcinogenesis and thus pave the way for developing and discovering anticancer drugs.
Collapse
Affiliation(s)
- Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Tayyiba Akbar Ali
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Sabah Akhtar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | | | - Shahid Ali
- International Potato Center (CIP), Shillong, Meghalaya, India
| | - Sharefa Al-Mannai
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| | - Rashid Mir
- Prince Fahd Bin Sultan Research chair, Department Of Medical Lab Technology, FAMS, University of Tabuk,Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Saudi Arabia
| | - Farrukh Jamal
- Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Muzafar Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India.
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
11
|
Kolodkin-Gal D, Roitman L, Ovadya Y, Azazmeh N, Assouline B, Schlesinger Y, Kalifa R, Horwitz S, Khalatnik Y, Hochner-Ger A, Imam A, Demma JA, Winter E, Benyamini H, Elgavish S, Khatib AAS, Meir K, Atlan K, Pikarsky E, Parnas O, Dor Y, Zamir G, Ben-Porath I, Krizhanovsky V. Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions. Gut 2022; 71:345-355. [PMID: 33649045 PMCID: PMC8762039 DOI: 10.1136/gutjnl-2020-321112] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Cellular senescence limits tumourigenesis by blocking the proliferation of premalignant cells. Additionally, however, senescent cells can exert paracrine effects influencing tumour growth. Senescent cells are present in premalignant pancreatic intraepithelial neoplasia (PanIN) lesions, yet their effects on the disease are poorly characterised. It is currently unknown whether senolytic drugs, aimed at eliminating senescent cells from lesions, could be beneficial in blocking tumour development. DESIGN To uncover the functions of senescent cells and their potential contribution to early pancreatic tumourigenesis, we isolated and characterised senescent cells from PanINs formed in a Kras-driven mouse model, and tested the consequences of their targeted elimination through senolytic treatment. RESULTS We found that senescent PanIN cells exert a tumour-promoting effect through expression of a proinflammatory signature that includes high Cox2 levels. Senolytic treatment with the Bcl2-family inhibitor ABT-737 eliminated Cox2-expressing senescent cells, and an intermittent short-duration treatment course dramatically reduced PanIN development and progression to pancreatic ductal adenocarcinoma. CONCLUSIONS These findings reveal that senescent PanIN cells support tumour growth and progression, and provide a first indication that elimination of senescent cells may be effective as preventive therapy for the progression of precancerous lesions.
Collapse
Affiliation(s)
- Dror Kolodkin-Gal
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel,Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Lior Roitman
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yossi Ovadya
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Narmen Azazmeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Assouline
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Yehuda Schlesinger
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Rachel Kalifa
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel,Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Shaul Horwitz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel,Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Yonatan Khalatnik
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel,Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Anna Hochner-Ger
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel,Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Ashraf Imam
- Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | | | - Eitan Winter
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Areej AS Khatib
- Master of Biotechnology Department, Faculty of Science, Bethlehem University, Bethlehem, Palestine
| | - Karen Meir
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Karine Atlan
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Oren Parnas
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Gideon Zamir
- Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Gitto SB, Nakkina SP, Beardsley JM, Parikh JG, Altomare DA. Induction of pancreatitis in mice with susceptibility to pancreatic cancer. Methods Cell Biol 2022; 168:139-159. [PMID: 35366980 DOI: 10.1016/bs.mcb.2021.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic inflammation is known to be associated with pancreatic cancer, however a complete picture regarding how these pathologies intersect is still being characterized. In vivo model systems are critical for the study of mechanisms underlying how inflammation accelerates neoplasia. Repeat injection of cerulein, a cholecystokinin (CCK) analog, is widely used to experimentally induce acute and chronic pancreatitis in vivo. Chronic cerulein administration into genetically engineered mouse models (GEMMs) with predisposition to pancreatic cancer can induce a pro-inflammatory immune response, pancreatic acinar cell damage, pancreatic stellate cell activation, and accelerate the onset of neoplasia. Here we provide a detailed protocol and insights into using cerulein to induce pancreatitis in GEMMs, and methods to experimentally assess inflammation and pancreatic neoplasia.
Collapse
Affiliation(s)
- Sarah B Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jordan M Beardsley
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jignesh G Parikh
- Department of Pathology, Orlando VA Medical Center, Orlando, FL, United States
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
13
|
Jacobsen D, Bushara O, Mishra RK, Sun L, Liao J, Yang GY. Druggable sites/pockets of the p53-DNAJA1 protein–protein interaction: In silico modeling and in vitro/in vivo validation. Methods Enzymol 2022; 675:83-107. [DOI: 10.1016/bs.mie.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Periyasamy L, Muruganantham B, Park WY, Muthusami S. Phyto-targeting the CEMIP Expression as a Strategy to Prevent Pancreatic Cancer Metastasis. Curr Pharm Des 2022; 28:922-946. [PMID: 35236267 DOI: 10.2174/1381612828666220302153201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Metastasis of primary pancreatic cancer (PC) to adjacent or distant organs is responsible for the poor survival rate of affected individuals. Chemotherapy, radiotherapy, and immunotherapy are currently being prescribed to treat PC in addition to surgical resection. Surgical resection is the preferred treatment for PC that leads to 20% of 5-year survival, but only less than 20% of patients are eligible for surgical resection because of the poor prognosis. To improve the prognosis and clinical outcome, early diagnostic markers need to be identified, and targeting them would be of immense benefit to increase the efficiency of the treatment. Cell migration-inducing hyaluronan-binding protein (CEMIP) is identified as an important risk factor for the metastasis of various cancers, including PC. Emerging studies have pointed out the crucial role of CEMIP in the regulation of various signaling mechanisms, leading to enhanced migration and metastasis of PC. METHODS The published findings on PC metastasis, phytoconstituents, and CEMIP were retrieved from Pubmed, ScienceDirect, and Cochrane Library. Computational tools, such as gene expression profiling interactive analysis (GEPIA) and Kaplan-Meier (KM) plotter, were used to study the relationship between CEMIP expression and survival of PC individuals. RESULTS Gene expression analysis using the GEPIA database identified a stupendous increase in the CEMIP transcript in PC compared to adjacent normal tissues. KM plotter analysis revealed the impact of CEMIP on the overall survival (OS) and disease-free survival (DFS) among PC patients. Subsequently, several risk factors associated with PC development were screened, and their ability to regulate CEMIP gene expression was analyzed using computational tools. CONCLUSION The current review is focused on gathering information regarding the regulatory role of phytocomponents in PC migration and exploring their possible impact on the CEMIP expression.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| |
Collapse
|
15
|
Yoneda T, Hiasa M, Okui T, Hata K. Sensory nerves: A driver of the vicious cycle in bone metastasis? J Bone Oncol 2021; 30:100387. [PMID: 34504741 PMCID: PMC8411232 DOI: 10.1016/j.jbo.2021.100387] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022] Open
Abstract
Bone is one of the preferential target organs of cancer metastasis. Bone metastasis is associated with various complications, of which bone pain is most common and debilitating. The cancer-associated bone pain (CABP) is induced as a consequence of increased neurogenesis, reprogramming and axonogenesis of sensory nerves (SNs) in harmony with sensitization and excitation of SNs in response to the tumor microenvironment created in bone. Importantly, CABP is associated with increased mortality, of which precise cellular and molecular mechanism remains poorly understood. Bone is densely innervated by autonomic nerves (ANs) (sympathetic and parasympathetic nerves) and SNs. Recent studies have shown that the nerves innervating the tumor microenvironment establish intimate communications with tumors, producing various stimuli for tumors to progress and disseminate. In this review, our current understanding of the role of SNs innervating bone in the pathophysiology of CABP will be overviewed. Then the hypothesis that SNs facilitate cancer progression in bone will be discussed in conjunction with our recent findings that SNs play an important role not only in the induction of CABP but also the progression of bone metastasis using a preclinical model of CABP. It is suggested that SNs are a critical component of the bone microenvironment that drives the vicious cycle between bone and cancer to progress bone metastasis. Suppression of the activity of bone-innervating SNs may have potential therapeutic effects on the progression of bone metastasis and induction of CABP.
Collapse
Key Words
- AN, autonomic nerve
- BDNF, brain-derived neurotrophic factor
- BMP, bone morphogenetic protein
- BMSC, bone marrow stromal cells
- Bone microenvironment
- CABP, cancer-associated bone pain
- CALCRL, calcitonin receptor-like receptor
- CAP, cancer-associated pain
- CCL2, C–C motif chemokine 2
- CGRP, calcitonin gene-related peptide
- CNS, central nervous system
- COX, cyclooxygenase
- CREB, cyclic AMP-responsive element-binding protein
- CRPC, castration-resistant prostate cancer
- CXCL1, C-X-C Motif Chemokine Ligand 1
- CXCL2, C-X-C Motif Chemokine Ligand 2
- Cancer-associated bone pain
- DRG, dorsal root ganglion
- ERK1/2, extracellular receptor kinase ½
- G-CSF, granulocyte colony-stimulating factor
- GDNF, glial-derived neurotrophic factor
- HGF, hepatocyte growth factor
- HIF-1α, hypoxia-inducible transcription factor-1α
- HMGB-1, high mobility group box-1
- HSCs, hematopoietic stem cells
- HUVECs, human umbilical vein endothelial cells
- IL-1β, interleukin 1β
- MM, multiple myeloma
- MOR, mu-opioid receptor
- NE, norepinephrine
- NGF, nerve growth factor
- NI, nerve invasion
- NPY, neuropeptide Y
- NSAIDs, nonsteroidal anti-inflammatory drugs
- Nociceptors
- OA, osteoarthritis
- OPG, osteoprotegerin
- PACAP, pituitary adenylate cyclase-activating peptide
- PD-1, programmed cell death-1
- PD-L1, programmed death-ligand 1
- PDAC, pancreatic ductal adenocarcinoma
- PGE2, prostaglandin E2
- PNI, perineural invasion
- PanIN, pancreatic intraepithelial neoplasia
- Perineural invasion
- RAGE, receptor for advanced glycation end products
- RAMP1, receptor activity modifying protein 1
- RANKL, receptor activator of NF-κB ligand
- RTX, resiniferatoxin
- SN, sensory nerves
- SP, substance P
- SRE, skeletal-related event
- Sensory nerves
- TGFβ, transforming growth factor β
- TNFα, tumor necrosis factor α
- TRPV1
- TrkA, tyrosine kinase receptor type 1
- VEGF, vascular endothelial growth factor
- VIP, vasoactive intestinal peptide
- a3V-H+-ATPase, a3 isoform vacuolar proton pump
Collapse
Affiliation(s)
- Toshiyuki Yoneda
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masahiro Hiasa
- Department of Biomaterials and Bioengineerings, University of Tokushima Graduate School of Dentistry, Tokushima, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Kenji Hata
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
16
|
Wakiya T, Ishido K, Yoshizawa T, Kanda T, Hakamada K. Roles of the nervous system in pancreatic cancer. Ann Gastroenterol Surg 2021; 5:623-633. [PMID: 34585047 PMCID: PMC8452481 DOI: 10.1002/ags3.12459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), with its extremely poor prognosis, presents a substantial health problem worldwide. Outcomes have improved thanks to progress in surgical technique, chemotherapy, pre-/postoperative management, and centralization of patient care to high-volume centers. However, our goals are yet to be met. Recently, exome sequencing using PDAC surgical specimens has demonstrated that the most frequently altered genes were the axon guidance genes, indicating involvement of the nervous system in PDAC carcinogenesis. Moreover, perineural invasion has been widely identified as one poor prognostic factor. The combination of innovative technologies and extensive clinician experience with the nervous system come together here to create a new treatment option. However, evidence has emerged that suggests that the relationship between cancer and nerves in PDAC, the underlying mechanism, is not fully understood. In an attempt to tackle this lethal cancer, this review summarizes the anatomy and physiology of the pancreas and discusses the role of the nervous system in the pathophysiology of PDAC.
Collapse
Affiliation(s)
- Taiichi Wakiya
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keinosuke Ishido
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Tadashi Yoshizawa
- Department of Pathology and BioscienceHirosaki University Graduate School of MedicineHirosakiJapan
| | - Taishu Kanda
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kenichi Hakamada
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
17
|
Mosqueda-Solís A, Lafuente-Ibáñez de Mendoza I, Aguirre-Urizar JM, Mosqueda-Taylor A. Capsaicin intake and oral carcinogenesis: A systematic review. Med Oral Patol Oral Cir Bucal 2021; 26:e261-e268. [PMID: 33609025 PMCID: PMC7980287 DOI: 10.4317/medoral.24570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background Chili is the most heavily and frequently consumed spice, either as a flavouring or colouring agent, and it is also a major source of pro-vitamin A, vitamin E and C. The main capsinoidcapsaicinoid found in chili peppers is capsaicin. It has been demonstrated that capsaicin acts as a cancer-suppressing agent through its antioxidant and anti-inflammatory effects, by blocking several signal transduction pathways. Oral squamous cell carcinoma is one of the most prevalent cancer worldwide. It is noteworthy that in countries where populations of diverse ethnic groups co-exist, differences have been observed in terms of incidence of oral cancer. The variances in their diet could explain, at least in part, these differences. The objective of this systematic review is to explore if there is evidence of a possible relationship between capsaicin intake and the incidence of oral squamous cell carcinoma, and discuss such association.
Material and Methods A bibliographical search was made in PubMed, Scopus and Web of Science databases, and finally 7 experimental studies were included; OHAT risk of bias tool was used to assess their quality.
Results allAll the studies confirm that capsaicin is a chemopreventive agent that prevents the development of oral cancer, through inhibition of malignant cell proliferation and increase of apoptosis.
Conclusions More human studies are needed in order to clarify the real link between consumption of chili (capsaicin) and the prevalence of oral cancer. Key words:Chili, capsaicin, oral epithelial dysplasia, oral cancer, cell proliferation, apoptosis.
Collapse
Affiliation(s)
- A Mosqueda-Solís
- Health Care Department Autonomous Metropolitan University Xochimilco Mexico City, Mexico
| | | | | | | |
Collapse
|
18
|
Wang F, Xue Y, Fu L, Wang Y, He M, Zhao L, Liao X. Extraction, purification, bioactivity and pharmacological effects of capsaicin: a review. Crit Rev Food Sci Nutr 2021; 62:5322-5348. [PMID: 33591238 DOI: 10.1080/10408398.2021.1884840] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a well-known vanilloid, which is the main spicy component in chili peppers, showing several biological activities and the potential applications range from food flavorings to therapeutics. Traditional extraction of capsaicin by organic solvents was time-consuming, some new methods such as aqueous two-phase method and ionic liquid extraction method have been developed. During past few decades, an ample variety of biological effects of capsaicin have been evaluated. Capsaicin can be used in biofilms and antifouling coatings due to its antimicrobial activity, allowing it has a promising application in food packaging, food preservation, marine environment and dental therapy. Capsaicin also play a crucial role in metabolic disorders, including weight loss, pressure lowing and insulin reduction effects. In addition, capsaicin was identified effective on preventing human cancers, such as lung cancer, stomach cancer, colon cancer and breast cancer by inducing apoptosis and inhibiting cell proliferation of tumor cells. Previous research also suggest the positive effects of capsaicin on pain relief and cognitive impairment. Capsaicin, the agonist of transient receptor potential vanilloid type 1 (TRPV1), could selectively activate TRPV1, inducing Ca2+ influx and related signaling pathways. Recently, gut microbiota was also involved in some diseases therapeutics, but its influence on the effects of capsaicin still need to be deeply studied. In this review, different extraction and purification methods of capsaicin, its biological activities and pharmacological effects were systematically summarized, as well as the possible mechanisms were also deeply discussed. This article will give an updated and better understanding of capsaicin-related biological effects and provide theoretical basis for its further research and applications in human health and manufacture development.
Collapse
Affiliation(s)
- Fengzhang Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Yong Xue
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Lin Fu
- ACK Company, Urumqi, Xinjiang, China
| | - Yongtao Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Minxia He
- ACK Company, Urumqi, Xinjiang, China
| | - Liang Zhao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu, China
| | - Xiaojun Liao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Tan X, Sivakumar S, Bednarsch J, Wiltberger G, Kather JN, Niehues J, de Vos-Geelen J, Valkenburg-van Iersel L, Kintsler S, Roeth A, Hao G, Lang S, Coolsen ME, den Dulk M, Aberle MR, Koolen J, Gaisa NT, Olde Damink SWM, Neumann UP, Heij LR. Nerve fibers in the tumor microenvironment in neurotropic cancer-pancreatic cancer and cholangiocarcinoma. Oncogene 2021; 40:899-908. [PMID: 33288884 PMCID: PMC7862068 DOI: 10.1038/s41388-020-01578-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and cholangiocarcinoma (CCA) are both deadly cancers and they share many biological features besides their close anatomical location. One of the main histological features is neurotropism, which results in frequent perineural invasion. The underlying mechanism of cancer cells favoring growth by and through the nerve fibers is not fully understood. In this review, we provide knowledge of these cancers with frequent perineural invasion. We discuss nerve fiber crosstalk with the main different components of the tumor microenvironment (TME), the immune cells, and the fibroblasts. Also, we discuss the crosstalk between the nerve fibers and the cancer. We highlight the shared signaling pathways of the mechanisms behind perineural invasion in PDAC and CCA. Hereby we have focussed on signaling neurotransmitters and neuropeptides which may be a target for future therapies. Furthermore, we have summarized retrospective results of the previous literature about nerve fibers in PDAC and CCA patients. We provide our point of view in the potential for nerve fibers to be used as powerful biomarker for prognosis, as a tool to stratify patients for therapy or as a target in a (combination) therapy. Taking the presence of nerves into account can potentially change the field of personalized care in these neurotropic cancers.
Collapse
Affiliation(s)
- Xiuxiang Tan
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Shivan Sivakumar
- Department of Oncology, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jan Bednarsch
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Wiltberger
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Jan Niehues
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Judith de Vos-Geelen
- Division of Medical Oncology, Department of Internal Medicine, GROW School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Liselot Valkenburg-van Iersel
- Division of Medical Oncology, Department of Internal Medicine, GROW School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Svetlana Kintsler
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Anjali Roeth
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Guangshan Hao
- Translational Neurosurgery and Neurobiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sven Lang
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mariëlle E Coolsen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marcel den Dulk
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Merel R Aberle
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jarne Koolen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ulf P Neumann
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Lara R Heij
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany.
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
20
|
Popescu GDA, Scheau C, Badarau IA, Dumitrache MD, Caruntu A, Scheau AE, Costache DO, Costache RS, Constantin C, Neagu M, Caruntu C. The Effects of Capsaicin on Gastrointestinal Cancers. Molecules 2020; 26:molecules26010094. [PMID: 33379302 PMCID: PMC7794743 DOI: 10.3390/molecules26010094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal (GI) cancers are a group of diseases with very high positions in the ranking of cancer incidence and mortality. While they show common features regarding the molecular mechanisms involved in cancer development, organ-specific pathophysiological processes may trigger distinct signaling pathways and intricate interactions with inflammatory cells from the tumoral milieu and mediators involved in tumorigenesis. The treatment of GI cancers is a topic of increasing interest due to the severity of these diseases, their impact on the patients' survivability and quality of life, and the burden they set on the healthcare system. As the efficiency of existing drugs is hindered by chemoresistance and adverse reactions when administered in high doses, new therapies are sought, and emerging drugs, formulations, and substance synergies are the focus of a growing number of studies. A class of chemicals with great potential through anti-inflammatory, anti-oxidant, and anti-tumoral effects is phytochemicals, and capsaicin in particular is the subject of intensive research looking to validate its position in complementing cancer treatment. Our paper thoroughly reviews the available scientific evidence concerning the effects of capsaicin on major GI cancers and its interactions with the molecular pathways involved in the course of these diseases.
Collapse
Affiliation(s)
| | - Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
- Correspondence:
| | - Ioana Anca Badarau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
| | - Mihai-Daniel Dumitrache
- Departament of Pneumology IV, “Marius Nasta” Institute of Pneumophtysiology, 050159 Bucharest, Romania;
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
- Department of Preclinical Sciences, Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Daniel Octavian Costache
- Department of Dermatology, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
| | - Raluca Simona Costache
- Gastroenterology and Internal Medicine Clinic, “Carol Davila” Central Military Emergency Hospital, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
21
|
Dragomir MP, Moisoiu V, Manaila R, Pardini B, Knutsen E, Anfossi S, Amit M, Calin GA. A Holistic Perspective: Exosomes Shuttle between Nerves and Immune Cells in the Tumor Microenvironment. J Clin Med 2020; 9:jcm9113529. [PMID: 33142779 PMCID: PMC7693842 DOI: 10.3390/jcm9113529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
One of the limitations of cancer research has been the restricted focus on tumor cells and the omission of other non-malignant cells that are constitutive elements of this systemic disease. Current research is focused on the bidirectional communication between tumor cells and other components of the tumor microenvironment (TME), such as immune and endothelial cells, and nerves. A major success of this bidirectional approach has been the development of immunotherapy. Recently, a more complex landscape involving a multi-lateral communication between the non-malignant components of the TME started to emerge. A prime example is the interplay between immune and endothelial cells, which led to the approval of anti-vascular endothelial growth factor-therapy combined with immune checkpoint inhibitors and classical chemotherapy in non-small cell lung cancer. Hence, a paradigm shift approach is to characterize the crosstalk between different non-malignant components of the TME and understand their role in tumorigenesis. In this perspective, we discuss the interplay between nerves and immune cells within the TME. In particular, we focus on exosomes and microRNAs as a systemic, rapid and dynamic communication channel between tumor cells, nerves and immune cells contributing to cancer progression. Finally, we discuss how combinatorial therapies blocking this tumorigenic cross-talk could lead to improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
- Institute of Pathology, Charité University Hospital, 10117 Berlin, Germany
- Correspondence: (M.P.D.); (G.A.C.)
| | - Vlad Moisoiu
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Roxana Manaila
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania;
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Simone Anfossi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (M.P.D.); (G.A.C.)
| |
Collapse
|
22
|
Gašić U, Ćirić I, Pejčić T, Radenković D, Djordjević V, Radulović S, Tešić Ž. Polyphenols as Possible Agents for Pancreatic Diseases. Antioxidants (Basel) 2020; 9:antiox9060547. [PMID: 32585831 PMCID: PMC7346180 DOI: 10.3390/antiox9060547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is very aggressive and it is estimated that it kills nearly 50% of patients within the first six months. The lack of symptoms specific to this disease prevents early diagnosis and treatment. Today, gemcitabine alone or in combination with other cytostatic agents such as cisplatin (Cis), 5-fluorouracil (5-FU), irinotecan, capecitabine, or oxaliplatin (Oxa) is used in conventional therapy. Outgoing literature provides data on the use of polyphenols, biologically active compounds, in the treatment of pancreatic cancer and the prevention of acute pancreatitis. Therefore, the first part of this review gives a brief overview of the state of pancreatic disease as well as the procedures for its treatment. The second part provides a detailed overview of the research regarding the anticancer effects of both pure polyphenols and their plant extracts. The results regarding the antiproliferative, antimetastatic, as well as inhibitory effects of polyphenols against PC cell lines as well as the prevention of acute pancreatitis are presented in detail. Finally, particular emphasis is given to the polyphenolic profiles of apples, berries, cherries, sour cherries, and grapes, given the fact that these fruits are rich in polyphenols and anthocyanins. Polyphenolic profiles, the content of individual polyphenols, and their relationships are discussed. Based on this, significant data can be obtained regarding the amount of fruit that should be consumed daily to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Ivanka Ćirić
- Innovation Center, University of Belgrade—Faculty of Chemistry, P.O. Box 51, 11158 Belgrade, Serbia;
| | - Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| | - Dejan Radenković
- University of Belgrade—Faculty of Medicine, dr Subotića 8, 11000 Belgrade, Serbia;
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Vladimir Djordjević
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Živoslav Tešić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, P.O. Box 51, 11158 Belgrade, Serbia
- Correspondence: ; Tel.: +381-113336733
| |
Collapse
|
23
|
Abstract
The contribution of nerves to the pathogenesis of malignancies has emerged as an important component of the tumour microenvironment. Recent studies have shown that peripheral nerves (sympathetic, parasympathetic and sensory) interact with tumour and stromal cells to promote the initiation and progression of a variety of solid and haematological malignancies. Furthermore, new evidence suggests that cancers may reactivate nerve-dependent developmental and regenerative processes to promote their growth and survival. Here we review emerging concepts and discuss the therapeutic implications of manipulating nerves and neural signalling for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Ali H Zahalka
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Gupta S, Prajapati A, Gulati M, Gautam SK, Kumar S, Dalal V, Talmon GA, Rachagani S, Jain M. Irreversible and sustained upregulation of endothelin axis during oncogene-associated pancreatic inflammation and cancer. Neoplasia 2020; 22:98-110. [PMID: 31923844 PMCID: PMC6951489 DOI: 10.1016/j.neo.2019.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
Endothelin-1 (ET-1) and its two receptors, endothelin receptor A (ETAR) and endothelin receptor B (ETBR) exhibit deregulated overexprerssion in pancreatic ductal adenocarcinoma (PDAC) and pancreatitis. We examined the expression pattern of endothelin (ET) axis components in the murine models of chronic and acute inflammation in the presence or absence of oncogenic K-ras. While the expression of endothelin converting enzyme-1 (ECE-1), ET-1, ETAR and ETBR in the normal pancreas is restricted predominantly to the islet cells, progressive increase of ET receptors in ductal cells and stromal compartment is observed in the KC model (Pdx-1 Cre; K-rasG12D) of PDAC. In the murine pancreas harboring K-rasG12D mutation (KC mice), following acute inflammation induced by cerulein, increased ETAR and ETBR expression is observed in the amylase and CK19 double positive cells that represent cells undergoing pancreatic acinar to ductal metaplasia (ADM). As compared to the wild type (WT) mice, cerulein treatment in KC mice resulted in significantly higher levels of ECE-1, ET-1, ETAR and ETBR, transcripts in the pancreas. Similarly, in response to cigarette smoke-induced chronic inflammation, the expression of ET axis components is significantly upregulated in the pancreas of KC mice as compared to the WT mice. In addition to the expression in the precursor pancreatic intraepithelial neoplasm (PanIN lesions) in cigarette smoke-exposure model and metaplastic ducts in cerulein-treatment model, ETAR and ETBR expression is also observed in infiltrating F4/80 positive macrophages and α-SMA positive fibroblasts and high co-localization was seen in the presence of oncogenic K-ras. In conclusion, both chronic and acute pancreatic inflammation in the presence of oncogenic K-ras contribute to sustained upregulation of ET axis components in the ductal and stromal cells suggesting a potential role of ET axis in the initiation and progression of PDAC.
Collapse
Affiliation(s)
- Suprit Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Avi Prajapati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vipin Dalal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Geoffrey A Talmon
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
25
|
Liu X, Ren Z, Xu Y, Sun W, Li Y, Rui X, Xie D, Meng X, Zheng Z. Establishment and characterization of novel human primary endometrial cancer cell line (ZJB-ENC1) and its genomic characteristic. J Cancer 2019; 10:6466-6474. [PMID: 31772679 PMCID: PMC6856739 DOI: 10.7150/jca.33013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The establishment of human malignant tumor cell lines can provide abundant experimental materials for understanding the biological characteristics of tumors, studying the carcinogenesis, molecular genetics and the mechanism of metastasis and evolution. In this study, a novel cell line designated ZJB-ENC1 has been established from poorly differentiated endometrioid adenocarcinoma. Cytological results showed monolayer-cultured cells were polygonal in shape and a piling-up tendency without contact inhabitation. Immunohistochemistry analysis showed that the cells were negative for ER, PR, c-erbB2, E-CAD, CD117, and OCT3/4, but strongly positive for PTEN and P16. Meanwhile, the tumorigenicity of ZJB-ENC1 was confirmed by subcutaneous transplantation of the cells into a xenograft mouse model. In addition, the results of the whole exome sequencing revealed a unique genomic characteristic of ZJB-ENC1 cells, all common and novel SNPs and InDels were identified. In conclusion, this new stable cell line may promote basic and clinical research on endometrial cancer (EC).
Collapse
Affiliation(s)
- Xiaozhen Liu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, 310022, China.,The Experimental Center, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, China.,The Experimental Center, Zhejiang cancer hospital , Hangzhou, 310022, China
| | - Zhuozhuo Ren
- Medical Support Department, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310022, China
| | - Yu Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310022, China
| | - Wei Sun
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, 310022, China.,The Experimental Center, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, China.,The Experimental Center, Zhejiang cancer hospital , Hangzhou, 310022, China
| | - Yongfeng Li
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, 310022, China.,Department of Breast Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, China.,Department of Breast Surgery, Zhejiang cancer hospital, Hangzhou, 310022, China
| | - Xinmiao Rui
- The Second Clinical Department, Zhejiang Chinese Medical University, Hangzhou, 310022, China
| | - Dafei Xie
- General Surgery Department, Zhejiang Hospital, Hangzhou, 310022, China
| | - Xuli Meng
- Department of Breast Thyroid Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, 310022, China
| | - Zhiguo Zheng
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, 310022, China.,The Experimental Center, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, China.,The Experimental Center, Zhejiang cancer hospital , Hangzhou, 310022, China
| |
Collapse
|
26
|
Xu D, Tong X, Sun L, Li H, Jones RD, Liao J, Yang GY. Inhibition of mutant Kras and p53-driven pancreatic carcinogenesis by atorvastatin: Mainly via targeting of the farnesylated DNAJA1 in chaperoning mutant p53. Mol Carcinog 2019; 58:2052-2064. [PMID: 31397499 DOI: 10.1002/mc.23097] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
Recent studies have indicated that using statins to inhibit the mevalonate pathway induces mutant p53 degradation by impairing the interaction of mutant p53 with DnaJ subfamily A member 1 (DNAJA1). However, the role of the C-terminus of DNAJA1 with a CAAX box for farnesylation in the binding, folding, and translocation of client proteins such as mutant p53 is not known. In the present study, we used a genetically engineered mouse model of pancreatic carcinoma and showed that atorvastatin significantly increased animal survival and inhibited pancreatic carcinogenesis. There was a dramatic decrease in mutant p53 protein accumulation in the pancreatic acini, pancreas intraepithelial neoplasia lesions, and adenocarcinoma. Supplementation with farnesyl pyrophosphate, a substrate for protein farnesylation, rescued atorvastatin-induced mutant p53 degradation in pancreatic cancer cells. Tipifarnib, a farnesyltransferase inhibitor, mirrored atorvastatin's effects on mutant p53, degraded mutant p53 in a dose-dependent manner, and converted farnesylated DNAJA1 into unfarnesylated DNAJA1. Farnesyltransferase gene knockdown also significantly promoted mutant p53 degradation. Coimmunoprecipitation either by an anti-DNAJA1 or p53 antibody confirmed the direct interaction of mutant p53 and DNAJA1 and higher doses of atorvastatin treatments converted more farnesylated DNAJA1 into unfarnesylated DNAJA1 with much less mutant p53 pulled down by DNAJA1. Strikingly, C394S mutant DNAJA1, in which the cysteine of the CAAX box was mutated to serine, was no longer able to be farnesylated and lost the ability to maintain mutant p53 stabilization. Our results show that farnesylated DNAJA1 is a crucial chaperone in maintaining mutant p53 stabilization and targeting farnesylated DNAJA1 by atorvastatin will be critical for inhibiting p53 mutant cancer.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xin Tong
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Leyu Sun
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Haonan Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ryan D Jones
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jie Liao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guang-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
27
|
Xia R, Sun L, Liao J, Li H, You X, Xu D, Yang J, Hwang SH, Jones RD, Hammock B, Yang GY. Inhibition of Pancreatic Carcinoma Growth Through Enhancing ω-3 Epoxy Polyunsaturated Fatty Acid Profile by Inhibition of Soluble Epoxide Hydrolase. Anticancer Res 2019; 39:3651-3660. [PMID: 31262891 DOI: 10.21873/anticanres.13513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIM Cytochrome P450 epoxygenase is a major enzyme involved in the metabolism of ω-3 polyunsaturated fatty acids (PUFAs) to produce biologically active ω-3 epoxy fatty acids (ω-3 epoxides). In general, all epoxy PUFAs including ω-3 epoxides are quickly metabolized/inactivated by soluble epoxide hydrolase (sEH) to form diol products. The aims of this study were to determine the effect and mechanism of fat-1 transgene, and ω-3 PUFA combined with sEH gene knockout or inhibitor on inhibiting pancreatic cancer and the related mechanisms involved. MATERIALS AND METHODS PK03-mutant KrasG12D murine pancreatic carcinoma cells were inoculated into mouse models including fat-1, sEH-/- and C57BL/6J mice. The mice were fed with AIN-76A diet with or without ω-3 PUFA supplementation or treated with sEH inhibitor. In addition to tumor growth (tumor size and weight), cell proliferation, mutant Kras-mediated signaling, inflammatory reaction and angiogenesis were analyzed immunohisto-chemically and by western blot assay. ω-3 PUFA metabolism, particularly focusing on ω-3 epoxy fatty acids (ω-3 epoxides), was measured using a liquid chromatography with tandem mass spectrometry (LC-MS/MS) approach. RESULTS Significant decreases of weight and size of the PK03 pancreatic carcinoma were observed in the fat-1 transgenic mice treated with sEH inhibitor compared to those of C57BL/6J control mice fed with AIN-76A diet (weight: 0.28±0.04 g vs. 0.58±0.06 g; size: 187.0±17.5 mm3 vs. 519.3±60.6 mm3). In a separate experiment, sEH-/- mice fed ω-3 PUFA supplement and C57BL/6J mice treated with sEH inhibitor and fed ω-3 PUFA supplement exhibited a significant reduction in the weight and size of the pancreatic carcinoma compared to C57BL/6J control mice (weight: 0.26±.26 g and 0.39±.39 g vs. 0.69±0.11 g, respectively; size: 274.2±36.2 mm3 and 296.4±99.8 mm3 vs. 612.6±117.8 mm3, respectively). Moreover, compared to the pancreatic tumors in C57BL/6J control mice, the tumors in fat-1 transgenic mice treated with sEH inhibitor showed a significant less inflammatory cell infiltrate (62.6±9.2/HPF (high power field) vs. 8.0±1.2/HPF), tumor cell proliferation (48.5±1.7% vs. 16.5±1.6%), and angiogenesis (micro-vessel density (MVD): 35.0±1.0 vs. 11.1±0.5) immunohistochemically, as well as significantly increased caspase-3 labeled apoptosis (0.44±0.06% vs. 0.69±0.06%, respectively). Using western blot approach, significant inhibition of mutant Kras-activated signals including phosphorylated Serine/threonine kinases (cRAF), Mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (ERK) were identified in pancreatic carcinoma of fat-1 transgenic mice treated with sEH inhibitor. Eicosanoic acid metabolic profiling of the serum specimens detected a significant increase of the ratios of epoxides to dihydroxy fatty acid (DiHDPE) for docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and epoxides/dihydroxy octadecenoic acid (DiHOME) for arachidonic acid (ARA) and linoleic acid (LA), as well as a significant increase of epoxy metabolites of DHA, EPA, ARA and LA in fat-1 transgenic mice treated with a sEH inhibitor. CONCLUSION ω-3 epoxy products from ω-3 PUFA metabolism play a crucial role in inhibiting pancreatic cancer growth, and use of ω-3 PUFAs combined with sEH inhibition is a strategy with high potential for pancreatic cancer treatment and prevention.
Collapse
Affiliation(s)
- Rong Xia
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Leyu Sun
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Jie Liao
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Haonan Li
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Xiaoming You
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Dandan Xu
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Jun Yang
- Department of Entomology, University of California, Davis, CA, U.S.A
| | - Sung Hee Hwang
- Department of Entomology, University of California, Davis, CA, U.S.A
| | - Ryan D Jones
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Bruce Hammock
- Department of Entomology, University of California, Davis, CA, U.S.A
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A.
| |
Collapse
|
28
|
An Array of Bioactive Compounds From Australian Eucalypts and Their Relevance in Pancreatic Cancer Therapeutics. Pancreas 2018; 47:690-707. [PMID: 29894418 DOI: 10.1097/mpa.0000000000001074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is one of the most devastating human cancers, and despite the significant advances in the current therapeutic options, the overall survival rate for PC has remained static for the past 50 years. Plant-derived bioactive compounds play a vital role in cancer therapeutics by providing new lead compounds for future drug development. Therefore, the isolation, characterization, and identification of new bioactive compounds for the prevention and treatment of cancer continue to be an important aspect of natural product research. Many in vitro and in vivo studies published in the last few decades have established strong links between the phytochemical profile of eucalypts and anticancer activity. However, only a small number of these reports have attempted to demonstrate a relationship between the biological activity of eucalypt extracts and PC. This review focuses on potential anti-PC effects of an array of bioactive compounds present in various species of eucalypts. It also highlights the necessity for further in vitro and in vivo studies to develop a complete understanding of the potential this group of plants has for the development of potent and specific chemotherapeutic drugs for PC.
Collapse
|
29
|
Noguchi K, Konno M, Eguchi H, Kawamoto K, Mukai R, Nishida N, Koseki J, Wada H, Akita H, Satoh T, Marubashi S, Nagano H, Doki Y, Mori M, Ishii H. c-Met affects gemcitabine resistance during carcinogenesis in a mouse model of pancreatic cancer. Oncol Lett 2018; 16:1892-1898. [PMID: 30008881 DOI: 10.3892/ol.2018.8793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic adenocarcinoma is thought to develop from histologically identifiable intraductal lesions known as pancreatic intraepithelial neoplasias (PanINs), which exhibit similar morphological and genetic features to pancreatic ductal adenocarcinoma (PDAC). Therefore, a better understanding of the biological features underlying the progression of PanIN is essential to development more effective therapeutic interventions for PDAC. In recent years, numerous studies have reported that MET proto-oncogene receptor tyrosine kinase (c-MET) is a potential marker of pancreatic cancer stem cells (CSCs). CSCs have been revealed to initiate and propagate tumors in vitro and in vivo, and are associated with a chemoresistant phenotype. However, in vivo models using a xenograft approach are limited. In the present study, the morphological phenotype, molecular alteration and biological behavior of neoplasia in Pdx-1Cre/+, KrasLSL-G12D/+ and Metflox/flox and wild-type mice was analyzed. The results demonstrated that while oncogenic KrasLSL-G12D/+ increased PanIN initiation and significantly decreased survival rate compared with wild-type mice, no additive effect of c-Met receptor signaling on PanIN progression or prognosis was observed. Following gemcitabine administration, c-Met inhibition in Kras LSL-G12D/+ mice significantly decreased the total surface area of PanIN lesions and the number of anti-proliferation marker protein Ki-67 positive cells occupying PanIN lesions compared with Met+/+ mice. In conclusion, complete inhibition of the c-Met signaling pathway with chemotherapy may be useful for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Kozo Noguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryouta Mukai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naohiro Nishida
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jun Koseki
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeru Marubashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16:14. [PMID: 29370858 PMCID: PMC5785894 DOI: 10.1186/s12967-018-1381-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Bethsebie L Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahdeo Prasad
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | | |
Collapse
|
31
|
Sinha S, Fu YY, Grimont A, Ketcham M, Lafaro K, Saglimbeni JA, Askan G, Bailey JM, Melchor JP, Zhong Y, Joo MG, Grbovic-Huezo O, Yang IH, Basturk O, Baker L, Park Y, Kurtz RC, Tuveson D, Leach SD, Pasricha PJ. PanIN Neuroendocrine Cells Promote Tumorigenesis via Neuronal Cross-talk. Cancer Res 2017. [DOI: 10.1158/0008-5472.can-16-0899] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Nerves are a notable feature of the tumor microenvironment in some epithelial tumors, but their role in the malignant progression of pancreatic ductal adenocarcinoma (PDAC) is uncertain. Here, we identify dense innervation in the microenvironment of precancerous pancreatic lesions, known as pancreatic intraepithelial neoplasms (PanIN), and describe a unique subpopulation of neuroendocrine PanIN cells that express the neuropeptide substance P (SP) receptor neurokinin 1-R (NK1-R). Using organoid culture, we demonstrated that sensory neurons promoted the proliferation of PanIN organoids via SP-NK1-R signaling and STAT3 activation. Nerve-responsive neuroendocrine cells exerted trophic influences and potentiated global PanIN organoid growth. Sensory denervation of a genetically engineered mouse model of PDAC led to loss of STAT3 activation, a decrease in the neoplastic neuroendocrine cell population, and impaired PanIN progression to tumor. Overall, our data provide evidence that nerves of the PanIN microenvironment promote oncogenesis, likely via direct signaling to neoplastic neuroendocrine cells capable of trophic influences. These findings identify neuroepithelial cross-talk as a potential novel target in PDAC treatment. Cancer Res; 77(8); 1868–79. ©2017 AACR.
Collapse
Affiliation(s)
- Smrita Sinha
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- 2Gastroenterology and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York
- 3Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Ya-Yuan Fu
- 3Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Adrien Grimont
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Kelly Lafaro
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph A. Saglimbeni
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gokce Askan
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- 5Gastrointestinal Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer M. Bailey
- 6Division of Surgical Oncology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Jerry P. Melchor
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yi Zhong
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Min Geol Joo
- 7Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Olivera Grbovic-Huezo
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - In-Hong Yang
- 7Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Olca Basturk
- 5Gastrointestinal Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lindsey Baker
- 8Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Young Park
- 8Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Robert C. Kurtz
- 2Gastroenterology and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David Tuveson
- 8Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Steven D. Leach
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pankaj J. Pasricha
- 3Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
32
|
Sinha S, Fu YY, Grimont A, Ketcham M, Lafaro K, Saglimbeni JA, Askan G, Bailey JM, Melchor JP, Zhong Y, Joo MG, Grbovic-Huezo O, Yang IH, Basturk O, Baker L, Park Y, Kurtz RC, Tuveson D, Leach SD, Pasricha PJ. PanIN Neuroendocrine Cells Promote Tumorigenesis via Neuronal Cross-talk. Cancer Res 2017; 77:1868-1879. [PMID: 28386018 DOI: 10.1158/0008-5472.can-16-0899-t] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
Nerves are a notable feature of the tumor microenvironment in some epithelial tumors, but their role in the malignant progression of pancreatic ductal adenocarcinoma (PDAC) is uncertain. Here, we identify dense innervation in the microenvironment of precancerous pancreatic lesions, known as pancreatic intraepithelial neoplasms (PanIN), and describe a unique subpopulation of neuroendocrine PanIN cells that express the neuropeptide substance P (SP) receptor neurokinin 1-R (NK1-R). Using organoid culture, we demonstrated that sensory neurons promoted the proliferation of PanIN organoids via SP-NK1-R signaling and STAT3 activation. Nerve-responsive neuroendocrine cells exerted trophic influences and potentiated global PanIN organoid growth. Sensory denervation of a genetically engineered mouse model of PDAC led to loss of STAT3 activation, a decrease in the neoplastic neuroendocrine cell population, and impaired PanIN progression to tumor. Overall, our data provide evidence that nerves of the PanIN microenvironment promote oncogenesis, likely via direct signaling to neoplastic neuroendocrine cells capable of trophic influences. These findings identify neuroepithelial cross-talk as a potential novel target in PDAC treatment. Cancer Res; 77(8); 1868-79. ©2017 AACR.
Collapse
Affiliation(s)
- Smrita Sinha
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Gastroenterology and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Ya-Yuan Fu
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Adrien Grimont
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Kelly Lafaro
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph A Saglimbeni
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gokce Askan
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Gastrointestinal Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer M Bailey
- Division of Surgical Oncology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Jerry P Melchor
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yi Zhong
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Min Geol Joo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Olivera Grbovic-Huezo
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - In-Hong Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Olca Basturk
- Gastrointestinal Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lindsey Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Young Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Robert C Kurtz
- Gastroenterology and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Steven D Leach
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Pankaj J Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland.
| |
Collapse
|
33
|
Vendrely V, Peuchant E, Buscail E, Moranvillier I, Rousseau B, Bedel A, Brillac A, de Verneuil H, Moreau-Gaudry F, Dabernat S. Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model. Cancer Lett 2017; 390:91-102. [PMID: 28089829 DOI: 10.1016/j.canlet.2017.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/16/2016] [Accepted: 01/08/2017] [Indexed: 12/23/2022]
Abstract
Pancreatic adenocarcinoma, highly resistant to all current anti-cancer treatments, necessitates new approaches promoting cell death. We hypothesized that combined actions of several Bioactive Food Components (BFCs) might provide specific lethal effect towards tumor cells, sparing healthy cells. Human tumor pancreatic cell lines were tested in vitro for sensitivity to resveratrol, capsaicin, piceatannol, and sulforaphane cytotoxic effects. Combination of two or three components showed striking synergetic effect with gemcitabine in vitro. Each BFC used alone did not affect pancreatic tumor growth in a preclinical in vivo model, whereas couples of BFCs had anti-tumor activity. In addition, tumor toxicity was similar using gemcitabine alone or a combination of BFCs and two thirds of gemcitabine dose. Moreover, BFCs enhanced fibrotic response as compared to gemcitabine treatment alone. Reactive oxygen species (ROS) and apoptosis increases were observed, while cell cycle was very mildly affected. This study raises the possibility to use BFCs as beneficial food complements in the therapy of pancreatic adenocarcinoma, especially for patients unable to receive full doses of chemotherapy.
Collapse
Affiliation(s)
| | - Evelyne Peuchant
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| | - Etienne Buscail
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| | | | | | - Aurélie Bedel
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| | - Aurélia Brillac
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France
| | - Hubert de Verneuil
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| | - François Moreau-Gaudry
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| | - Sandrine Dabernat
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France.
| |
Collapse
|
34
|
Anchi P, Khurana A, Bale S, Godugu C. The Role of Plant-derived Products in Pancreatitis: Experimental and Clinical Evidence. Phytother Res 2017; 31:591-623. [DOI: 10.1002/ptr.5792] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Pratibha Anchi
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Amit Khurana
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Swarna Bale
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| |
Collapse
|
35
|
An updated review on molecular mechanisms underlying the anticancer effects of capsaicin. Food Sci Biotechnol 2017; 26:1-13. [PMID: 30263503 DOI: 10.1007/s10068-017-0001-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
The quest for developing anticancer principles from natural sources has a long historical track record and remarkable success stories. The pungent principle of hot chili pepper, capsaicin, has been a subject of research for anticancer drug discovery for more than three decades. However, the majority of research has revealed that capsaicin interferes with various hallmarks of cancer, such as increased cell proliferation, evasion from apoptosis, inflammation, tumor angiogenesis and metastasis, and tumor immune escape. Moreover, the compound has been reported to inhibit carcinogen activation and chemically induced experimental tumor growth. Capsaicin has also been reported to inhibit the activation of various kinases and transcription that are involved in tumor promotion and progression. The compound activated mitochondria-dependent and death receptor-mediated tumor cell apoptosis. Considering the growing interest in capsaicin, this review provides an update on the molecular targets of capsaicin in modulating oncogenic signaling.
Collapse
|
36
|
Ranjan A, Fofaria NM, Kim SH, Srivastava SK. Modulation of signal transduction pathways by natural compounds in cancer. Chin J Nat Med 2016; 13:730-42. [PMID: 26481373 DOI: 10.1016/s1875-5364(15)30073-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 02/07/2023]
Abstract
Cancer is generally regarded as the result of abnormal growth of cells. According to World Health Organization, cancer is the leading cause of mortality worldwide. Mother nature provides a large source of bioactive compounds with excellent therapeutic efficacy. Numerous phytochemicals from nature have been investigated for anticancer properties. In this review article, we discuss several natural compounds, which have shown anti-cancer activity. Natural compounds induce cell cycle arrest, activate intrinsic and extrinsic apoptosis pathways, generate Reactive Oxygen Species (ROS), and down-regulate activated signaling pathways, resulting in inhibition of cell proliferation, progression and metastasis of cancer. Several preclinical studies have suggested that natural compounds can also increase the sensitivity of resistant cancers to available chemotherapy agents. Furthermore, combining FDA approved anti-cancer drugs with natural compounds results in improved efficacy. On the basis of these exciting outcomes of natural compounds against several cancer types, several agents have already advanced to clinical trials. In conclusion, preclinical results and clinical outcomes against cancer suggest promising anticancer efficacy of agents from natural sources.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| |
Collapse
|
37
|
Sato S, Nakamura F, Hiroshima Y, Nagashima Y, Kato I, Yamashita N, Goshima Y, Endo I. Caerulein-induced pancreatitis augments the expression and phosphorylation of collapsin response mediator protein 4. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2016; 23:422-31. [PMID: 27207309 DOI: 10.1002/jhbp.361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic pancreatitis is a significant risk factor for pancreatic cancer. Previously, we demonstrated that the pancreatic cancer cells show enhanced expression of collapsin response mediator protein 4 (CRMP4) that strongly correlates with severe venous invasion, liver metastasis, and poor prognosis. However, involvement of CRMP4 in acute or chronic pancreatitis remains unknown. METHODS Acute and chronic pancreatitis mice models were developed by periodic injection of caerulein. The expression levels of CRMP4 and its phosphorylation were examined. RESULTS Elevated CRMP4 levels were observed in the infiltrated lymphocytes as well as in the pancreas parenchyma of both acute and chronic pancreatitis. The expression pattern of phosphorylated CRMP4 was similar to that of CRMP4. Cdk5 partially co-localized with the phosphorylated CRMP4. CONCLUSIONS Pancreatitis induces CRMP4 expression in the pancreas parenchyma and in the infiltrated lymphocytes. Overlapping expression of CRMP4 and Cdk5 may suggest that the Cdk5 is at least, in part, responsible for the phosphorylation of CRMP4. The results suggest that CRMP4 is involved in the inflammatory response in pancreatitis. Understanding the mechanisms of CRMP4 would help us to develop novel therapeutic strategies against acute or chronic pancreatitis, and pancreatic cancer.
Collapse
Affiliation(s)
- Sho Sato
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa Ward, Yokohama, Kanagawa, 236-0004, Japan
| | - Yukihiko Hiroshima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoji Nagashima
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa Ward, Yokohama, Kanagawa, 236-0004, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa Ward, Yokohama, Kanagawa, 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
38
|
Chen HY, Lee YH, Chen HY, Yeh CA, Chueh PJ, Lin YMJ. Capsaicin Inhibited Aggressive Phenotypes through Downregulation of Tumor-Associated NADH Oxidase (tNOX) by POU Domain Transcription Factor POU3F2. Molecules 2016; 21:molecules21060733. [PMID: 27271588 PMCID: PMC6273514 DOI: 10.3390/molecules21060733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 11/22/2022] Open
Abstract
Capsaicin has been reported to preferentially inhibit the activity of tumor-associated NADH oxidase (tNOX), which belongs to a family of growth-related plasma membrane hydroquinone oxidases in cancer/transformed cells. The inhibitory effect of capsaicin on tNOX is associated with cell growth attenuation and apoptosis. However, no previous study has examined the transcriptional regulation of tNOX protein expression. Bioinformatic analysis has indicated that the tNOX promoter sequence harbors a binding motif for POU3F2, which is thought to play important roles in neuronal differentiation, melanocytes growth/differentiation and tumorigenesis. In this study, we found that capsaicin-mediated tNOX downregulation and cell migration inhibition were through POU3F2. The protein expression levels of POU3F2 and tNOX are positively correlated, and that overexpression of POU3F2 (and the corresponding upregulation of tNOX) enhanced the proliferation, migration and invasion in AGS (human gastric carcinoma) cells. In contrast, knockdown of POU3F2 downregulates tNOX, and the cancer phenotypes are affected. These findings not only shed light on the molecular mechanism of the anticancer properties of capsaicin, but also the transcription regulation of tNOX expression that may potentially explain how POU3F2 is associated with tumorigenesis.
Collapse
Affiliation(s)
- Hung Yen Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Yi Hui Lee
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Huei Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chia An Yeh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Yi-Mei J Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
39
|
Zanini S, Marzotto M, Giovinazzo F, Bassi C, Bellavite P. Effects of dietary components on cancer of the digestive system. Crit Rev Food Sci Nutr 2016; 55:1870-85. [PMID: 24841279 DOI: 10.1080/10408398.2012.732126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer is the second leading cause of death in developed countries and poor diet and physical inactivity are major risk factors in cancer-related deaths. Therefore, interventions to reduce levels of smoking, improve diet, and increase physical activity must become much higher priorities in the general population's health and health care systems. The consumption of fruit and vegetables exerts a preventive effect towards cancer and in recent years natural dietary agents have attracted great attention in the scientific community and among the general public. Foods, such as tomatoes, olive oil, broccoli, garlic, onions, berries, soy bean, honey, tea, aloe vera, grapes, rosemary, basil, chili peppers, carrots, pomegranate, and curcuma contain active components that can influence the initiation and the progression of carcinogenesis, acting on pathways implied in cell proliferation, apoptosis and metastasis. The present review illustrates the main foods and their active components, including their antioxidant, cytotoxic, and pro-apoptotic properties, with a particular focus on the evidence related to cancers of the digestive system.
Collapse
Affiliation(s)
- Sara Zanini
- a Laboratory of Translational Surgery, Universitary Laboratories of Medical Research (LURM), G. B. Rossi Hospital , University of Verona , Verona , Italy
| | | | | | | | | |
Collapse
|
40
|
Liao J, Hwang SH, Li H, Liu JY, Hammock BD, Yang GY. Inhibition of Chronic Pancreatitis and Murine Pancreatic Intraepithelial Neoplasia by a Dual Inhibitor of c-RAF and Soluble Epoxide Hydrolase in LSL-KrasG¹²D/Pdx-1-Cre Mice. Anticancer Res 2016; 36:27-37. [PMID: 26722025 PMCID: PMC4793710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mutation of Kirsten rat sarcoma viral oncogene homolog (KRAS) and chronic pancreatitis are the most common pathogenic events involved in human pancreatic carcinogenesis. In the process of long-standing chronic inflammation, aberrant metabolites of arachidonic acid play a crucial role in promoting carcinogenesis, in which the soluble epoxide hydrolase (sEH), as a pro-inflammatory enzyme, generally inactivates anti-inflammatory epoxyeicosatrienoic acids (EETs). Herein, we determined the effect of our newly-synthesized novel compound trans-4-{4-[3-(4-chloro-3-trifluoromethyl-phenyl)-ureido]-cyclohexyloxy}-pyridine-2-carboxylic acid methylamide (t-CUPM), a dual inhibitor of sEH and RAF1 proto-oncogene serine/threonine kinase (c-RAF), on inhibiting the development of pancreatitis and pancreatic intraepithelial neoplasia (mPanIN) in LSL-Kras(G12D)/Pdx1-Cre mice. The results showed that t-CUPM significantly reduced the severity of chronic pancreatitis, as measured by the extent of acini loss, inflammatory cell infiltration and stromal fibrosis. The progression of low-grade mPanIN I to high-grade mPanIN II/III was significantly suppressed. Inhibition of mutant Kras-transmitted phosphorylation of mitogen-activated protein kinase's kinase/extracellular signal-regulated kinases was demonstrated in pancreatic tissues by western blots. Quantitative real-time polymerase chain reaction analysis revealed that t-CUPM treatment significantly reduced the levels of inflammatory cytokines including tumor necrosis facor-α, monocyte chemoattractant protein-1, as well as vascular adhesion molecule-1, and the levels of Sonic hedgehog and Gli transcription factor (Hedgehog pathway). Analysis of the eicosanoid profile revealed a significant increase of the EETs/dihydroxyeicosatrienoic acids ratio, which further confirmed sEH inhibition by t-CUPM. These results indicate that simultaneous inhibition of sEH and c-RAF by t-CUPM is important in preventing chronic pancreatitis and carcinogenesis.
Collapse
Affiliation(s)
- Jie Liao
- Department of Pathology, Northwestern University, Chicago, IL, U.S.A.
| | - Sung Hee Hwang
- Department of Entomology and Cancer Center, University of California, One Shields Avenue, Davis, CA, U.S.A
| | - Haonan Li
- Department of Pathology, Northwestern University, Chicago, IL, U.S.A
| | - Jun-Yan Liu
- Department of Entomology and Cancer Center, University of California, One Shields Avenue, Davis, CA, U.S.A
| | - Bruce D Hammock
- Department of Entomology and Cancer Center, University of California, One Shields Avenue, Davis, CA, U.S.A
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University, Chicago, IL, U.S.A.
| |
Collapse
|
41
|
Gopinathan A, Morton JP, Jodrell DI, Sansom OJ. GEMMs as preclinical models for testing pancreatic cancer therapies. Dis Model Mech 2015; 8:1185-200. [PMID: 26438692 PMCID: PMC4610236 DOI: 10.1242/dmm.021055] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is the most common form of pancreatic tumour, with a very limited survival rate and currently no available disease-modifying treatments. Despite recent advances in the production of genetically engineered mouse models (GEMMs), the development of new therapies for pancreatic cancer is still hampered by a lack of reliable and predictive preclinical animal models for this disease. Preclinical models are vitally important for assessing therapies in the first stages of the drug development pipeline, prior to their transition to the clinical arena. GEMMs carry mutations in genes that are associated with specific human diseases and they can thus accurately mimic the genetic, phenotypic and physiological aspects of human pathologies. Here, we discuss different GEMMs of human pancreatic cancer, with a focus on the Lox-Stop-Lox (LSL)-Kras(G12D); LSL-Trp53(R172H); Pdx1-cre (KPC) model, one of the most widely used preclinical models for this disease. We describe its application in preclinical research, highlighting its advantages and disadvantages, its potential for predicting clinical outcomes in humans and the factors that can affect such outcomes, and, finally, future developments that could advance the discovery of new therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Aarthi Gopinathan
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| |
Collapse
|
42
|
Mohammed A, Janakiram NB, Pant S, Rao CV. Molecular Targeted Intervention for Pancreatic Cancer. Cancers (Basel) 2015; 7:1499-542. [PMID: 26266422 PMCID: PMC4586783 DOI: 10.3390/cancers7030850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Shubham Pant
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
43
|
Hayes AJ, Skouras C, Haugk B, Charnley RM. Keap1-Nrf2 signalling in pancreatic cancer. Int J Biochem Cell Biol 2015; 65:288-99. [PMID: 26117456 DOI: 10.1016/j.biocel.2015.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 12/16/2022]
Abstract
Transcription factor NF-E2 p45-related factor 2 (Nrf2, also called Nfe2l2), a master regulator of redox homeostasis, and its dominant negative regulator, Kelch-like ECH-associated protein 1 (Keap1), together tightly control the expression of numerous detoxifying and antioxidant genes. Nrf2 and the 'antioxidant response element' (ARE)-driven genes it controls are frequently upregulated in pancreatic cancer and correlate with poor survival. Upregulation of Nrf2 is, at least in part, K-Ras oncogene-driven and contributes to pancreatic cancer proliferation and chemoresistance. In this review, we aim to provide an overview of Keap1-Nrf2 signalling as it relates to pancreatic cancer, discussing the effects of inhibiting Nrf2 or Nrf2/ARE effector proteins to increase chemosensitivity.
Collapse
Affiliation(s)
- Alastair J Hayes
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Centre, Room C2.18, 47 Little France Crescent, Edinburgh, Scotland EH16 4TJ, United Kingdom.
| | - Christos Skouras
- School of Clinical Surgery, College of Medicine and Veterinary Medicine, University of Edinburgh, Room SU 305, Chancellor's Building, 49 Little France Crescent, Edinburgh, Scotland EH16 4SB, United Kingdom.
| | - Beate Haugk
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, England NE1 4LP, United Kingdom.
| | - Richard M Charnley
- Department of Hepato-Pancreatico-Biliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, High Heaton, Newcastle upon Tyne, England NE7 7DN, United Kingdom.
| |
Collapse
|
44
|
Mohammed A, Janakiram NB, Madka V, Brewer M, Ritchie RL, Lightfoot S, Kumar G, Sadeghi M, Patlolla JMR, Yamada HY, Cruz-Monserrate Z, May R, Houchen CW, Steele VE, Rao CV. Targeting pancreatitis blocks tumor-initiating stem cells and pancreatic cancer progression. Oncotarget 2015; 6:15524-39. [PMID: 25906749 PMCID: PMC4558168 DOI: 10.18632/oncotarget.3499] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022] Open
Abstract
Recent development of genetically engineered mouse models (GEMs) for pancreatic cancer (PC) that recapitulates human disease progression has helped to identify new strategies to delay/inhibit PC development. We first found that expression of the pancreatic tumor-initiating/cancer stem cells (CSC) marker DclK1 occurs in early stage PC and in both early and late pancreatic intraepithelial neoplasia (PanIN) and that it increases as disease progresses in GEM and also in human PC. Genome-wide next generation sequencing of pancreatic ductal adenocarcinoma (PDAC) from GEM mice revealed significantly increased DclK1 along with inflammatory genes. Genetic ablation of cyclo-oxygenase-2 (COX-2) decreased DclK1 in GEM. Induction of inflammation/pancreatitis with cerulein in GEM mice increased DclK1, and the novel dual COX/5-lipoxygenase (5-LOX) inhibitor licofelone reduced it. Dietary licofelone significantly inhibited the incidence of PDAC and carcinoma in situ with significant inhibition of pancreatic CSCs. Licofelone suppressed pancreatic tumor COX-2 and 5-LOX activities and modulated miRNAs characteristic of CSC and inflammation in correlation with PDAC inhibition. These results offer a preclinical proof of concept to target the inflammation initiation to inhibit cancer stem cells early for improving the treatment of pancreatic cancers, with immediate clinical implications for repositioning dual COX/5-LOX inhibitors in human trials for high risk patients.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Naveena B. Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Misty Brewer
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rebekah L. Ritchie
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stan Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gaurav Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael Sadeghi
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jagan Mohan R. Patlolla
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hiroshi Y. Yamada
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zobeida Cruz-Monserrate
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Randal May
- Digestive Diseases Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Courtney W. Houchen
- Digestive Diseases Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vernon E. Steele
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, MD, USA
| | - Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
45
|
Liang C, Wang Z, Wu L, Wang C, Yu BH, Yao XZ, Wang XL, Li YY. Orthotopic inflammation-related pancreatic carcinogenesis in a wild-type mouse induced by combined application of caerulein and dimethylbenzanthracene. Tumour Biol 2015; 36:7557-68. [PMID: 25916208 DOI: 10.1007/s13277-015-3471-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/15/2015] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies, with a poor long-term prognosis, and effective therapeutic options are lacking. Observing the dynamics of the pathogenesis of pancreatic intraepithelial neoplasia (PanIN) and PDAC in tumor models can facilitate understanding of the molecular mechanisms involved in early PDAC. Furthermore, it can compensate for the research limitations associated with analyzing clinical specimens of late-stage PDAC. In this study, we orthotopically treated the pancreas with dimethylbenzanthracene (DMBA) combined with caerulein in wild-type C57BL/6 J mice to induce inflammation-related pancreatic carcinogenesis. We observed that DMBA and caerulein treatment induced a chronic consumptive disease, which caused a decrease in the relative body and pancreas weights, diminishing the health status of the mice and enhancing the inflammation-related histological changes. Moreover, mid-dose and high-frequency treatment with caerulein caused prolonged inflammatory damage to the pancreas and contributed to a permissive environment for the development of PDAC. CXCL12/CXCR4, CCL2/CCR2, and several cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were upregulated in the tumor tissue of DMBA and caerulein-induced PDAC mice. This orthotopic mouse pancreatic carcinogenesis model mimic human disease because it reproduces a spectrum of pathological changes observed in human PDAC, ranging from inflammatory lesions to pancreatic intraepithelial neoplasia. Thus, this mouse model may improve the understanding of molecular mechanisms underlying the injury-inflammation-cancer pathway in the early stages of pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Chen Liang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Wang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Wu
- Department of Image, Fudan University Shanghai Zhongshan Hospital, Shanghai Medical College, Shanghai, China
| | - Chen Wang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bao-Hua Yu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiu-Zhong Yao
- Department of Image, Fudan University Shanghai Zhongshan Hospital, Shanghai Medical College, Shanghai, China
| | - Xiao-Lin Wang
- Department of Image, Fudan University Shanghai Zhongshan Hospital, Shanghai Medical College, Shanghai, China
| | - Ying-Yi Li
- Cancer Research Institute, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
46
|
Han YM, Park JM, Lee HJ, Kim EH, Hahm KB. Short-term Intervention to Revert Premalignant Lesions as Strategy to Prevent Gastrointestinal Cancers. J Cancer Prev 2014; 18:289-97. [PMID: 25337558 PMCID: PMC4189441 DOI: 10.15430/jcp.2013.18.4.289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/20/2022] Open
Abstract
"Prevention might be better than treatment in cancer treatment" is brief conclusion drawn from war on cancer through National Cancer Act of 1971 by U.S. President Richard Nixon. However, the clinical practice of chemoprevention is still in its infancy in spite of a wealth of data showing its effectiveness in experimental animals as well as in vitro mechanism research. Recent advances in either high throughput analysis including cancer genomes and tailored medicine or molecular targeted therapeutics, preventive strategies also should be changes as previous preventive strategies including phytoceuticals, life-style modification, and some empirical agents. Furthermore, molecular targeted therapeutics achieved high goal of effectiveness under the concept of therapeutic or preventive "synthetic lethality", of which extended application can be included within the scope of chemoprevention. Here, we will summarize several recent advances in chemopreventive strategy objected to justify optimism that chemoprevention will be an effective approach for the control of human cancer. siTRP (short-term intervention to revert premalignancy) strategy will be introduced for cancers in gastroenterology.
Collapse
Affiliation(s)
- Young-Min Han
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul ; College of Pharmacy, CHA University, Pocheon
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul
| | - Ho-Jae Lee
- Lee Gil Ya Cancer and Diabetes Research Institute, Gachon University, Incheon
| | - Eun-Hee Kim
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul ; Lee Gil Ya Cancer and Diabetes Research Institute, Gachon University, Incheon
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul ; Department of Gastroenterology, CHA Bundang Medical Center, Seongnam, Korea
| |
Collapse
|
47
|
Wutka A, Palagani V, Barat S, Chen X, El Khatib M, Götze J, Belahmer H, Zender S, Bozko P, Malek NP, Plentz RR. Capsaicin treatment attenuates cholangiocarcinoma carcinogenesis. PLoS One 2014; 9:e95605. [PMID: 24748170 PMCID: PMC3991659 DOI: 10.1371/journal.pone.0095605] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/28/2014] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Capsaicin, the most abundant pungent molecule produced by pepper plants, represents an important ingredient in spicy foods consumed throughout the world. Studies have shown that capsaicin can relieve inflammation and has anti-proliferative effects on various human malignancies. Cholangiocarcinoma (CC) is a cancer disease with rising incidence. The prognosis remains dismal with little advance in treatment. The aim of the present study is to explore the anti-tumor activity of capsaicin in cultured human CC cell lines. Capsaicin effectively impaired cell proliferation, migration, invasion, epithelial to mesenchymal transition and growth of softagar colonies. Further, we show that capsaicin treatment of CC cells regulates the Hedgehog signaling pathway. CONCLUSION Our results provide a basis for capsaicin to improve the prognosis of CCs in vivo and present new insights into the effectiveness and mode of action of capsaicin.
Collapse
Affiliation(s)
- Annika Wutka
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Vindhya Palagani
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Samarpita Barat
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Xi Chen
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Mona El Khatib
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Julian Götze
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Hanane Belahmer
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Steffen Zender
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Nisar P. Malek
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Ruben R. Plentz
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| |
Collapse
|
48
|
Cho WH, Lee HJ, Choi YJ, Oh JH, Kim HS, Cho HS. Capsaicin induces apoptosis in MG63 human osteosarcoma cells via the caspase cascade and the antioxidant enzyme system. Mol Med Rep 2013; 8:1655-62. [PMID: 24142063 PMCID: PMC3829765 DOI: 10.3892/mmr.2013.1737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/02/2013] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in children and adolescents. This aggressive cancer mostly occurs in the long bones. Therefore, novel therapeutic approaches, such as biological therapies and gene therapy, are required to efficiently treat osteosarcoma. Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) has been demonstrated to inhibit the growth of several types of cancer cells and a number of studies have shown that osteosarcoma may be vulnerable to biological therapies. However, little is known regarding the therapeutic effects of capsaicin on osteosarcoma. This study investigated the effects of capsaicin on MG63 human osteosarcoma cells, in addition to elucidating the regulatory signaling pathways underlying the effects of capsaicin, the caspase cascade and the antioxidant enzyme system. The MG63 cell line was treated with various concentrations of capsaicin. Cells were analyzed using MTT and flow cytometry, and the presence of DNA fragmentation was evaluated using TUNEL assay. Results showed capsaicin induced apoptosis in MG63 cells. Thus, capsaicin exhibited an anticancer effect in osteosarcoma cells.
Collapse
Affiliation(s)
- Won Ho Cho
- Department of Neurosurgery and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 602739, Republic of Korea
| | | | | | | | | | | |
Collapse
|
49
|
Li H, Yang AL, Chung YT, Zhang W, Liao J, Yang GY. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10). Carcinogenesis 2013; 34:2090-8. [PMID: 23689354 DOI: 10.1093/carcin/bgt170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-Kras(G12D)-LSL-Trp53(R172H)-Pdx-1-Cre mice (Pan(kras/p53) mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan-Meier survival analysis showed that average animal survival in Pan(kras/p53) mice was 143.7 ± 8.8 days, and average survival with sulindac was increased to 168.0 ± 8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pan(kras/p53) mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10.
Collapse
Affiliation(s)
- Haonan Li
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 6-118, Chicago, IL 60611
| | | | | | | | | | | |
Collapse
|
50
|
Mascariñas E, Eibl G, Grippo PJ. Evaluating dietary compounds in pancreatic cancer modeling systems. Methods Mol Biol 2013; 980:225-248. [PMID: 23359157 DOI: 10.1007/978-1-62703-287-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
With the establishment of outstanding rodent models of pancreatic neoplasia and cancer, there are now systems available for evaluating the role diet, dietary supplements, and/or therapeutic compounds (which can be delivered in the diet) play in disease suppression. Several outstanding reports, which demonstrate clear inhibition or regression of pancreatic tumors following dietary manipulations, represent a noticeable advancement in the field by allowing for the contribution of diet and natural and synthetic compounds to be identified. The real goal is to provide support for translational components that will provide true chemoprevention to individuals at higher risk for developing pancreatic cancer. In addition, administration of molecules with proven efficacy in an in vivo system will screen likely candidates for future clinical trials. Despite this growing enthusiasm, it is important to note that the mere one-to-one translation of findings in rodent models to clinical outcomes is highly unlikely. Thus, careful consideration must be made to correlate findings in rodents with those in human cells with full disclosure of the subtle but often critical differences between animal models and humans. Additional concern should also be placed on the approaches employed to establish dietary components with real potential in the clinic. This chapter is focused on procedures that provide a systematic design for evaluating dietary compounds in cell culture and animal models to highlight which ones might have the greatest potential in people. The general format for this text is a stepwise use of fairly well-known approaches covered briefly but annotated with certain considerations for dietary studies. These methods include administration of a compound or a diet, measuring the cellular and molecular effects (histology, proliferation, apoptosis, RNA and protein expression, and signaling pathways), measuring the level of certain metabolites, and assessing the stability of active compounds. Though this chapter is divided into in vitro and in vivo sections, it is not an implication as to the order of experiments but an endorsement for utilizing human cells to complement work in a rodent modeling system. The notion that cell culture can provide the basis for further in vivo work is an attractive starting point, though the lack of a response in a single cell type should not necessarily prevent diet studies in rodents. The advantage of cell culture over animal models is the human origin of these cells and the ease and directness of manipulating a single cell type (particularly when exploring mechanism of action in that cell). Of course, the full effect of a diet, diet supplement, or therapeutic can only be wholly appreciated in an intact living organism with similar anatomical and physiological relevance. Thus, both approaches are considered in this chapter as each can provide unique strengths to determining the effectiveness of various dietary compounds or supplements on pancreatic neoplasia and cancer.
Collapse
Affiliation(s)
- Emman Mascariñas
- Department of Surgery, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|