1
|
Pergolizzi RG, Brower ST. Molecular Targets for the Diagnosis and Treatment of Pancreatic Cancer. Int J Mol Sci 2024; 25:10843. [PMID: 39409171 PMCID: PMC11476914 DOI: 10.3390/ijms251910843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Pancreatic cancer is one of the most aggressive and lethal forms of cancer, with a five-year survival rate of less than 10%. Despite advances in treatment modalities, the prognosis for pancreatic cancer patients remains poor, highlighting the urgent need for innovative approaches for early diagnosis and targeted therapies. In recent years, there has been significant progress in understanding the molecular mechanisms underlying pancreatic cancer development and progression. This paper reviews the current knowledge of molecular targets for the diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
| | - Steven T. Brower
- Department of Surgical Oncology and HPB Surgery, Englewood Health, Englewood, NJ 07631, USA
| |
Collapse
|
2
|
Yao Y, Fan D. Advances in MUC1 resistance to chemotherapy in pancreatic cancer. J Chemother 2024; 36:449-456. [PMID: 38006297 DOI: 10.1080/1120009x.2023.2282839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
The incidence of pancreatic cancer (PC), a highly fatal malignancy, is increasing every year. Chemotherapy is an important treatment for it in addition to surgery, yet most patients become resistant to chemotherapeutic agents within a few weeks of treatment initiation. MUC1 is a highly glycosylated transmembrane protein, and studies have shown that aberrantly glycosylated overexpression of MUC1 is involved in regulating the biology of chemoresistance in cancer cells. This article summarizes the mechanism of MUC1 in PC chemoresistance and reviews MUC1-based targeted therapies.
Collapse
Affiliation(s)
- Youhao Yao
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi, PR China
- Surgery Department, Shanxi Provincial People's Hospital, Taiyuan, PR China
| | - Daguang Fan
- Surgery Department, Shanxi Provincial People's Hospital, Taiyuan, PR China
| |
Collapse
|
3
|
Sharma A, Vikramdeo KS, Sudan SK, Anand S, Deshmukh SK, Singh AP, Singh S. Cortisol affects macrophage polarization by inducing miR-143/145 cluster to reprogram glucose metabolism and by promoting TCA cycle anaplerosis. J Biol Chem 2024; 300:107753. [PMID: 39260692 PMCID: PMC11470657 DOI: 10.1016/j.jbc.2024.107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Chronic stress can have adverse consequences on human health by disrupting the hormonal balance in our body. Earlier, we observed elevated levels of cortisol, a primary stress hormone, and some exosomal microRNAs in the serum of patients with breast cancer. Here, we investigated the role of cortisol in microRNA induction and its functional consequences. We found that cortisol induced the expression of miR-143/145 cluster in human monocyte (THP1 and U937)-derived macrophages but not in breast cancer cells. In silico analysis identified glucocorticoid-response element in the upstream CARMN promoter utilized by the miR-143/145 cluster. Enhanced binding of glucocorticoid-receptor (GR) upon cortisol exposure and its regulatory significance was confirmed by chromatin-immunoprecipitation and promoter-reporter assays. Further, cortisol inhibited IFNγ-induced M1 polarization and promoted M2 polarization, and these effects were suppressed by miR-143-3p and miR-145-5p inhibitors pretreatment. Cortisol-treated macrophages exhibited increased oxygen-consumption rate (OCR) to extracellular-acidification rate (ECAR) ratio, and this change was neutralized by functional inhibition of miR-143-3p and miR-145-5p. HK2 and ADPGK were confirmed as the direct targets of miR-143-3p and miR-145-5p, respectively. Interestingly, silencing of HK2 and ADPGK inhibited IFNγ-induced M1 polarization but failed to induce M2 polarization, since it suppressed both ECAR and OCR, while OCR was largely sustained in cortisol-treated M2-polarized macrophages. We found that cortisol treatment sustained OCR by enhancing fatty acid and glutamine metabolism through upregulation of CPT2 and GLS, respectively, to support M2 polarization. Thus, our findings unfold a novel mechanism of immune suppression by cortisol and open avenues for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Amod Sharma
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Kunwar Somesh Vikramdeo
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sarabjeet Kour Sudan
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Shashi Anand
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sachin Kumar Deshmukh
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA; Department of Pathology, University of South Alabama, Mobile, Alabama, USA
| | - Ajay Pratap Singh
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Seema Singh
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| |
Collapse
|
4
|
Przybyszewski O, Mik M, Nowicki M, Kusiński M, Mikołajczyk-Solińska M, Śliwińska A. Using microRNAs Networks to Understand Pancreatic Cancer-A Literature Review. Biomedicines 2024; 12:1713. [PMID: 39200178 PMCID: PMC11351910 DOI: 10.3390/biomedicines12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a severe disease, challenging to diagnose and treat, and thereby characterized by a poor prognosis and a high mortality rate. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90% of pancreatic cancer cases, while other cases include neuroendocrine carcinoma. Despite the growing knowledge of the pathophysiology of this cancer, the mortality rate caused by it has not been effectively reduced. Recently, microRNAs have aroused great interest among scientists and clinicians, as they are negative regulators of gene expression, which participate in many processes, including those related to the development of pancreatic cancer. The aim of this review is to show how microRNAs (miRNAs) affect key signaling pathways and related cellular processes in pancreatic cancer development, progression, diagnosis and treatment. We included the results of in vitro studies, animal model of pancreatic cancer and those performed on blood, saliva and tumor tissue isolated from patients suffering from PDAC. Our investigation identified numerous dysregulated miRNAs involved in KRAS, JAK/STAT, PI3/AKT, Wnt/β-catenin and TGF-β signaling pathways participating in cell cycle control, proliferation, differentiation, apoptosis and metastasis. Moreover, some miRNAs (miRNA-23a, miRNA-24, miRNA-29c, miRNA-216a) seem to be engaged in a crosstalk between signaling pathways. Evidence concerning the utility of microRNAs in the diagnosis and therapy of this cancer is poor. Therefore, despite growing knowledge of the involvement of miRNAs in several processes associated with pancreatic cancer, we are beginning to recognize and understand their role and usefulness in clinical practice.
Collapse
Affiliation(s)
- Oskar Przybyszewski
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Michał Mik
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Nowicki
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Kusiński
- Department of Endocrinological, General and Oncological Surgery, Medical University of Lodz, 62 Pabianicka St., 93-513 Lodz, Poland;
| | - Melania Mikołajczyk-Solińska
- Department of Internal Medicine, Diabetology and Clinical Pharmacology, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| |
Collapse
|
5
|
Pal A, Ojha A, Ju J. Functional and Potential Therapeutic Implication of MicroRNAs in Pancreatic Cancer. Int J Mol Sci 2023; 24:17523. [PMID: 38139352 PMCID: PMC10744132 DOI: 10.3390/ijms242417523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The alarmingly low five-year survival rate for pancreatic cancer presents a global health challenge, contributing to about 7% of all cancer-related deaths. Late-stage diagnosis and high heterogeneity are the biggest hurdles in treating pancreatic cancer. Thus, there is a pressing need to discover novel biomarkers that could help in early detection as well as improve therapeutic strategies. MicroRNAs (miRNAs), a class of short non-coding RNA, have emerged as promising candidates with regard to both diagnostics and therapeutics. Dysregulated miRNAs play pivotal roles in accelerating tumor growth and metastasis, orchestrating tumor microenvironment, and conferring chemoresistance in pancreatic cancer. The differential expression profiles of miRNAs in pancreatic cancer could be utilized to explore novel therapeutic strategies. In this review, we also covered studies on recent advancements in various miRNA-based therapeutics such as restoring miRNAs with a tumor-suppressive function, suppressing miRNA with an oncogenic function, and combination with chemotherapeutic drugs. Despite several challenges in terms of specificity and targeted delivery, miRNA-based therapies hold the potential to revolutionize the treatment of pancreatic cancer by simultaneously targeting multiple signaling pathways.
Collapse
Affiliation(s)
- Amartya Pal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anushka Ojha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- The Northport Veteran’s Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
6
|
Ameri A, Ahmed HM, Pecho RDC, Arabnozari H, Sarabadani H, Esbati R, Mirabdali S, Yazdani O. Diverse activity of miR-150 in Tumor development: shedding light on the potential mechanisms. Cancer Cell Int 2023; 23:261. [PMID: 37924077 PMCID: PMC10625198 DOI: 10.1186/s12935-023-03105-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
There is a growing interest to understand the role and mechanism of action of microRNAs (miRNAs) in cancer. The miRNAs are defined as short non-coding RNAs (18-22nt) that regulate fundamental cellular processes through mRNA targeting in multicellular organisms. The miR-150 is one of the miRNAs that have a crucial role during tumor cell progression and metastasis. Based on accumulated evidence, miR-150 acts as a double-edged sword in malignant cells, leading to either tumor-suppressive or oncogenic function. An overview of miR-150 function and interactions with regulatory and signaling pathways helps to elucidate these inconsistent effects in metastatic cells. Aberrant levels of miR-150 are detectable in metastatic cells that are closely related to cancer cell migration, invasion, and angiogenesis. The ability of miR-150 in regulating of epithelial-mesenchymal transition (EMT) process, a critical stage in tumor cell migration and metastasis, has been highlighted. Depending on the cancer cells type and gene expression profile, levels of miR-150 and potential target genes in the fundamental cellular process can be different. Interaction between miR-150 and other non-coding RNAs, such as long non-coding RNAs and circular RNAs, can have a profound effect on the behavior of metastatic cells. MiR-150 plays a significant role in cancer metastasis and may be a potential therapeutic target for preventing or treating metastatic cancer.
Collapse
Affiliation(s)
- Ali Ameri
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | | | - Hoda Sarabadani
- Rajiv Gandhi Institute of Information Technology & Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Seyedsaber Mirabdali
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
7
|
Izdebska WM, Daniluk J, Niklinski J. Microbiome and MicroRNA or Long Non-Coding RNA-Two Modern Approaches to Understanding Pancreatic Ductal Adenocarcinoma. J Clin Med 2023; 12:5643. [PMID: 37685710 PMCID: PMC10488817 DOI: 10.3390/jcm12175643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of humans' most common and fatal neoplasms. Nowadays, a number of PDAC studies are being conducted in two different fields: non-coding RNA (especially microRNA and long non-coding RNA) and microbiota. It has been recently discovered that not only does miRNA affect particular bacteria in the gut microbiome that can promote carcinogenesis in the pancreas, but the microbiome also has a visible impact on the miRNA. This suggests that it is possible to use the combined impact of the microbiome and noncoding RNA to suppress the development of PDAC. Nevertheless, insufficient research has focused on bounding both approaches to the diagnosis, treatment, and prevention of pancreatic ductal adenocarcinoma. In this article, we summarize the recent literature on the molecular basis of carcinogenesis in the pancreas, the two-sided impact of particular types of non-coding RNA and the pancreatic cancer microbiome, and possible medical implications of the discovered phenomenon.
Collapse
Affiliation(s)
- Wiktoria Maria Izdebska
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jaroslaw Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
8
|
MicroRNA: Crucial modulator in purinergic signalling involved diseases. Purinergic Signal 2023; 19:329-341. [PMID: 35106737 PMCID: PMC9984628 DOI: 10.1007/s11302-022-09840-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Both microRNAs (miRNAs) and purinergic signalling are widely and respectively expressed in various tissues of different organisms and play vital roles in a variety of physiological and pathological processes. Here, we reviewed the current publications contributed to the relationship of miRNAs and purinergic signalling in cardiovascular diseases, gastrointestinal diseases, neurological diseases, and ophthalmic diseases. We tried to decode the miRNAs-purinergic signalling network of purinergic signalling involved diseases. The evidence indicated that more than 30 miRNAs (miR-22, miR-30, miR-146, miR-150, miR-155, miR-187, etc.) directly or indirectly modulate P1 receptors (A1, A2A, A2B, A3), P2 receptors (P2X1, P2X3, P2X4, P2X7, P2Y2, P2Y6, P2Y12), and ecto-enzymes (CD39, CD73, ADA2); P2X7 and CD73 could be modulated by multiple miRNAs (P2X7: miR-21, miR-22, miR-30, miR-135a, miR-150, miR-186, miR-187, miR-216b; CD73: miR-141, miR-101, miR-193b, miR-340, miR-187, miR-30, miR-422a); miR-187 would be the common miRNA to modulate P2X7 and CD73.
Collapse
|
9
|
Aldous N, Elsayed AK, Alajez NM, Abdelalim EM. iPSC-Derived Pancreatic Progenitors Lacking FOXA2 Reveal Alterations in miRNA Expression Targeting Key Pancreatic Genes. Stem Cell Rev Rep 2023; 19:1082-1097. [PMID: 36749553 DOI: 10.1007/s12015-023-10515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
Recently, we reported that forkhead box A2 (FOXA2) is required for the development of human pancreatic α- and β-cells. However, whether miRNAs play a role in regulating pancreatic genes during pancreatic development in the absence of FOXA2 expression is largely unknown. Here, we aimed to capture the dysregulated miRNAs and to identify their pancreatic-specific gene targets in pancreatic progenitors (PPs) derived from wild-type induced pluripotent stem cells (WT-iPSCs) and from iPSCs lacking FOXA2 (FOXA2-/-iPSCs). To identify differentially expressed miRNAs (DEmiRs), and genes (DEGs), two different FOXA2-/-iPSC lines were differentiated into PPs. FOXA2-/- PPs showed a significant reduction in the expression of the main PP transcription factors (TFs) in comparison to WT-PPs. RNA sequencing analysis demonstrated significant reduction in the mRNA expression of genes involved in the development and function of exocrine and endocrine pancreas. Furthermore, miRNA profiling identified 107 downregulated and 111 upregulated DEmiRs in FOXA2-/- PPs compared to WT-PPs. Target prediction analysis between DEmiRs and DEGs identified 92 upregulated miRNAs, predicted to target 1498 downregulated genes in FOXA2-/- PPs. Several important pancreatic TFs essential for pancreatic development were targeted by multiple DEmiRs. Selected DEmiRs and DEGs were further validated using RT-qPCR. Our findings revealed that FOXA2 expression is crucial for pancreatic development through regulating the expression of pancreatic endocrine and exocrine genes targeted by a set of miRNAs at the pancreatic progenitor stage. These data provide novel insights of the effect of FOXA2 deficiency on miRNA-mRNA regulatory networks controlling pancreatic development and differentiation.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed K Elsayed
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar. .,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
10
|
Dhanisha SS, Guruvayoorappan C. Pathological Implications of Mucin Signaling in Metastasis. Curr Cancer Drug Targets 2023; 23:585-602. [PMID: 36941808 DOI: 10.2174/1568009623666230320121332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 03/23/2023]
Abstract
The dynamic mucosal layer provides a selective protective barrier for the epithelial cells lining the body cavities. Diverse human malignancies exploit their intrinsic role to protect and repair epithelia for promoting growth and survival. Aberrant expression of mucin has been known to be associated with poor prognosis of many cancers. However, the emergence of new paradigms in the study of metastasis recognizes the involvement of MUC1, MUC4, MUC5AC, MUC5B, and MUC16 during metastasis initiation and progression. Hence mucins can be used as an attractive target in future diagnostic and therapeutic strategies. In this review, we discuss in detail about mucin family and its domains and the role of different mucins in regulating cancer progression and metastasis. In addition, we briefly discuss insights into mucins as a therapeutic agent.
Collapse
Affiliation(s)
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| |
Collapse
|
11
|
Hao H, Dai C, Han X, Li Y. A novel therapeutic strategy for alleviating atrial remodeling by targeting exosomal miRNAs in atrial fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119365. [PMID: 36167158 DOI: 10.1016/j.bbamcr.2022.119365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Atrial fibrillation (AF) is one of the most frequent cardiac arrhythmias, and atrial remodeling is related to the progression of AF. Although several therapeutic approaches have been presented in recent years, the continuously increasing mortality rate suggests that more advanced strategies for treatment are urgently needed. Exosomes regulate pathological processes through intercellular communication mediated by microribonucleic acid (miRNA) in various cardiovascular diseases (CVDs). Exosomal miRNAs associated with signaling pathways have added more complexity to an already complex direct cell-to-cell interaction. Exosome delivery of miRNAs is involved in cardiac regeneration and cardiac protection. Recent studies have found that exosomes play a critical role in the diagnosis and treatment of cardiac fibrosis. By improving exosome stability and modifying surface epitopes, specific pharmaceutical agents can be supplied to improve tropism and targeting to cells and tissues in vivo. Exosomes harboring miRNAs may have clinical utility in cell-free therapeutic approaches and may serve as prognostic and diagnostic biomarkers for AF. Currently, limitations challenge pharmaceutic design, therapeutic utility and in vivo targeted delivery to patients. The aim of this article is to review the developmental features of AF associated with exosomal miRNAs and relate them to underlying mechanisms.
Collapse
Affiliation(s)
- Hongting Hao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chenguang Dai
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xuejie Han
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China; NHC Key Laboratory of Cell Translation, Harbin Medical University, Heilongjiang 150001, China; Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin 150001, China; Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, China; Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Harbin 150081, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China.
| |
Collapse
|
12
|
Nucleoside transporters and immunosuppressive adenosine signaling in the tumor microenvironment: Potential therapeutic opportunities. Pharmacol Ther 2022; 240:108300. [PMID: 36283452 DOI: 10.1016/j.pharmthera.2022.108300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Adenosine compartmentalization has a profound impact on immune cell function by regulating adenosine localization and, therefore, extracellular signaling capabilities, which suppresses immune cell function in the tumor microenvironment. Nucleoside transporters, responsible for the translocation and cellular compartmentalization of hydrophilic adenosine, represent an understudied yet crucial component of adenosine disposition in the tumor microenvironment. In this review article, we will summarize what is known regarding nucleoside transporter's function within the purinome in relation to currently devised points of intervention (i.e., ectonucleotidases, adenosine receptors) for cancer immunotherapy, alterations in nucleoside transporter expression reported in cancer, and potential avenues for targeting of nucleoside transporters for the desired modulation of adenosine compartmentalization and action. Further, we put forward that nucleoside transporters are an unexplored therapeutic opportunity, and modulation of nucleoside transport processes could attenuate the pathogenic buildup of immunosuppressive adenosine in solid tumors, particularly those enriched with nucleoside transport proteins.
Collapse
|
13
|
Acharya S, Anand S, Khan MA, Zubair H, Srivastava SK, Singh S, Singh AP. Biphasic transcriptional and posttranscriptional regulation of MYB by androgen signaling mediates its growth control in prostate cancer. J Biol Chem 2022; 299:102725. [PMID: 36410437 PMCID: PMC9791434 DOI: 10.1016/j.jbc.2022.102725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
MYB, a proto-oncogene, is overexpressed in prostate cancer (PCa) and promotes its growth, aggressiveness, and resistance to androgen-deprivation therapy. Here, we examined the effect of androgen signaling on MYB expression and delineated the underlying molecular mechanisms. Paralleling a dichotomous effect on growth, low-dose androgen induced MYB expression at both transcript and protein levels, whereas it was suppressed in high-dose androgen-treated PCa cells. Interestingly, treatment with both low- and high-dose androgen transcriptionally upregulated MYB by increasing the binding of androgen receptor to the MYB promoter. In a time-course assay, androgen induced MYB expression at early time points followed by a sharp decline in high-dose androgen-treated cells due to decreased stability of MYB mRNA. Additionally, profiling of MYB-targeted miRNAs demonstrated significant induction of miR-150 in high-dose androgen-treated PCa cells. We observed a differential binding of androgen receptor on miR-150 promoter with significantly greater occupancy recorded in high-dose androgen-treated cells than those treated with low-dose androgen. Functional inhibition of miR-150 relieved MYB suppression by high-dose androgen, while miR-150 mimic abolished MYB induction by low-dose androgen. Furthermore, MYB-silencing or miR-150 mimic transfection suppressed PCa cell growth induced by low-dose androgen, whereas miR-150 inhibition rescued PCa cells from growth repression by high-dose androgen. Similarly, we observed that MYB silencing suppressed the expression of androgen-responsive, cell cycle-related genes in low-dose androgen-treated cells, while miR-150 inhibition increased their expression in cells treated with high-dose androgen. Overall, these findings reveal novel androgen-mediated mechanisms of MYB regulation that support its biphasic growth control in PCa cells.
Collapse
Affiliation(s)
- Srijan Acharya
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
14
|
Rahnama N, Jahangir M, Alesaeid S, Kahrizi MS, Adili A, Mohammed RN, Aslaminabad R, Akbari M, Özgönül AM. Association between microRNAs and chemoresistance in pancreatic cancer: Current knowledge, new insights, and forthcoming perspectives. Pathol Res Pract 2022; 236:153982. [PMID: 35779293 DOI: 10.1016/j.prp.2022.153982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic duct adenocarcinoma, commonly known as pancreatic cancer (PC), is a cancer-related cause of death due to delayed diagnosis, metastasis, and drug resistance. Patients with PC suffer from incorrect responses to chemotherapy due to inherent and acquired chemical resistance. Numerous studies have shown the mechanism of the effect of chemoresistance on PC, such as genetic and epigenetic changes or the elucidation of signaling pathways. In this regard, microRNAs (miRNAs) have been identified as essential modulators of gene expression in various cellular functions, including chemoresistance. Thus, identifying the underlying link between microRNAs and PC chemoresistance helps determine the exact pathogenesis of PC. This study aims to classify miRNAs and signaling pathways related to PC chemoresistance, suggesting new therapeutic approaches to overcome PC chemoresistance.
Collapse
Affiliation(s)
- Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Samira Alesaeid
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University of Sulaimaniya, Kurdistan Region, Iraq; College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Ramin Aslaminabad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Mert Özgönül
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
15
|
Dai H, Abdullah R, Wu X, Li F, Ma Y, Lu A, Zhang G. Pancreatic Cancer: Nucleic Acid Drug Discovery and Targeted Therapy. Front Cell Dev Biol 2022; 10:855474. [PMID: 35652096 PMCID: PMC9149368 DOI: 10.3389/fcell.2022.855474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal cancers with an almost 10% 5-year survival rate. Because PC is implicated in high heterogeneity, desmoplastic tumor-microenvironment, and inefficient drug-penetration, the chemotherapeutic strategy currently recommended for the treatment of PC has limited clinical benefit. Nucleic acid-based targeting therapies have become strong competitors in the realm of drug discovery and targeted therapy. A vast evidence has demonstrated that antibody-based or alternatively aptamer-based strategy largely contributed to the elevated drug accumulation in tumors with reduced systematic cytotoxicity. This review describes the advanced progress of antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNA (mRNAs), and aptamer-drug conjugates (ApDCs) in the treatment of PC, revealing the bright application and development direction in PC therapy.
Collapse
Affiliation(s)
- Hong Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Razack Abdullah
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute for the Advancement of Chinese medicine (IACM) .Ltd, Shatin, Hong Kong SAR, China
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
16
|
Papaefthymiou A, Doukatas A, Galanopoulos M. Pancreatic cancer and oligonucleotide therapy: Exploring novel therapeutic options and targeting chemoresistance. Clin Res Hepatol Gastroenterol 2022; 46:101911. [PMID: 35346893 DOI: 10.1016/j.clinre.2022.101911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
Pancreatic cancer (PC) represents a malignancy with increased mortality rate, as less than 10% of patients survive for 5 years after diagnosis. Current evolution in basic sciences has revealed promising results by decrypting genetic loci vulnerable to mutations, as potential targets of novel treatment choices. In this regard, the "Oligonucleotide therapeutics", based on synthetic nucleotides, modify the function and expression of their targets. Antisense oligonucleotides (ASOs), small interfering RNA (siRNA), microRNAs (miRNAs), aptamers, CpG oligodeoxynucleotides and decoys comprise the main representatives of this emerging technology, by regulating oncogenes' expression, restoring DNA repairment mechanisms, sensitizing cancer cells in chemotherapy, and inhibiting PC progress. A plethora of genetic treatment molecules and respective targets have been described and are currently studied, thus providing a broad range of probable pharmaceutical options. This narrative review illuminates the main parameters of genetic treatment molecules for PC and underlines their deficiencies, to clarify the upcoming future and trigger further investigation in PC management.
Collapse
Affiliation(s)
- Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larissa, Larissa, 41110, Thessaly, Greece.
| | - Aris Doukatas
- Department of Pharmacy, National and Kapodistrian University of Athens, Attiki, Greece
| | - Michail Galanopoulos
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| |
Collapse
|
17
|
Gene Therapy Using Nanocarriers for Pancreatic Ductal Adenocarcinoma: Applications and Challenges in Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14010137. [PMID: 35057033 PMCID: PMC8780888 DOI: 10.3390/pharmaceutics14010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide, and its incidence is increasing. PDAC often shows resistance to several therapeutic modalities and a higher recurrence rate after surgical treatment in the early localized stage. Combination chemotherapy in advanced pancreatic cancer has minimal impact on overall survival. RNA interference (RNAi) is a promising tool for regulating target genes to achieve sequence-specific gene silencing. Here, we summarize RNAi-based therapeutics using nanomedicine-based delivery systems that are currently being tested in clinical trials and are being developed for the treatment of PDAC. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing has been widely used for the development of cancer models as a genetic screening tool for the identification and validation of therapeutic targets, as well as for potential cancer therapeutics. This review discusses current advances in CRISPR/Cas9 technology and its application to PDAC research. Continued progress in understanding the PDAC tumor microenvironment and nanomedicine-based gene therapy will improve the clinical outcomes of patients with PDAC.
Collapse
|
18
|
Shen H, Ye F, Xu D, Fang L, Zhang X, Zhu J. The MYEOV-MYC association promotes oncogenic miR-17/93-5p expression in pancreatic ductal adenocarcinoma. Cell Death Dis 2021; 13:15. [PMID: 34930894 PMCID: PMC8688437 DOI: 10.1038/s41419-021-04387-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy worldwide. As metastasis and malignant progression are primarily responsible for the poor clinical outcomes of PDAC, identifying key genes involved in these processes and the underlying molecular mechanisms of PDAC is vital. In this study, by analyzing TCGA PDAC data and matched GTEx data, we found that MYEOV expression is associated with poor survival in PDAC patients and higher in carcinoma tissues than in healthy tissues. Elevated levels of MYEOV led to enhanced cell proliferation, invasion and migration in vitro and in vivo. Transcriptome analysis results revealed that MYEOV mediates global alterations in gene expression profiles in PDAC cells. MiRNA-seq analysis showed that MYEOV regulates the expression levels of miR-17-5p and miR-93-5p, and its depletion resulted in reduced cell proliferation, invasion and migration, as observed in MYEOV-knockdown PDAC cells. These effects are likely due to the ability of MYEOV to regulate enrichment of the transcription factor MYC at the gene promoter regions of the two miRNAs. Furthermore, we identified a complex containing MYEOV and MYC in the nucleus, providing additional evidence for the association of MYEOV with MYC. Taken together, our results suggest that MYEOV promotes oncogenic miR-17/93-5p expression by associating with MYC, contributing to PDAC progression.
Collapse
Affiliation(s)
- Hongzhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuqiang Ye
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Dongchao Xu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangliang Fang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Juanjuan Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
19
|
Boukrout N, Souidi M, Lahdaoui F, Duchêne B, Neve B, Coppin L, Leteurtre E, Torrisani J, Van Seuningen I, Jonckheere N. Antagonistic Roles of the Tumor Suppressor miR-210-3p and Oncomucin MUC4 Forming a Negative Feedback Loop in Pancreatic Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13246197. [PMID: 34944818 PMCID: PMC8699468 DOI: 10.3390/cancers13246197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary We aimed at characterizing microRNAs activated downstream of MUC4-associated signaling in pancreatic adenocarcinoma. We investigated the MUC4-miR-210-3p reciprocal regulation and deciphered miR-210-3p biological roles in vitro and in vivo. We showed a MUC4-miR-210-3p negative feedback loop that involves NF-κB in PDAC-derived cells and the miR-210-3p anti-tumoral functions, suggesting a complex balance between antagonistic pro-oncogenic functions of the oncomucin MUC4 and anti-tumoral roles of the miR-210-3p. Abstract Background: Pancreatic adenocarcinoma (PDAC) is a deadly cancer with an extremely poor prognosis. MUC4 membrane-bound mucin is neoexpressed in early pancreatic neoplastic lesions and is associated with PDAC progression and chemoresistance. In cancers, microRNAs (miRNAs, small noncoding RNAs) are crucial regulators of carcinogenesis, chemotherapy response and even metastatic processes. In this study, we aimed at identifying and characterizing miRNAs activated downstream of MUC4-associated signaling in pancreatic adenocarcinoma. MiRnome analysis comparing MUC4-KD versus Mock cancer cells showed that MUC4 inhibition impaired miR-210-3p expression. Therefore, we aimed to better understand the miR-210-3p biological roles. Methods: miR-210-3p expression level was analyzed by RT-qPCR in PDAC-derived cell lines (PANC89 Mock and MUC4-KD, PANC-1 and MiaPACA-2), as well as in mice and patients tissues. The MUC4-miR-210-3p regulation was investigated using luciferase reporter construct and chromatin immunoprecipitation experiments. Stable cell lines expressing miR-210-3p or anti-miR-210-3p were established using CRISPR/Cas9 technology or lentiviral transduction. We evaluated the biological activity of miR-210-3p in vitro by measuring cell proliferation and migration and in vivo using a model of subcutaneous xenograft. Results: miR-210-3p expression is correlated with MUC4 expression in PDAC-derived cells and human samples, and in pancreatic PanIN lesions of Pdx1-Cre; LstopL-KrasG12D mice. MUC4 enhances miR-210-3p expression levels via alteration of the NF-κB signaling pathway. Chromatin immunoprecipitation experiments showed p50 NF-κB subunit binding on miR-210-3p promoter regions. We established a reciprocal regulation since miR-210-3p repressed MUC4 expression via its 3′-UTR. MiR-210-3p transient transfection of PANC89, PANC-1 and MiaPACA-2 cells led to a decrease in cell proliferation and migration. These biological effects were validated in cells overexpressing or knocked-down for miR-210-3p. Finally, we showed that miR-210-3p inhibits pancreatic tumor growth and proliferation in vivo. Conclusion: We identified a MUC4-miR-210-3p negative feedback loop in early-onset PDAC, but also revealed new functions of miR-210-3p in both in vitro and in vivo proliferation and migration of pancreatic cancer cells, suggesting a complex balance between MUC4 pro-oncogenic roles and miR-210-3p anti-tumoral effects.
Collapse
Affiliation(s)
- Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.B.); (M.S.); (F.L.); (B.D.); (B.N.); (L.C.); (E.L.); (I.V.S.)
| | - Mouloud Souidi
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.B.); (M.S.); (F.L.); (B.D.); (B.N.); (L.C.); (E.L.); (I.V.S.)
| | - Fatima Lahdaoui
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.B.); (M.S.); (F.L.); (B.D.); (B.N.); (L.C.); (E.L.); (I.V.S.)
| | - Belinda Duchêne
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.B.); (M.S.); (F.L.); (B.D.); (B.N.); (L.C.); (E.L.); (I.V.S.)
| | - Bernadette Neve
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.B.); (M.S.); (F.L.); (B.D.); (B.N.); (L.C.); (E.L.); (I.V.S.)
| | - Lucie Coppin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.B.); (M.S.); (F.L.); (B.D.); (B.N.); (L.C.); (E.L.); (I.V.S.)
| | - Emmanuelle Leteurtre
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.B.); (M.S.); (F.L.); (B.D.); (B.N.); (L.C.); (E.L.); (I.V.S.)
| | - Jérôme Torrisani
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, F-31037 Toulouse, France;
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.B.); (M.S.); (F.L.); (B.D.); (B.N.); (L.C.); (E.L.); (I.V.S.)
| | - Nicolas Jonckheere
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.B.); (M.S.); (F.L.); (B.D.); (B.N.); (L.C.); (E.L.); (I.V.S.)
- Correspondence: ; Tel.: +33-3-2029-8865
| |
Collapse
|
20
|
Zhou D, He S, Zhang D, Lv Z, Yu J, Li Q, Li M, Guo W, Qi F. LINC00857 promotes colorectal cancer progression by sponging miR-150-5p and upregulating HMGB3 (high mobility group box 3) expression. Bioengineered 2021; 12:12107-12122. [PMID: 34753396 PMCID: PMC8810051 DOI: 10.1080/21655979.2021.2003941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignant tumor worldwide. LINC00857 has been reported as a dysregulated long non-coding RNAs (lncRNAs) involved in the genesis and development of different cancers. In CRC, accumulating evidence indicates that high mobility group box 3 (HMGB3) is over-expressed and contributes to CRC development. However, the mechanism underlying HMGB3 upregulation in CRC remains unclear. The present work aims to investigate the role of LINC00857 and its functional interaction with HMGB3 in regulating CRC progression. Differential expression of LINC00857 between CRC tissues and normal tissues was identified in TCGA (The Cancer Genome Atlas) database. In vitro functional assays were performed to explore the biological functions of LINC00857 in CRC cells. In vivo xenograft model was employed to investigate the role of LINC00857 in CRC tumorigenesis. We found that LINC00857 was significant upregulated in CRC tissues and cell lines. LINC00857 knockdown significantly inhibited the proliferation, migration and invasion of CRC cells, and also induced apoptosis. Moreover, LINC00857 knockdown suppressed CRC tumorigenesis in vivo. We further demonstrated that the effects of LINC00857 in CRC cells were mediated through miR-150-5p/HMGB3 axis. LINC00857 negatively regulates the activity of miR-150-5p, which releases its inhibition on HMGB3 expression. Our data indicate that LINC00857/miR-150-5p/HMGB3 axis plays a fundamental role in regulating the malignant phenotype and tumorigenesis of CRC. Targeting this axis may serve as novel therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Dongbing Zhou
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gastrointestinal Surgery, Nanchong Central Hospital, the Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Sijia He
- Department of Medical Imaging, Nanchong Central Hospital, the Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Daquan Zhang
- Department of Gastrointestinal Surgery, Nanchong Central Hospital, the Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhenbing Lv
- Department of Gastrointestinal Surgery, Nanchong Central Hospital, the Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jing Yu
- Department of Gastrointestinal Surgery, Nanchong Central Hospital, the Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Quanlin Li
- Department of Gastrointestinal Surgery, Nanchong Central Hospital, the Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Min Li
- Department of Gastrointestinal Surgery, Nanchong Central Hospital, the Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wei Guo
- Department of Gastrointestinal Surgery, Nanchong Central Hospital, the Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
21
|
Dreyer CA, VanderVorst K, Free S, Rowson-Hodel A, Carraway KL. The role of membrane mucin MUC4 in breast cancer metastasis. Endocr Relat Cancer 2021; 29:R17-R32. [PMID: 34726614 PMCID: PMC8697635 DOI: 10.1530/erc-21-0083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 11/08/2022]
Abstract
A major barrier to the emergence of distant metastases is the survival of circulating tumor cells (CTCs) within the vasculature. Lethal stressors, including shear forces from blood flow, anoikis arising from cellular detachment, and exposure to natural killer cells, combine to subvert the ability of primary tumor cells to survive and ultimately seed distant lesions. Further attenuation of this rate-limiting process via therapeutic intervention offers a very attractive opportunity for improving cancer patient outcomes, in turn prompting the need for a deeper understanding of the molecular and cellular mechanisms underlying CTC viability. MUC4 is a very large and heavily glycosylated protein expressed at the apical surfaces of the epithelia of a variety of tissues, is involved in cellular growth signaling and adhesiveness, and contributes to the protection and lubrication of cellular linings. Analysis of patient-matched breast tumor specimens has demonstrated that MUC4 protein levels are upregulated in metastatic lesions relative to primary tumor among all breast tumor subtypes, pointing to a possible selective advantage for MUC4 overexpression in metastasis. Analysis of a genetically engineered mouse model of HER2-positive breast cancer has demonstrated that metastatic efficiency is markedly suppressed with Muc4 deletion and Muc4-knockout tumor cells are poorly associated with platelets and white blood cells known to support CTC viability. In this review, we discuss the diverse roles of MUC4 in tumor progression and metastasis and propose that intervening in MUC4 intercellular interactions with binding partners on blood-borne aggregating cells could potentially thwart breast cancer metastatic efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Kermit L. Carraway
- To whom correspondence should be addressed: Kermit Carraway, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA 95817, P: (916) 734-3114,
| |
Collapse
|
22
|
Xie Z, Chen J, Chen Z. MicroRNA-204 attenuates oxidative stress damage of renal tubular epithelial cells in calcium oxalate kidney-stone formation via MUC4-mediated ERK signaling pathway. Urolithiasis 2021; 50:1-10. [PMID: 34783868 DOI: 10.1007/s00240-021-01286-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Oxalate-induced oxidative stress causes damage to cells, accompanied with renal deposition of calcium oxalate crystals. Recent studies have highlighted the extensive functions of microRNAs (miRNAs) in various processes, including cellular responses to oxidative stress. Hence, this study was intended to analyze the role of miR-204 in the calcium oxalate kidney-stone formation and the underlying mechanism. In silico analysis was performed to determine the miRNA/mRNA interaction involved in calculus, while dual-luciferase reporter assay was conducted for validation. A calcium oxalate kidney-stone model was established by H2O2 induction in RTEC HK-2 cells, in which the expression of miR-204 was examined. Gain- and loss-of-function approaches were employed to alter the expression of miR-204/MUC4 so as to assess the detailed role of miR-204 in oxidative stress injury in renal tubular epithelial cells (RTECs) and calcium oxalate kidney-stone formation. MUC4, an up-regulated gene in H2O2-induced HK-2 cells, was a target of MUC4. miR-204 functionally targeted MUC4 and blocked the ERK pathway activation. Furthermore, up-regulated miR-204 contributed to promotion of RTEC proliferation and suppression of ROS levels, RTEC apoptosis as well as formation of calcium oxalate crystal. Taken together, miR-204 impairs MUC4-dependent activation of the ERK signaling pathway and consequently ameliorates oxidative stress damage to RTECs and prevents calcium oxalate kidney-stone formation.
Collapse
Affiliation(s)
- Zhijuan Xie
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Province Mawangdui Hospital, Changsha, 410016, People's Republic of China
| | - Zhong Chen
- The First Affiliated Hospital, Department of Nuclear Medicine, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
23
|
Carter CJ, Mekkawy AH, Morris DL. Role of human nucleoside transporters in pancreatic cancer and chemoresistance. World J Gastroenterol 2021; 27:6844-6860. [PMID: 34790010 PMCID: PMC8567477 DOI: 10.3748/wjg.v27.i40.6844] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
The prognosis of pancreatic cancer is poor with the overall 5-year survival rate of less than 5% changing minimally over the past decades and future projections predicting it developing into the second leading cause of cancer related mortality within the next decade. Investigations into the mechanisms of pancreatic cancer development, progression and acquired chemoresistance have been constant for the past few decades, thus resulting in the identification of human nucleoside transporters and factors affecting cytotoxic uptake via said transporters. This review summaries the aberrant expression and role of human nucleoside transports in pancreatic cancer, more specifically human equilibrative nucleoside transporter 1/2 (hENT1, hENT2), and human concentrative nucleoside transporter 1/3 (hCNT1, hCNT3), while briefly discussing the connection and importance between these nucleoside transporters and mucins that have also been identified as being aberrantly expressed in pancreatic cancer. The review also discusses the incidence, current diagnostic techniques as well as the current therapeutic treatments for pancreatic cancer. Furthermore, we address the importance of chemoresistance in nucleoside analogue drugs, in particular, gemcitabine and we discuss prospective therapeutic treatments and strategies for overcoming acquired chemoresistance in pancreatic cancer by the enhancement of human nucleoside transporters as well as the potential targeting of mucins using a combination of mucolytic compounds with cytotoxic agents.
Collapse
Affiliation(s)
- Carly Jade Carter
- Hepatobiliary and Surgical Oncology Unit, Department of Surgery, St George Hospital, University of New South Wales, Sydney 2217, New South Wales, Australia
- Mucpharm Pty Ltd, Australia
| | - Ahmed H Mekkawy
- Hepatobiliary and Surgical Oncology Unit, Department of Surgery, St George Hospital, University of New South Wales, Sydney 2217, New South Wales, Australia
- Mucpharm Pty Ltd, Australia
| | - David L Morris
- Hepatobiliary and Surgical Oncology Unit, Department of Surgery, St George Hospital, University of New South Wales, Sydney 2217, New South Wales, Australia
- Mucpharm Pty Ltd, Australia
| |
Collapse
|
24
|
Xu Y, He Y, Hu H, Xu R, Liao Y, Dong X, Song H, Chen X, Chen J. The increased miRNA-150-5p expression of the tonsil tissue in patients with IgA nephropathy may be related to the pathogenesis of disease. Int Immunopharmacol 2021; 100:108124. [PMID: 34600394 DOI: 10.1016/j.intimp.2021.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The microRNA (miRNA) expression of the tonsil tissues in patients with immunoglobulin A (IgA) nephropathy (IgAN) has not been reported in the literature. METHODS In this study, the expression of nine miRNAs was measured in the tonsil tissues of patients with IgAN, including miRNA-21-5p, miRNA-29a-3p, miRNA-34a-5p, miRNA-146a-5p, miRNA-146b-5p, miRNA-148b-3p, miRNA-150-5p, miRNA-155-5p, and miRNA-181a-5p. Forty patients with proved primary IgA nephropathy were enrolled in our study, 20 IgAN patients with gross hematuria, which induced by tonsillitis (GH-IgAN group) and 20 IgAN patients without gross hematuria in the history (non-GH-IgAN group). Another 20 patients recruited as the control group (CT group) were chronic tonsillitis without kidney disease. RESULTS Compared to the CT group, the expression level of miRNA-150-5p in the tonsils was significantly upregulated in the GH-IgAN group, but not in the non-GH-IgAN group (P = 0.031 and P = 0.122, respectively). A correlation analysis was performed between the expression of miRNAs in the tonsils and the clinical data of IgAN patients. The results showed that in the GH-IgAN group, the miRNA-150 expression was positively correlated with systolic blood pressure (β = 2.36, 95% CI 1.11-3.61, P = 0.0016), diastolic blood pressure (β = 1.02, 95% CI 0.22-1.82, P = 0.0224), uric acid (β = 7.43, 95% CI 1.81-13.04, P = 0.0184), leukocyte count (β = 0.22, 95% CI 0.09-0.35, P = 0039), neutrophil count (β = 0.19, 95% CI 0.06-0.32, P = 0.0096), cholesterol (β = 0.09, 95% CI 0.02-0.16, P = 0.0207) and triglyceride level (β = 0.16, 95% CI 0.10-0.22, P < 0.000). Besides, it was negatively correlated with the estimated glomerular filtration rate (eGFR) (β = -2.06, 95% CI: -3.90 - -0.21, P = 0.0421) in the GH-IgAN group; however, no significant correlation was found in the non-GH-IgAN group. CONCLUSION The present findings suggest that miRNA-150-5p may be important in the pathogenesis of IgAN, especially in mucosal immunity against the disease.
Collapse
Affiliation(s)
- Yi Xu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongcheng He
- Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen, 518102, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ricong Xu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ying Liao
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xu Dong
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Haiying Song
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xiaojie Chen
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Jia Chen
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| |
Collapse
|
25
|
Smolarz B, Durczyński A, Romanowicz H, Hogendorf P. The Role of microRNA in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9101322. [PMID: 34680441 PMCID: PMC8533140 DOI: 10.3390/biomedicines9101322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small ribonucleic acid molecules that play a key role in regulating gene expression. The increasing number of studies undertaken on the functioning of microRNAs in the tumor formation clearly indicates their important potential in oncological therapy. Pancreatic cancer is one of the deadliest cancers. The expression of miRNAs released into the bloodstream appears to be a good indicator of progression and evaluation of the aggressiveness of pancreatic cancer, as indicated by studies. The work reviewed the latest literature on the importance of miRNAs for pancreatic cancer development.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-271-1290
| | - Adam Durczyński
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Piotr Hogendorf
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| |
Collapse
|
26
|
Resistin Induces LIN28A-Mediated Let-7a Repression in Breast Cancer Cells Leading to IL-6 and STAT3 Upregulation. Cancers (Basel) 2021; 13:cancers13184498. [PMID: 34572725 PMCID: PMC8470467 DOI: 10.3390/cancers13184498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States and exhibits significant racial disparities in clinical outcomes. Earlier, we reported that the levels of resistin and IL-6 were significantly more elevated in the serum of African American women with breast cancer than in their Caucasian American counterparts. Here, we uncover its mechanistic significance by characterizing a novel resistin/LIN28A/Let-7a/IL-6/STAT3 signaling axis supporting the growth and stemness of breast cancer cells. Abstract Downregulation of the Let-7 family of microRNAs (miRNAs) has been reported in several cancers, including breast malignancy; however, underlying mechanisms are not completely understood. Resistin is an important component of the tumor microenvironment, having a functional impact on the tumor cell phenotypes. Here, we examined the role of resistin in the regulation of Let-7 miRNAs and studied its downstream consequences. We found that resistin treatment led to the reduced expression of Let-7 family miRNAs in breast cancer (BC) cells, with the highest downregulation reported for Let-7a. Furthermore, resistin induced the expression of LIN28A, and its silencing abrogated resistin-mediated Let-7a suppression. Let-7a restoration or LIN28A silencing abolished the resistin-induced growth, clonogenicity, and sphere-forming ability of BC cells. Restoration of Let-7a also suppressed the resistin-induced expression of genes associated with growth, survival, and stemness. Pathway analysis suggested STAT3 as a putative central node associated with Let-7a-mediated gene regulation. In silico analysis identified STAT3 and its upstream modifier, IL-6, as putative Let-7a gene targets, which were later confirmed by 3′UTR-reporter assays. Together, our findings demonstrate a novel resistin/LIN28A/Let-7a/IL-6/STAT3 signaling axis supporting the growth and stemness of BC cells.
Collapse
|
27
|
Xia T, Chen XY, Zhang YN. MicroRNAs as biomarkers and perspectives in the therapy of pancreatic cancer. Mol Cell Biochem 2021; 476:4191-4203. [PMID: 34324119 DOI: 10.1007/s11010-021-04233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is considered as one of the most aggressive tumor types, representing over 45,750 mortality cases annually in the USA solely. The aggressive nature and late identification of pancreatic cancer, combined with the restrictions of existing chemotherapeutics, present the mandatory need for the advancement of novel treatment systems. Ongoing reports have shown an important role of microRNAs (miRNAs) in the initiation, migration, and metastasis of malignancies. Besides, abnormal transcriptional levels of miRNAs have regularly been related with etiopathogenesis of pancreatic malignancy, underlining the conceivable utilization of miRNAs in the management of pancreatic disease patients. In this review article, we give a concise outline of molecular pathways involved in etiopathogenesis of pancreatic cancer patients as well as miRNA implications in pancreatic cancer patients. Ensuing sections describe the involvement of miRNAs in the diagnosis, prognosis, and therapy of pancreatic cancer patients. The involvement of miRNAs in the chemoresistance of pancreatic cancers was also discussed. End area portrays the substance of survey with future headings.
Collapse
Affiliation(s)
- Tao Xia
- Department of Gastrointestinal-Pancreatic Surgery, General Surgery, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People's Republic of China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Kangning Middle Road, Shifeng Street, Tiantai County, Taizhou, 317200, Zhejiang Province, People's Republic of China.
| |
Collapse
|
28
|
Mortoglou M, Tabin ZK, Arisan ED, Kocher HM, Uysal-Onganer P. Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Transl Oncol 2021; 14:101090. [PMID: 33831655 PMCID: PMC8042452 DOI: 10.1016/j.tranon.2021.101090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19-9 (CA 19-9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Zoey Kathleen Tabin
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - E Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey.
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University London, London EC1M 6BQ, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
29
|
Mucin expression, epigenetic regulation and patient survival: A toolkit of prognostic biomarkers in epithelial cancers. Biochim Biophys Acta Rev Cancer 2021; 1876:188538. [PMID: 33862149 DOI: 10.1016/j.bbcan.2021.188538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Twenty mucin genes have been identified and classified in two groups (encoding secreted and membrane-bound proteins). Secreted mucins participate in mucus formation by assembling a 3-dimensional network via oligomerization, whereas membrane-bound mucins are anchored to the outer membrane mediating extracellular interactions and cell signaling. Both groups have been associated with carcinogenesis progression in epithelial cancers, and are therefore considered as potential therapeutic targets. In the present review, we discuss the link between mucin expression patterns and patient survival and propose mucins as prognosis biomarkers of epithelial cancers (esophagus, gastric, pancreatic, colorectal, lung, breast or ovarian cancers). We also investigate the relationship between mucin expression and overall survival in the TCGA dataset. In particular, epigenetic mechanisms regulating mucin gene expression, such as aberrant DNA methylation and histone modification, are interesting as they are also associated with diagnosis or prognosis significance. Indeed, mucin hypomethylation has been shown to be associated with carcinogenesis progression and was linked to prognosis in colon cancer or pancreatic cancer patients. Finally we describe the relationship between mucin expression and non-coding RNAs that also may serve as biomarkers. Altogether the concomitant knowledge of specific mucin-pattern expression and epigenetic regulation could be translated as biomarkers with a better specificity/sensitivity performance in several epithelial cancers.
Collapse
|
30
|
Alimoradi N, Firouzabadi N, Fatehi R. How metformin affects various malignancies by means of microRNAs: a brief review. Cancer Cell Int 2021; 21:207. [PMID: 33849540 PMCID: PMC8045276 DOI: 10.1186/s12935-021-01921-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin known as the first-line orally prescribed drug for lowering blood glucose in type II diabetes (T2DM) has recently found various therapeutic applications including in cancer. Metformin has been studied for its influences in prevention and treatment of cancer through multiple mechanisms such as microRNA (miR) regulation. Alteration in the expression of miRs by metformin may play an important role in the treatment of various cancers. MiRs are single-stranded RNAs that are involved in gene regulation. By binding to the 3'UTR of target mRNAs, miRs influence protein levels. Irregularities in the expression of miRs that control the expression of oncogenes and tumor suppressor genes are associated with the onset and progression of cancer. Metformin may possess an effect on tumor prevention and progression by modifying miR expression and downstream pathways. Here, we summarize the effect of metformin on different types of cancer by regulating the expression of various miRs and the associated downstream molecules.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Singh A, Gupta A, Chowdhary M, Brahmbhatt HD. Integrated analysis of miRNA-mRNA networks reveals a strong anti-skin cancer signature in vitiligo epidermis. Exp Dermatol 2021; 30:1309-1319. [PMID: 33682215 DOI: 10.1111/exd.14317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Expression of microRNAs (miRNAs) is often dysregulated in several cancers, including non-melanoma skin cancer (NMSC). Individuals with vitiligo possess a deregulated miRnome along with a lower risk of developing NMSCs. We used data sets from our previously published studies on vitiligo epidermis to construct functional miRNA-mRNA networks to understand the molecular basis underlying the lower incidence of NMSC observed in individuals with vitiligo. miRTarBase database was used to fetch the experimentally validated targets of differentially expressed miRNAs and two protein-protein interaction (PPI) networks were constructed for the miRNA-mRNA interactions (230 downregulated targets of 5 upregulated miRNAs and 47 upregulated mRNAs targeted by 12 downregulated miRNAs). Pathway enrichment analysis identified RNA biogenesis and transport as well as cell adhesion to be perturbed in vitiligo. Further, oncogenic transcription factors (OTFs) that were upregulated in publicly available squamous cell carcinoma (SCC) or basal cell carcinoma (BCC) microarray data were compared with that of vitiligo to decode skin cancer-specific molecular signatures. We identified three significantly upregulated miRNAs, miR-31-5p, miR-31-3p and miR-194-3p in lesional epidermis that could negatively regulate seven oncogenic transcription factors, FOXC1, AR, SP1, YY1, GLI2, TP53 and RARA, known to be over-expressed in SCC or BCC. Taken together, our study identified a perturbed miRNA-regulated transcriptome, which potentially confers protection to vitiligo skin from an increased incidence of NMSC.
Collapse
Affiliation(s)
- Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aayush Gupta
- Dr. D. Y. Patil Medical College, Pune, Maharashtra, India
| | - Manish Chowdhary
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hemang D Brahmbhatt
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
32
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC.
Collapse
|
33
|
Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020; 9:E2604. [PMID: 33291725 PMCID: PMC7761947 DOI: 10.3390/cells9122604] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels. From a structural point of view, based on the homology sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups: TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several physiological functions. However, they are also linked to diverse pathophysiological human processes. Alterations in the expression and function of TRPM subfamily ion channels might generate several human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction, cancer and many other channelopathies. These effects position them as remarkable putative targets for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current knowledge about the main characteristics of all members of the TRPM family, focusing on their actions in human diseases.
Collapse
Affiliation(s)
- Ivanka Jimenez
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Yolanda Prado
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Felipe Marchant
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Carolina Otero
- Faculty of Medicine, School of Chemistry and Pharmacy, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, BC V6Z 1Y6, Canada;
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Claudio Cabello-Verrugio
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 7560484, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Felipe Simon
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| |
Collapse
|
34
|
Salem PES, Ghazala RA, El Gendi AM, Emara DM, Ahmed NM. The association between circulating MicroRNA-150 level and cholangiocarcinoma. J Clin Lab Anal 2020; 34:e23397. [PMID: 33161598 PMCID: PMC7676191 DOI: 10.1002/jcla.23397] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/06/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare tumor which requires a multimodality approach for its diagnosis. Carbohydrate antigen 19‐9 (CA19‐9) is currently the most commonly used tumor marker for CCA; nevertheless, it has certain limitations which need to be considered when using it as a tumor marker. MiRNA‐150 altered expression has been linked to the development and tumorigenesis of several cancers including CCA. This work aimed to study the serum level of CA19‐9 and miRNA‐150 expression in CCA patients and, also, to correlate their levels with tumor staging and different studied clinical and laboratory parameters. This work included 35 patients with CCA who were admitted to Hepatobiliary Unit, Alexandria Main University Hospital (Group I). Also, 35 age‐ and sex‐matched healthy subjects were included as a control group (Group II). All included subjects were submitted to measurement of serum CA19‐9 and MiRNA‐150 expression levels. Serum CA19‐9 levels showed an evident high median among CCA patients, while serum miRNA‐150 expression levels were evidently low among those patients. Moreover, combining miRNA‐150 with CA19‐9 made the accuracy of diagnosis of CCA much more reliable. Thus, miRNA‐150 can be considered as a non‐invasive, sensitive serum biomarker for the diagnosis of CCA especially when combined with CA 19‐9.
Collapse
Affiliation(s)
- Perihan El Sayed Salem
- Internal Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | - Doaa Mokhtar Emara
- Department of Radiodiagnosis and Intervention Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nesma Mahmoud Ahmed
- Internal Medicine Department, Fever Hospital, Alexandria University, Alexandria, Egypt
| |
Collapse
|
35
|
Oboshi W, Hayashi K, Takeuchi H, Ikeda K, Yamaguchi Y, Kimura A, Nakamura T, Yukimasa N. MicroRNA-150 suppresses p27 Kip1 expression and promotes cell proliferation in HeLa human cervical cancer cells. Oncol Lett 2020; 20:210. [PMID: 32963616 PMCID: PMC7491037 DOI: 10.3892/ol.2020.12073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/23/2020] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (miRNAs) exert critical roles in the majority of biological and pathological processes. Recent studies have associated miR-150 with a number of different cancer types. However, little is known about miR-150 targets in cervical cancer. In the present study, the HeLa human cervical cancer cell line was transfected with hsa-miR-150-5p mimics, hsa-miR-150-5p inhibitors or miRNA controls. miR-150 was predicted to bind the 3'untranslated region (3'UTR) of the CDKN1B gene, which encodes the cyclin-dependent kinase inhibitor 1B (p27Kip1). The direct binding between miR-150 and the 3'UTR of CDKN1B was confirmed using dual-luciferase reporter assays. The effects of miR-150 on CDKN1B mRNA expression, p27Kip1 protein expression, cell cycle and cell proliferation were determined using reverse-transcription quantitative PCR, western blot analysis, flow cytometry and WST-8 assays, respectively. miR-150 was demonstrated to directly target the 3'UTR of CDKN1B in transfected HeLa cells. The expression of CDKN1B mRNA and p27Kip1 protein was reduced by miR-150 mimics, and increased by miR-150 inhibitors. Moreover, the overexpression of miR-150 promoted cell cycle progression from the G0/G1 to the S phase and led to a significant increase in HeLa cell proliferation. The results of the present study indicated that miR-150 promotes HeLa cell cycle progression and proliferation via the suppression of p27Kip1 expression.
Collapse
Affiliation(s)
- Wataru Oboshi
- Department of Medical Technology and Sciences, International University of Health and Welfare, Narita Chiba 286-8686, Japan
| | - Keisuke Hayashi
- Department of Clinical Laboratory, Shikoku Central Hospital, Shikokuchuo, Ehime 799-0193, Japan
| | - Hiroaki Takeuchi
- Department of Medical Technology and Sciences, International University of Health and Welfare, Narita Chiba 286-8686, Japan
| | - Katsuhide Ikeda
- Department of Medical Technology and Sciences, International University of Health and Welfare, Narita Chiba 286-8686, Japan
| | - Yoshitaka Yamaguchi
- Department of Medical Technology and Sciences, International University of Health and Welfare, Narita Chiba 286-8686, Japan
| | - Asako Kimura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Narita Chiba 286-8686, Japan
| | - Takehiro Nakamura
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa 761-0123, Japan
| | - Nobuyasu Yukimasa
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa 761-0123, Japan
| |
Collapse
|
36
|
Molecular Characterization of Astrocytoma Progression Towards Secondary Glioblastomas Utilizing Patient-Matched Tumor Pairs. Cancers (Basel) 2020; 12:cancers12061696. [PMID: 32604718 PMCID: PMC7352509 DOI: 10.3390/cancers12061696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
Astrocytomas are primary human brain tumors including diffuse or anaplastic astrocytomas that develop towards secondary glioblastomas over time. However, only little is known about molecular alterations that drive this progression. We measured multi-omics profiles of patient-matched astrocytoma pairs of initial and recurrent tumors from 22 patients to identify molecular alterations associated with tumor progression. Gene copy number profiles formed three major subcluters, but more than half of the patient-matched astrocytoma pairs differed in their gene copy number profiles like astrocytomas from different patients. Chromosome 10 deletions were not observed for diffuse astrocytomas, but occurred in corresponding recurrent tumors. Gene expression profiles formed three other major subclusters and patient-matched expression profiles were much more heterogeneous than their copy number profiles. Still, recurrent tumors showed a strong tendency to switch to the mesenchymal subtype. The direct progression of diffuse astrocytomas to secondary glioblastomas showed the largest number of transcriptional changes. Astrocytoma progression groups were further distinguished by signaling pathway expression signatures affecting cell division, interaction and differentiation. As expected, IDH1 was most frequently mutated closely followed by TP53, but also MUC4 involved in the regulation of apoptosis and proliferation was frequently mutated. Astrocytoma progression groups differed in their mutation frequencies of these three genes. Overall, patient-matched astrocytomas can differ substantially within and between patients, but still molecular signatures associated with the progression to secondary glioblastomas exist and should be analyzed for their potential clinical relevance in future studies.
Collapse
|
37
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
38
|
Yuan ZJ, Yu C, Hu XF, He Y, Chen P, Ouyang SX. LINC00152 promotes pancreatic cancer cell proliferation, migration and invasion via targeting miR-150. Am J Transl Res 2020; 12:2241-2256. [PMID: 32509216 PMCID: PMC7269995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Pancreatic cancer (PC) is one of the top deaths causing cancers with low 5-year survival rate. Long non-coding RNAs (lncRNAs) are recognized as a crucial type of nonprotein-coding transcripts implicated in tumorigenesis. Emerging evidence has implied that LINC00152 exerts the potential oncogenic functions in various cancers. Nevertheless, the role of LINC00152 in PC remains elusive. In the present study, we found that LINC00152 was significantly up-regulated while miR-150 was down-regulated both in tissues and cell lines of PC, indicating their negative correlation in PC progression. Functionally, overexpression of LINC00152 promoted cell proliferation, migration and invasion, while LINC00152 knockdown reversed these effects. Mechanistic experiments reveal that miR-150 acted as a target of LINC00152 confirmed by luciferase reporter assay. Moreover, inhibition of miR-150 could markedly attenuate the suppression of cell proliferation, migration and invasion by knocking down LINC00152. Altogether, our findings concluded that LINC00152 facilitated PC progression through inhibiting miR-150 expression, indicating an innovative therapeutic target for PC.
Collapse
Affiliation(s)
- Zhi-Jun Yuan
- Department of Medical Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan Province, P. R China
| | - Can Yu
- Department of Hepatobiliary Pancreatic Surgery, Xiangya Third Hospital, Central South UniversityChangsha 410013, Hunan Province, P. R. China
| | - Xiao-Fang Hu
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha 410000, Hunan Province, P. R China
| | - Yi He
- Department of Medical Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan Province, P. R China
| | - Po Chen
- Department of Medical Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan Province, P. R China
| | - Sha-Xi Ouyang
- Department of Nephrology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha 410000, Hunan Province, P. R. China
| |
Collapse
|
39
|
Wang S, Tang D, Wang W, Yang Y, Wu X, Wang L, Wang D. circLMTK2 acts as a sponge of miR-150-5p and promotes proliferation and metastasis in gastric cancer. Mol Cancer 2019; 18:162. [PMID: 31722712 PMCID: PMC6854648 DOI: 10.1186/s12943-019-1081-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND As a novel class of non-coding RNAs, circular RNAs (circRNAs) are key regulators of the development and progression of different cancers. However, little is known about the function and biological mechanism of circLMTK2, also named hsa_circ_0001725, in gastric cancer (GC) tumourigenesis. METHODS circLMTK2 was identified in ten paired cancer specimens and adjacent normal tissues by RNA sequencing and genome-wide bioinformatic analysis and verified by quantitative real-time PCR (qRT-PCR). Knockdown or exogenous expression of circLMTK2 combined with in vitro and in vivo assays were performed to prove the functional significance of circLMTK2. The molecular mechanism of circLMTK2 was demonstrated by searching the CircNet database and confirmed by RNA in vivo precipitation assays, western blotting, luciferase assays and rescue experiments. RESULTS circLMTK2 was frequently upregulated in GC tissues, and high circLMTK2 expression was associated with poor prognosis, lymph node metastasis and poor TNM stage in GC patients. Functionally, circLMTK2 overexpression promoted GC cell proliferation and tumourigenicity in vitro and in vivo. Furthermore, ectopic circLMTK2 expression enhanced GC cell migration and invasion in vitro and tumour metastasis in vivo. In addition, we demonstrated that circLMTK2 could sponge miR-150-5p, thus indirectly regulating the c-Myc expression and contributing to GC tumourigenesis. CONCLUSION Our findings demonstrate that circLMTK2 functions as a tumour promoter in GC through the miR-150-5p/c-Myc axis and could thus be a prognostic predictor and therapeutic target for GC.
Collapse
Affiliation(s)
- Sen Wang
- Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Dong Tang
- Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Institute of General Surgery, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Wei Wang
- Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yining Yang
- GloriousMed Technology Co., Ltd., Shanghai, 200120, China
| | - Xiaoqing Wu
- Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Liuhua Wang
- Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Institute of General Surgery, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Yangzhou Clinical Medical College of Nanjing Medical University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
40
|
Feng CM, Xu Y, Liu JX, Gao YL, Zheng CH. Supervised Discriminative Sparse PCA for Com-Characteristic Gene Selection and Tumor Classification on Multiview Biological Data. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:2926-2937. [PMID: 30802874 DOI: 10.1109/tnnls.2019.2893190] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Principal component analysis (PCA) has been used to study the pathogenesis of diseases. To enhance the interpretability of classical PCA, various improved PCA methods have been proposed to date. Among these, a typical method is the so-called sparse PCA, which focuses on seeking sparse loadings. However, the performance of these methods is still far from satisfactory due to their limitation of using unsupervised learning methods; moreover, the class ambiguity within the sample is high. To overcome this problem, this paper developed a new PCA method, which is named the supervised discriminative sparse PCA (SDSPCA). The main innovation of this method is the incorporation of discriminative information and sparsity into the PCA model. Specifically, in contrast to the traditional sparse PCA, which imposes sparsity on the loadings, here, sparse components are obtained to represent the data. Furthermore, via the linear transformation, the sparse components approximate the given label information. On the one hand, sparse components improve interpretability over the traditional PCA, while on the other hand, they are have discriminative abilities suitable for classification purposes. A simple algorithm is developed, and its convergence proof is provided. SDSPCA has been applied to the common-characteristic gene selection and tumor classification on multiview biological data. The sparsity and classification performance of SDSPCA are empirically verified via abundant, reasonable, and effective experiments, and the obtained results demonstrate that SDSPCA outperforms other state-of-the-art methods.
Collapse
|
41
|
Rawat M, Kadian K, Gupta Y, Kumar A, Chain PSG, Kovbasnjuk O, Kumar S, Parasher G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes (Basel) 2019; 10:genes10100752. [PMID: 31557962 PMCID: PMC6827136 DOI: 10.3390/genes10100752] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive malignancies, accounting for more than 45,750 deaths annually in the U.S. alone. The aggressive nature and late diagnosis of pancreatic cancer, coupled with the limitations of existing chemotherapy, present the pressing need for the development of novel therapeutic strategies. Recent reports have demonstrated a critical role of microRNAs (miRNAs) in the initiation, progression, and metastasis of cancer. Furthermore, aberrant expressions of miRNAs have often been associated with the cause and consequence of pancreatic cancer, emphasizing the possible use of miRNAs in the effective management of pancreatic cancer patients. In this review, we provide a brief overview of miRNA biogenesis and its role in fundamental cellular process and miRNA studies in pancreatic cancer patients and animal models. Subsequent sections narrate the role of miRNA in, (i) cell cycle and proliferation; (ii) apoptosis; (iii) invasions and metastasis; and (iv) various cellular signaling pathways. We also describe the role of miRNA's in pancreatic cancer; (i) diagnosis; (ii) prognosis and (iii) therapeutic intervention. Conclusion section describes the gist of review with future directions.
Collapse
Affiliation(s)
- Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Kavita Kadian
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001, India.
| | - Yash Gupta
- Department of Internal Medicine, Loyola University Medical Center, Chicago, IL 60153, USA.
| | - Anand Kumar
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Patrick S G Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Olga Kovbasnjuk
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Gulshan Parasher
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
42
|
Yalcin S. Dextran-coated iron oxide nanoparticle for delivery of miR-29a to breast cancer cell line. Pharm Dev Technol 2019; 24:1032-1037. [PMID: 31159615 DOI: 10.1080/10837450.2019.1623252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the last years, miRNAs have been associated with molecular pathways of cancer and other diseases. The change of expression level of miRNA has an inhibitory role in tumorigenesis. Nevertheless, the poor bioavailability of miRNA due to the rapid enzymatic degradation is a critical handicap in cancer therapy. In this study, we designed dextran-coated iron oxide-based nanoparticle for the delivery of miR-29a to breast cancer cells and analyzed its therapeutic efficacy in vitro. Results indicated that the presence of dextran-coated magnetic nanoparticles, loaded with miR29a, enhanced the selective delivery of miR-29a. Further, miR-29a complex nanoparticles caused down-regulation of anti-apoptotic genes. These results pave the way for further investigations into the possible use of miR-29a complex magnetic nanoparticles for breast cancer therapy.
Collapse
Affiliation(s)
- Serap Yalcin
- a Department of Molecular Biology and Genetics , Kırşehir Ahi Evran University , Kırşehir , Turkey
| |
Collapse
|
43
|
Gao Y, Liao P. TRPM4 channel and cancer. Cancer Lett 2019; 454:66-69. [PMID: 30980865 DOI: 10.1016/j.canlet.2019.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 10/27/2022]
Abstract
The TRPM4 channel has been extensively studied in cerebral diseases such as stroke, head injury and multiple sclerosis. In the heart, gain-of-function mutations of TRPM4 are a cause of familial cardiac block. Recently, evidence has emerged to support the role of TRPM4 in certain types of cancer, such as prostate cancer and large B cell lymphoma. The expression of TRPM4 could mediate certain behaviors of cancer cells such as migration and invasion. However, the mechanisms are largely unknown. As a nonselective monovalent cation channel, TRPM4 upregulation and activation enhance sodium entry, which leads to depolarization of the membrane potential. The membrane potential is critical in regulating calcium influx, and a disturbed calcium homeostasis is always associated with cancer cell behaviors. Research on TRPM4 channels in cancer is at a very early stage. In this review, we summarize the expression of TRPM4 in various cancers as well as our current understanding of TRPM4 in cancer. The potential mechanisms of the TRPM4 channel in regulating calcium homeostasis in cancer cells are further discussed in detail. Targeting the TRPM4 channel can be a novel way of managing cancer metastasis via disrupting calcium signaling pathways.
Collapse
Affiliation(s)
- Yahui Gao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore.
| |
Collapse
|
44
|
Luo H, Xu C, Le W, Ge B, Wang T. lncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA-150. J Cell Biochem 2019; 120:13487-13493. [PMID: 30916832 PMCID: PMC6619255 DOI: 10.1002/jcb.28622] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) CASC11 is an oncogenic lncRNA in gastric cancer and colorectal cancer. Our study aimed to investigate the role of lncRNA CASC11 in bladder cancer. In this study we showed that plasma lncRNA CASC11 was upregulated, while plasma miRNA-150 was downregulated in patients with early-stage bladder cancer than in healthy controls. Altered expression of plasma lncRNA CASC11 and miRNA-150 separated patients with bladder cancer from healthy controls. lncRNA CASC11 expression was inversely correlated with miRNA-150 expression in patients with bladder cance but not in healthy controls. Overexpression of lncRNA CASC11 mediated the inhibition of miRNA-150 expression in cancer cells, while miRNA-150 overexpression did not significantly alter lncRNA CASC11 expression. lncRNA CASC11 overexpression promoted, while miRNA-150 overexpression inhibited cancer cell proliferation. miRNA-150 also attenuated the enhancing effects of lncRNA CASC11 overexpression on cancer cell proliferation. However, overexpression of lncRNA CASC11 showed no significant effects on cancer cell migration and invasion. Therefore, lncRNA CASC11 may promote cancer cell proliferation in bladder cancer, and the actions of lncRNA CASC11 are likely through miRNA-150.
Collapse
Affiliation(s)
- Huarong Luo
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wei Le
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Bujun Ge
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tianru Wang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Huang R, Nie W, Yao K, Chou J. Depletion of the lncRNA RP11-567G11.1 inhibits pancreatic cancer progression. Biomed Pharmacother 2019; 112:108685. [PMID: 30802827 DOI: 10.1016/j.biopha.2019.108685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal malignancies, as demonstrated by its 5-year survival rate of less than 10%. The poor response of pancreatic cancer to conventional therapeutics, especially against cancer stem cells (CSCs), is the primary obstacle to improving patient survival. Emerging evidence indicates that the long non-coding RNA (lncRNA) RP11-567G11.1 is up-regulated in pancreatic cancer tissues and that its expression is associated with poor prognosis. This study aimed to elucidate the mechanism by which RP11-567G11.1 influences survival in pancreatic cancer. METHODS We evaluated the expression of RP11-567G11.1 in pancreatic cancer tissues via in situ hybridization. We also constructed RP11-567G11.1 knockdown cell models and used CCK8 and flow cytometry to detect the function of this lncRNA. Western blotting and qPCR were used to detect the expression levels of factors related to RP11-567G11.1. RESULTS The results illustrated that RP11-567G11.1 was significantly up-regulated in poorly differentiated pancreatic cancer tissues as compared to its expression in non-tumor tissues. Additionally, depletion of RP11-567G11.1 in pancreatic cancer cells inhibited proliferation and cell cycle progression, induced apoptosis, suppressed the stem cell-like phenotype, and increased sensitivity to gemcitabine. Also depletion of RP11-567G11.1 in pancreatic cancer cells inhibited factors downstream of the NOTCH signaling pathway. CONCLUSION RP11-567G11.1 plays a crucial role in pancreatic cancer. Importantly, depletion of RP11-567G11.1 boosts the sensitivity of pancreatic cancer cells to gemcitabine, suggesting that this lncRNA is a promising target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Ranglang Huang
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China
| | - Wanpin Nie
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China
| | - Kai Yao
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China
| | - Jing Chou
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China.
| |
Collapse
|
46
|
Lu Q, Guo Z, Qian H. Role of microRNA-150-5p/SRCIN1 axis in the progression of breast cancer. Exp Ther Med 2019; 17:2221-2229. [PMID: 30867707 PMCID: PMC6396020 DOI: 10.3892/etm.2019.7206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022] Open
Abstract
In China, breast cancer is the most commonly occurring cancer in women. MicroRNAs (miRs) are a group of endogenous small non-coding RNAs, which serve a role in many biological processes through the regulation of target genes. In the current study, miR-150-5p expression was significantly up-regulated in breast cancer tissues and cell lines. To investigate the cellular function and underlying molecular mechanism of miR-150-5p in breast cancer, TargetScan7.2 was used to identify miR-150-5p target genes. SRC kinase signaling inhibitor 1 (SRCIN1) was identified as a direct target gene of miR-150-5p and the current study demonstrated that SRCIN1 was negatively regulated by miR-150-5p in breast cancer cells. Furthermore, SRCIN1 expression was significantly down-regulated in breast cancer tissues and cell lines. Taken together, these results demonstrated that there was a negative association between miR-150-5p and SRCIN1 in breast cancer. The CCK-8 and Transwell assays were used to examine breast cancer cell viability, invasion and migration ability. The current study demonstrated that over-expression of miR-150-5p enhanced breast cancer cell proliferation, invasion and migration. In addition, miR-150-5p over-expression increased the expression of mesenchymal cell markers (vimentin, N-cadherin and β-catenin) and decreased the expression of epithelial cell markers (E-cadherin and zonula occludens-1). By contrast, miR-150-5p knockdown inhibited breast cancer cell viability, invasion and migration. Additionally, miR-150-5p knockdown decreased the expression of mesenchymal cell markers and increased the expression of epithelial cell markers. Taken together, these results suggest that the miR-150-5p/SRCIN1 axis may be a potential target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Qingfu Lu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhaoji Guo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
47
|
Hong X, Yu JJ. MicroRNA-150 suppresses epithelial-mesenchymal transition, invasion, and metastasis in prostate cancer through the TRPM4-mediated β-catenin signaling pathway. Am J Physiol Cell Physiol 2018; 316:C463-C480. [PMID: 30566393 DOI: 10.1152/ajpcell.00142.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prostate cancer (PCa) remains one of the leading causes of cancer-related deaths among males. The aim of the current study was to investigate the ability of microRNA-150 (miR-150) targeting transient receptor potential melastatin 4 (TRPM4) to mediate epithelial-mesenchymal transition (EMT), invasion, and metastasis through the β-catenin signaling pathway in PCa. Microarray analysis was performed to identify PCa-related differentially expressed genes, after which both the mirDIP and TargetScan databases were employed in the prediction of the miRNAs regulating TRPM4. Immunohistochemistry and RT-qPCR were conducted to determine the expression pattern of miR-150 and TRPM4 in PCa. The relationship between miR-150 and TRPM4 expression was identified. By perturbing miR-150 and TRPM4 expression in PCa cells, cell proliferation, migration, invasion, cycle, and apoptosis as well as EMT markers were determined accordingly. Finally, tumor growth and metastasis were evaluated among nude mice. Higher TRPM4 expression and lower miR-150 expression and activation of the β-catenin signaling pathway as well as EMT stimulation were detected in the PCa tissues. Our results confirmed TRPM4 as a target of miR-150. Upregulation of miR-150 resulted in inactivation of the β-catenin signaling pathway. Furthermore, the upregulation of miR-150 or knockdown of TRPM4 was observed to suppress EMT, proliferation, migration, and invasion in vitro in addition to restrained tumor growth and metastasis in vivo. The evidence provided by our study highlights the involvement of miR-150 in the translational suppression of TRPM4 and the blockade of the β-catenin signaling pathway, resulting in the inhibition of PCa progression.
Collapse
Affiliation(s)
- Xi Hong
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Jian-Jun Yu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China.,Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai , China
| |
Collapse
|
48
|
Baradaran B, Shahbazi R, Khordadmehr M. Dysregulation of key microRNAs in pancreatic cancer development. Biomed Pharmacother 2018; 109:1008-1015. [PMID: 30551350 DOI: 10.1016/j.biopha.2018.10.177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is mentioned as one of the fourth major cause of cancer-related deaths and also is considered as one of the most malignancies worldwide. Sadly, widely metastasis is frequently observed at the time of PC detection and there are, thereby, almost poor prognosis and ineffective treatment in PC patients. microRNAs (miRNAs), a group of short non-coding RNAs, regulate various cellular and developmental mechanisms, such as cell growth, proliferation, apoptosis, differentiation and angiogenesis. Also, they have essential roles even on the progression of different human and animal diseases. In recent years, extensive studies confirmed the important role of miRNAs in various steps of PC developments, including; tumor initiation, invasion and metastasis, which can use valuably for cancer detection, prognosis and therapy. Therefore, the present study reviewed the new recent investigations in miRNAs involvement in the biology of PC associated with their clinical implications.
Collapse
Affiliation(s)
- Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| |
Collapse
|
49
|
Kurtanich T, Roos N, Wang G, Yang J, Wang A, Chung EJ. Pancreatic Cancer Gene Therapy Delivered by Nanoparticles. SLAS Technol 2018; 24:151-160. [PMID: 30395768 DOI: 10.1177/2472630318811108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is one of the most lethal forms of cancer and has proven to be difficult to treat through conventional methods, including surgery and chemotherapy. Gene therapy serves as a potential novel treatment to interfere with genes that make this cancer so aggressive, but free nucleic acids have low cell uptake due to their negative charge and are unstable in circulation. Nanoparticles can serve as an effective carrier for a wide variety of gene therapies for pancreatic cancer as they can improve the circulation time, decrease the recognition by the immune system, and be functionalized to target specific surface proteins. In this review, we focus on therapeutic strategies using nanoparticles as carriers of small interfering RNA (siRNA), microRNA (miRNA), and gene augmentation (DNA) therapies in the context of pancreatic cancer. Lastly, we discuss the future outlook of nanoparticle-based therapies, including challenges in the clinical setting.
Collapse
Affiliation(s)
- Trevin Kurtanich
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Nicole Roos
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Guanmeng Wang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Jesse Yang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Alan Wang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.,2 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USC.,3 Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,4 Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.,5 Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.,6 Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
50
|
Luo XY, Zhu XQ, Li Y, Wang XB, Yin W, Ge YS, Ji WM. MicroRNA-150 restores endothelial cell function and attenuates vascular remodeling by targeting PTX3 through the NF-κB signaling pathway in mice with acute coronary syndrome. Cell Biol Int 2018; 42:1170-1181. [PMID: 29741292 DOI: 10.1002/cbin.10985] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/05/2018] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) have been known to function as important regulators in the vascular system, with various physiopathological effects such as vascular remodeling and hypertension modulation. We aimed to explore whether microRNA-150 (miR-150) regulates endothelial cell function and vascular remodeling in acute coronary syndrome (ACS), and the involvement of PTX3 and NF-κB signaling pathway. Ten normal mice and sixty ApoE-/- mice were chosen, and their coronary artery tissues and endothelial cells were extracted. ApoE-/- mice were injected with a series of inhibitor or mimic for miR-150, or siRNA against PTX3. The miR-150 expression, NF-κB1, RELA, and PTX3 mRNA expression were assessed by reverse transcription quantitative polymerase chain reaction, and pentraxin-3, p-P50, and p-P65 protein expression by Western blot analysis. Cell viability and migration were assessed by MTT assay and scratch test. Matrigel tube formation assay was employed to determine vascular remodeling of endothelial cells. The dual-luciferase reporter assay verified that PTX3 was a target of miR-150. Mice with ACS presented with decreased miR-150 but increased PTX3. It was observed that the miR-150 mimic and siRNA against PTX3 reduced levels of PTX3, NF-κB1, and RELA in mice, and the miR-150 inhibitor reversed the tendency. The in vitro cell experimentation proved that miR-150 might facilitate endothelial cell proliferation, migration, and restrain vascular remodeling via inhibiting PTX3 expression. On the basis of the results of this study, it was hypothesized that miR-150 could possibly maintain endothelial cell function and suppress vascular remodeling by inhibiting PTX3 through the NF-κB signaling pathway in mice with ACS.
Collapse
Affiliation(s)
- Xian-Yuan Luo
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Xiao-Qing Zhu
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Ying Li
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Xue-Bin Wang
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Wei Yin
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Yi-Shan Ge
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Wei-Min Ji
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| |
Collapse
|