1
|
Patel MA, Daley M, Van Nynatten LR, Slessarev M, Cepinskas G, Fraser DD. A reduced proteomic signature in critically ill Covid-19 patients determined with plasma antibody micro-array and machine learning. Clin Proteomics 2024; 21:33. [PMID: 38760690 PMCID: PMC11100131 DOI: 10.1186/s12014-024-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | | | - Marat Slessarev
- Medicine, Western University, London, ON, N6A 3K7, Canada
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada.
- Children's Health Research Institute, London, ON, N6C 4V3, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
2
|
Laverde EE, Polyzos AA, Tsegay PP, Shaver M, Hutcheson JD, Balakrishnan L, McMurray CT, Liu Y. Flap Endonuclease 1 Endonucleolytically Processes RNA to Resolve R-Loops through DNA Base Excision Repair. Genes (Basel) 2022; 14:genes14010098. [PMID: 36672839 PMCID: PMC9859040 DOI: 10.3390/genes14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an essential enzyme that removes RNA primers and base lesions during DNA lagging strand maturation and long-patch base excision repair (BER). It plays a crucial role in maintaining genome stability and integrity. FEN1 is also implicated in RNA processing and biogenesis. A recent study from our group has shown that FEN1 is involved in trinucleotide repeat deletion by processing the RNA strand in R-loops through BER, further suggesting that the enzyme can modulate genome stability by facilitating the resolution of R-loops. However, it remains unknown how FEN1 can process RNA to resolve an R-loop. In this study, we examined the FEN1 cleavage activity on the RNA:DNA hybrid intermediates generated during DNA lagging strand processing and BER in R-loops. We found that both human and yeast FEN1 efficiently cleaved an RNA flap in the intermediates using its endonuclease activity. We further demonstrated that FEN1 was recruited to R-loops in normal human fibroblasts and senataxin-deficient (AOA2) fibroblasts, and its R-loop recruitment was significantly increased by oxidative DNA damage. We showed that FEN1 specifically employed its endonucleolytic cleavage activity to remove the RNA strand in an R-loop during BER. We found that FEN1 coordinated its DNA and RNA endonucleolytic cleavage activity with the 3'-5' exonuclease of APE1 to resolve the R-loop. Our results further suggest that FEN1 employed its unique tracking mechanism to endonucleolytically cleave the RNA strand in an R-loop by coordinating with other BER enzymes and cofactors during BER. Our study provides the first evidence that FEN1 endonucleolytic cleavage can result in the resolution of R-loops via the BER pathway, thereby maintaining genome integrity.
Collapse
Affiliation(s)
- Eduardo E. Laverde
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Aris A. Polyzos
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pawlos P. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Mohammad Shaver
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana-Purdue University, Indianapolis, IN 46202, USA
| | - Cynthia T. McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
3
|
Manils J, Marruecos L, Soler C. Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells 2022; 11:2157. [PMID: 35883600 PMCID: PMC9316158 DOI: 10.3390/cells11142157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Although DNA degradation might seem an unwanted event, it is essential in many cellular processes that are key to maintaining genomic stability and cell and organism homeostasis. The capacity to cut out nucleotides one at a time from the end of a DNA chain is present in enzymes called exonucleases. Exonuclease activity might come from enzymes with multiple other functions or specialized enzymes only dedicated to this function. Exonucleases are involved in central pathways of cell biology such as DNA replication, repair, and death, as well as tuning the immune response. Of note, malfunctioning of these enzymes is associated with immune disorders and cancer. In this review, we will dissect the impact of DNA degradation on the DNA damage response and its links with inflammation and cancer.
Collapse
Affiliation(s)
- Joan Manils
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Laura Marruecos
- Breast Cancer Laboratory, Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
4
|
Basic V, Zhang B, Domert J, Pellas U, Tot T. Integrative meta-analysis of gene expression profiles identifies FEN1 and ENDOU as potential diagnostic biomarkers for cervical squamous cell carcinoma. Oncol Lett 2021; 22:840. [PMID: 34712364 PMCID: PMC8548783 DOI: 10.3892/ol.2021.13101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Cervical carcinoma is a global public health burden. Given that it is usually asymptomatic at potentially curative stages, the development of clinically accurate tests is critical for early detection and individual risk stratification. The present study performed an integrative meta-analysis of the transcriptomes from 10 cervical carcinoma cohorts, with the aim of identifying biomarkers that are associated with malignant transformation of cervical epithelium, and establish their clinical applicability. From among the top ranked differentially expressed genes, flap structure-specific endonuclease 1 (FEN1) and poly (U)-specific endoribonuclease (ENDOU) were selected for further validation, and their clinical applicability was assessed using immunohistochemically stained microarrays comprising 110 tissue cores, using p16 and Ki67 staining as the comparator tests. The results demonstrated that FEN1 expression was significantly upregulated in 65% of tumor specimens (P=0.0001), with no detectable expression in the non-tumor tissues. Furthermore, its expression was significantly associated with Ki67 staining in tumor samples (P<0.0001), but no association was observed with p16 expression or the presence of human papilloma virus types 16/18, patient age, tumor grade or stage. FEN1 staining demonstrated lower sensitivity than p16 (69.3 vs. 96.8%) and Ki67 (69.3 vs. 76.3%); however, the specificity was identical to p16 and higher than that of Ki67 (100 vs. 71.4%).ENDOU staining was consistent with the microarray results, demonstrating 1% positivity in tumors and 40% positivity in non-tumor tissues. Gene set enrichment analysis of cervical tumors overexpressing FEN1 revealed its association with enhanced growth factor signaling, immune response inhibition and extracellular matrix remodeling, whereas tumors with low ENDOU expression exhibited inhibition of epithelial development and differentiation processes. Taken together, the results of the present study demonstrate the feasibility of the integrative meta-analysis approach to identify relevant biomarkers associated with cervical carcinogenesis. Thus, FEN1 and ENDOU may be useful diagnostic biomarkers for squamous cervical carcinoma. However, further studies are required to determine their diagnostic performance in larger patient cohorts and validate the results presented here.
Collapse
Affiliation(s)
- Vladimir Basic
- Pathology and Cytology Dalarna, County Hospital Falun, Falun 791 82, Sweden
- Clinical Research Center Dalarna, Uppsala University, Falun 791 82, Sweden
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm 171 65, Sweden
| | - Jakob Domert
- Pathology and Cytology Dalarna, County Hospital Falun, Falun 791 82, Sweden
| | - Ulrika Pellas
- Clinical Research Center Dalarna, Uppsala University, Falun 791 82, Sweden
| | - Tibor Tot
- Pathology and Cytology Dalarna, County Hospital Falun, Falun 791 82, Sweden
| |
Collapse
|
5
|
Chen S, He Y, Yan M, Zhou Y, He Q, Tan J, Yang B. The interaction effects of FEN1 rs174538 polymorphism and polycyclic aromatic hydrocarbon exposure on damage in exon 19 and 21 of EGFR gene in coke oven workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60692-60703. [PMID: 34164787 DOI: 10.1007/s11356-021-15013-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure and genetic susceptibility were conductive to genotoxic effects including gene damage, which can increase mutational probability. We aimed to explore the dose-effect associations of PAH exposure with damage of exons of epidermal growth factor receptor (EGFR) and breast cancer susceptibility gene 1 (BRCA1), as well as their associations whether modified by Flap endonuclease 1 (FEN1) genotype. Two hundred eighty-eight coke oven male workers were recruited, and we detected the concentration of 1-hydroxypyrene (1-OH-pyr) as PAH exposure biomarker in urine and examined base modification in exons of EGFR and BRCA1 respectively, and genotyped FEN1 rs174538 polymorphism in plasma. We found that the damage indexes of exon 19 and 21 of EGFR (EGFR-19 and EGFR-21) were both significantly associated with increased urinary 1-OH-pyr (both Ptrend < 0.001). The levels of urinary 1-OH-pyr were both significantly associated with increased EGFR-19 and EGFR-21 in both smokers and nonsmokers (both P < 0.001). Additionally, we observed that the urinary 1-OH-pyr concentrations were linearly associated with both EGFR-19 and EGFR-21 only in rs174538 GA+AA genotype carriers (both P < 0.001). Moreover, FEN1rs rs174538 showed modifying effects on the associations of urinary 1-OH-pyr with EGFR-19 and EGFR-21 (both Pinteraction < 0.05). Our findings revealed the linear dose-effect association between exon damage of EGFR and PAH exposure and highlight differences in genetic contributions to exon damage and have the potential to identify at-risk subpopulations who are susceptible to adverse health effects induced by PAH exposure.
Collapse
Affiliation(s)
- Siqin Chen
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Guangzhou, 510700, Guangdong, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Maosheng Yan
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Yun Zhou
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qinghua He
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Guangzhou, 510700, Guangdong, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Binyao Yang
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Guangzhou, 510700, Guangdong, China.
| |
Collapse
|
6
|
Wu M, Zhang P, Wang P, Fang Z, Zhu Y. Identification of Flap Endonuclease 1 With Diagnostic and Prognostic Value in Breast Cancer. Front Oncol 2021; 11:603114. [PMID: 34277392 PMCID: PMC8278286 DOI: 10.3389/fonc.2021.603114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Objective This study aims to identify the potential value of flap endonuclease 1 (FEN1) as a diagnostic and prognostic marker for breast cancer (BC). Methods ELISA was used to measure serum FEN1 levels and ECLIA for CA153 and CEA levels. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic value. Oncomine and UALCAN databases were used to analyze the differences in FEN1 mRNA and protein expressions. Kaplan-Meier Plotter database was then used to assess the prognostic value. Results Bioinformatics analysis showed that the FEN1 mRNA and protein levels were significantly higher in BC tissues than in normal tissues. FEN1 was detected in culture medium of BC cell lines and serum FEN1 concentrations were significantly increased in BC patients than in cancer-free individuals. Besides, FEN1 exhibited higher diagnostic accuracy (AUC values>0.800) than CA153 and CEA for distinguishing BC patients, especially early BC, from the healthy and benign groups, or individually. Additionally, serum FEN1 levels were significantly associated with the stage (P=0.001) and lymph invasion (P=0.016), and serum FEN1 levels were increased with the development of BC. Furthermore, serum FEN1 levels were significantly decreased in post-operative patients than in pre-operative patients (P=0.016). Based on the Kaplan-Meier Plotter database, the survival analysis indicated that FEN1 overexpression was associated with poor prognoses for overall survival (OS), relapse-free survival (RFS), and distant metastasis-free survival (DMFS) in BC patients. Conclusion FEN1 might be a novel diagnostic and prognostic marker for BC.
Collapse
Affiliation(s)
- Min Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, China
| | - Pan Zhang
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Penghui Wang
- Department of Medical Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Zhen Fang
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yaqin Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
FEN1 Blockade for Platinum Chemo-Sensitization and Synthetic Lethality in Epithelial Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13081866. [PMID: 33919707 PMCID: PMC8070745 DOI: 10.3390/cancers13081866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Overall survival outcomes, despite platinum-based chemotherapy, for patients with advanced ovarian cancer remains poor. Increased DNA repair capacity is a key route to platinum resistance in ovarian cancer. In the current study, we show that FEN1, a key player in DNA repair, is overexpressed in ovarian cancer and associated with poor survival. Pre-clinically FEN1 blockade not only increased platinum sensitivity but was also synthetically lethal in BRCA2 and POLβ deficient ovarian cancer cells. Together the data provides evidence that FEN1 is a promising anti-cancer target in ovarian cancer. Abstract FEN1 plays critical roles in long patch base excision repair (LP-BER), Okazaki fragment maturation, and rescue of stalled replication forks. In a clinical cohort, FEN1 overexpression is associated with aggressive phenotype and poor progression-free survival after platinum chemotherapy. Pre-clinically, FEN1 is induced upon cisplatin treatment, and nuclear translocation of FEN1 is dependent on physical interaction with importin β. FEN1 depletion, gene inactivation, or inhibition re-sensitizes platinum-resistant ovarian cancer cells to cisplatin. BRCA2 deficient cells exhibited synthetic lethality upon treatment with a FEN1 inhibitor. FEN1 inhibitor-resistant PEO1R cells were generated, and these reactivated BRCA2 and overexpressed the key repair proteins, POLβ and XRCC1. FEN1i treatment was selectively toxic to POLβ deficient but not XRCC1 deficient ovarian cancer cells. High throughput screening of 391,275 compounds identified several FEN1 inhibitor hits that are suitable for further drug development. We conclude that FEN1 is a valid target for ovarian cancer therapy.
Collapse
|
8
|
A bibliometric analysis of researches on flap endonuclease 1 from 2005 to 2019. BMC Cancer 2021; 21:374. [PMID: 33827468 PMCID: PMC8028219 DOI: 10.1186/s12885-021-08101-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Background Flap endonuclease 1 (FEN1) is a structure-specific nuclease that plays a role in a variety of DNA metabolism processes. FEN1 is important for maintaining genomic stability and regulating cell growth and development. It is associated with the occurrence and development of several diseases, especially cancers. There is a lack of systematic bibliometric analyses focusing on research trends and knowledge structures related to FEN1. Purpose To analyze hotspots, the current state and research frontiers performed for FEN1 over the past 15 years. Methods Publications were retrieved from the Web of Science Core Collection (WoSCC) database, analyzing publication dates ranging from 2005 to 2019. VOSviewer1.6.15 and Citespace5.7 R1 were used to perform a bibliometric analysis in terms of countries, institutions, authors, journals and research areas related to FEN1. A total of 421 publications were included in this analysis. Results Our findings indicated that FEN1 has received more attention and interest from researchers in the past 15 years. Institutes in the United States, specifically the Beckman Research Institute of City of Hope published the most research related to FEN1. Shen BH, Zheng L and Bambara Ra were the most active researchers investigating this endonuclease and most of this research was published in the Journal of Biological Chemistry. The main scientific areas of FEN1 were related to biochemistry, molecular biology, cell biology, genetics and oncology. Research hotspots included biological activities, DNA metabolism mechanisms, protein-protein interactions and gene mutations. Research frontiers included oxidative stress, phosphorylation and tumor progression and treatment. Conclusion This bibliometric study may aid researchers in the understanding of the knowledge base and research frontiers associated with FEN1. In addition, emerging hotspots for research can be used as the subjects of future studies.
Collapse
|
9
|
Flap endonuclease 1 (FEN1) as a novel diagnostic and prognostic biomarker for gastric cancer. Clin Res Hepatol Gastroenterol 2021; 45:101455. [PMID: 32505732 DOI: 10.1016/j.clinre.2020.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Flap endonuclease 1 (FEN1) overexpression has been reported to be closely associated with cancer prognosis. However, its diagnostic and prognostic significance in gastric cancer (GC) has not yet been explored. METHODS FEN1 expression, its correlation with clinical parameters, and prognostic significance were investigated by data mining of The Cancer Genome Atlas (TCGA) datasets. Patients were divided into low- and high-expression groups using the median value of FEN1 expression as the cut-off. The diagnostic value of FEN1 expression in GC tissues was determined via receiver operating characteristic (ROC) curve analysis. Univariate and multivariate Cox regression analyses were used to identify the prognostic indicators. Gene set enrichment analysis (GSEA) was used to explore FEN1-related signalling pathways in GC. Furthermore, the Human Protein Atlas (HPA) database and GSE62254 dataset were used for further external validation. RESULTS FEN1 was expressed at a higher level in GC tissues than in normal gastric tissues with high diagnostic accuracy (area under the ROC=0.909). Higher FEN1 expression was also validated at the protein level using the HPA database. High FEN1 expression in GC was correlated with older age (P<0.05). Patients with high FEN1 expression had a favourable prognosis compared to patients with low FEN1 expression (P=0.0048). Univariate and multivariate analyses revealed that FEN1 was an independent predictive factor associated with overall survival in both the TCGA cohort and the GSE62254 dataset (P=0.0004 and P=0.011, respectively). GSEA identified that the FEN1 expression was related to DNA replication, cell cycle, cytosolic and sensing pathways, oocyte meiosis, and the P53 signalling pathway. CONCLUSION The results revealed high expression of FEN1 in GC; thus, it could be a promising early diagnostic and independent prognostic biomarker for GC.
Collapse
|
10
|
Pu J, Wang J, Qin Z, Wang A, Zhang Y, Wu X, Wu Y, Li W, Xu Z, Lu Y, Tang Q, Wei H. IGF2BP2 Promotes Liver Cancer Growth Through an m6A-FEN1-Dependent Mechanism. Front Oncol 2020; 10:578816. [PMID: 33224879 PMCID: PMC7667992 DOI: 10.3389/fonc.2020.578816] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in China. N6-methyladenosine (m6A) plays an important role in posttranscriptional gene regulation. METTL3 and IGF2BP2 are key genes in the m6A signal pathway and have recently been shown to play important roles in cancer development and progression. In our work, higher METTL3 and IGF2BP2 expression were found in HCC tissues and were associated with a poor prognosis. In addition, IGF2BP2 overexpression promoted HCC proliferation in vitro and in vivo. Mechanistically, IGF2BP2 directly recognized and bound to the m6A site on FEN1 mRNA and enhanced FEN1 mRNA stability. Overall, our study revealed that METTL3 and IGF2BP2, acting as an oncogene, maintained FEN1 expression through an m6A-IGF2BP2-dependent mechanism in HCC cells, and indicated a potential biomarker panel for prognostic prediction in liver cancer.
Collapse
Affiliation(s)
- Jian Pu
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Zebang Qin
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Anmin Wang
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Ya Zhang
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Xianjian Wu
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Yi Wu
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Yuan Lu
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
11
|
Zheng X, Wang X, Zheng L, Zhao H, Li W, Wang B, Xue L, Tian Y, Xie Y. Construction and Analysis of the Tumor-Specific mRNA-miRNA-lncRNA Network in Gastric Cancer. Front Pharmacol 2020; 11:1112. [PMID: 32848739 PMCID: PMC7396639 DOI: 10.3389/fphar.2020.01112] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Weighted correlation network analysis (WGCNA) is a statistical method that has been widely used in recent years to explore gene co-expression modules. Competing endogenous RNA (ceRNA) is commonly involved in the cancer gene expression regulation mechanism. Some ceRNA networks are recognized in gastric cancer; however, the prognosis-associated ceRNA network has not been fully identified using WGCNA. We performed WGCNA using datasets from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) to identify cancer-associated modules. The criteria of differentially expressed RNAs between normal stomach samples and gastric cancer samples were set at the false discovery rate (FDR) < 0.01 and |fold change (FC)| > 1.3. The ceRNA relationships obtained from the RNAinter database were examined by both the Pearson correlation test and hypergeometric test to confirm the mRNA–lncRNA regulation. Overlapped genes were recognized at the intersections of genes predicted by ceRNA relationships, differentially expressed genes, and genes in cancer-specific modules. These were then used for univariate and multivariate Cox analyses to construct a risk score model. The ceRNA network was constructed based on the genes in this model. WGCNA-uncovered genes in the green and turquoise modules are those most associated with gastric cancer. Eighty differentially expressed genes were observed to have potential prognostic value, which led to the identification of 12 prognosis-related mRNAs (KIF15, FEN1, ZFP69B, SP6, SPARC, TTF2, MSI2, KYNU, ACLY, KIF21B, SLC12A7, and ZNF823) to construct a risk score model. The risk genes were validated using the GSE62254 and GSE84433 datasets, with 0.82 as the universal cutoff value. 12 genes, 12 lncRNAs, and 35 miRNAs were used to build a ceRNA network with 86 dysregulated lncRNA–mRNA ceRNA pairs. Finally, we developed a 12-gene signature from both prognosis-related and tumor-specific genes, and then constructed a ceRNA network in gastric cancer. Our findings may provide novel insights into the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xiaohao Zheng
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Zheng
- Department of General Surgery, The First People's Hospital of Dongcheng District, Beijing, China
| | - Hao Zhao
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yantao Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibin Xie
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Upregulation of FEN1 Is Associated with the Tumor Progression and Prognosis of Hepatocellular Carcinoma. DISEASE MARKERS 2020; 2020:2514090. [PMID: 32399086 PMCID: PMC7201445 DOI: 10.1155/2020/2514090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
Abstract
Background Studies show that patients with hepatocellular carcinoma (HCC) have poor prognosis, particularly when patients are diagnosed at late stages of the disease development. The flap endonuclease 1 (FEN1) gene is overexpressed in multiple malignant tumors and may promote tumor aggressiveness. However, its expression profile and functional roles in HCC are still unclear. Here, we evaluated the molecular mechanisms of FEN1 in HCC. Methods The expression of FEN1 in HCC was evaluated using HCC mRNA expression data from TCGA and GEO databases. The expression of FEN1 was also confirmed by immunohistochemistry (IHC) using a tissue microarray (TMA) cohort with a total of 396 HCC patients. Kaplan-Meier analysis and univariate and multivariate Cox regression analyses were used to determine the correlation between FEN1 expression and survival rate of HCC patients. The molecular mechanism and biological functions of FEN1 in HCC were predicted using functional and pathway enrichment analysis in vitro experiments. Results FEN1 was overexpressed in multiple HCC cohorts at both mRNA and protein levels. The receiver operating characteristic (ROC) curve showed that FEN1 can serve as a diagnostic predictor of HCC. Meanwhile, patients with high FEN1 expression levels showed lower overall survival (OS) and relapse-free survival (RFS) rates than those with low FEN1 expression. More importantly, we found that FEN1 elevation was an independent prognostic factor for OS and RFS in HCC patients based on univariate and multivariate analyses, indicating that FEN1 might be a potential prognostic marker in HCC. Furthermore, knocking down FEN1 resulted in suppressed cell proliferation and migration in vitro. This could have been due to regulation expressions of c-Myc, survivin, and cyclin D1 genes, indicating that FEN1 may function as an oncogene through its role in the cell cycle and DNA replication pathway. Conclusion Our study indicated that high FEN1 expression might function as a biomarker for diagnosis and prognosis. In addition, the study confirms that FEN1 is an oncogene in HCC progression.
Collapse
|
13
|
Al-Shaheri FN, Al-Shami KM, Gamal EH, Mahasneh AA, Ayoub NM. Association of DNA repair gene polymorphisms with colorectal cancer risk and treatment outcomes. Exp Mol Pathol 2019; 113:104364. [PMID: 31881200 DOI: 10.1016/j.yexmp.2019.104364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common carcinoma worldwide. Despite the progress in screening and treatment, CRC remains a leading cause of cancer-related mortality. Alterations to normal nucleic acid processing may drive neoplastic transformation of colorectal epithelium. DNA repair machinery performs an essential function in the protection of genome by reducing the number of genetic polymorphisms/variations that may drive carcinogenicity. Four essential DNA repair systems are known which include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). Polymorphisms of DNA repair genes have been shown to influence the risk of cancer development as well as outcomes of treatment. Several studies demonstrated the association between genetic polymorphism of DNA repair genes and increased risk of CRC in different populations. In this review, we have summarized the impact of DNA repair gene polymorphisms on risk of CRC development and treatment outcomes. Advancements of the current understanding for the impact of DNA repair gene polymorphisms on the risk and treatment of CRC may support diagnostic and predictive roles in patients with CRC.
Collapse
Affiliation(s)
- Fawaz N Al-Shaheri
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), ImNeuenheimer Feld 580, 69120 Heidelberg, Germany; Medical Faculty Heidelberg, University of Heidelberg, ImNeuenheimer Feld 672, 69120 Heidelberg, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 South Donahue Drive, Auburn, Alabama 36849, United States of America; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Eshrak H Gamal
- Department of Oncology, Collage of Medicine, Bonn University, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Amjad A Mahasneh
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
14
|
Li C, Qin F, Hong H, Tang H, Jiang X, Yang S, Mei Z, Zhou D. Identification of Flap endonuclease 1 as a potential core gene in hepatocellular carcinoma by integrated bioinformatics analysis. PeerJ 2019; 7:e7619. [PMID: 31534853 PMCID: PMC6733258 DOI: 10.7717/peerj.7619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common yet deadly form of malignant cancer. However, the specific mechanisms involved in HCC diagnosis have not yet fully elucidated. Herein, we screened four publically available Gene Expression Omnibus (GEO) expression profiles (GSE14520, GSE29721, GSE45267 and GSE60502), and used them to identify 409 differentially expressed genes (DEGs), including 142 and 267 up- and down-regulated genes, respectively. The DAVID database was used to look for functionally enriched pathways among DEGs, and the STRING database and Cytoscape platform were used to generate a protein-protein interaction (PPI) network for these DEGs. The cytoHubba plug-in was utilized to detect 185 hub genes, and three key clustering modules were constructed with the MCODE plug-in. Gene functional enrichment analyses of these three key clustering modules were further performed, and nine core genes including BIRC5, DLGAP5, DTL, FEN1, KIAA0101, KIF4A, MCM2, MKI67, and RFC4, were identified in the most critical cluster. Subsequently, the hierarchical clustering and expression of core genes in TCGA liver cancer tissues were analyzed using the UCSC Cancer Genomics Browser, and whether elevated core gene expression was linked to a poor prognosis in HCC patients was assessed using the GEPIA database. The PPI of the nine core genes revealed an interaction between FEN1, MCM2, RFC4, and BIRC5. Furthermore, the expression of FEN1 was positively correlated with that of three other core genes in TCGA liver cancer tissues. FEN1 expression in HCC and other tumor types was assessed with the FIREBROWSE and ONCOMINE databases, and results were verified in HCC samples and hepatoma cells. FEN1 levels were also positively correlated with tumor size, distant metastasis and vascular invasion. In conclusion, we identified nine core genes associated with HCC development, offering novel insight into HCC progression. In particular, the aberrantly elevated FEN1 may represent a potential biomarker for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Qin
- Department of Infectious Diseases, The People's Hospital of Shi Zhu, Chongqing, China
| | - Hao Hong
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Tang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoling Jiang
- Tongnan District People's Hospital, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuangyan Yang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
MicroRNA-140 impedes DNA repair by targeting FEN1 and enhances chemotherapeutic response in breast cancer. Oncogene 2019; 39:234-247. [PMID: 31471584 DOI: 10.1038/s41388-019-0986-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 01/18/2023]
Abstract
An increased DNA repair capacity is associated with drug resistance and limits the efficacy of chemotherapy in breast cancers. Flap endonuclease 1 (FEN1) participates in various DNA repair pathways and contributes to cancer progression and drug resistance in chemotherapy. Inhibition of FEN1 serves as a potent strategy for cancer therapy. Here, we demonstrate that microRNA-140 (miR-140) inhibits FEN1 expression via directly binding to its 3' untranslated region, leading to impaired DNA repair and repressed breast cancer progression. Overexpression of miR-140 sensitizes breast cancer cells to chemotherapeutic agents and overcomes drug resistance in breast cancer. Notably, ectopic expression of FEN1 abates the effects of miR-140 on DNA damage and the chemotherapy response in breast cancer cells. Furthermore, the transcription factor/repressor Ying Yang 1 (YY1) directly binds to the miR-140 promoter and activates miR-140 expression, which is attenuated in doxorubicin resistance. Our results demonstrate that miR-140 acts as a tumor suppressor in breast cancer by inhibiting FEN1 to repress DNA damage repair and reveal miR-140 to be a new anti-tumorigenesis factor for adjunctive breast cancer therapy. This novel mechanism will enhance the treatment effect of chemotherapy in breast cancer.
Collapse
|
16
|
Li C, Zhou D, Hong H, Yang S, Zhang L, Li S, Hu P, Ren H, Mei Z, Tang H. TGFβ1- miR-140-5p axis mediated up-regulation of Flap Endonuclease 1 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Aging (Albany NY) 2019; 11:5593-5612. [PMID: 31402791 PMCID: PMC6710057 DOI: 10.18632/aging.102140] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022]
Abstract
Flap Endonuclease 1 (FEN1) is a known oncogene in an array of cancers, but its role in hepatocellular carcinoma (HCC) remains obscure. In this study, we report that FEN1 expression was elevated in the Cancer Genome Atlas (TCGA) database which was verified in HCC tissue and hepatoma cell lines. Pearson correlation analysis indicated that FEN1 was involved in HCC metastasis. We demonstrated that FEN1 silencing inhibits HCC cell epithelial-mesenchymal transition (EMT), invasion and migration in vitro and significantly suppressed tumor growth and metastasis in vivo. Conversely, FEN1 overexpression in HCC cells enhanced these metastatic processes. We further confirmed that FEN1 was a direct target of miR-140-5p, which was down-regulated in HCC tissues, and negatively correlated with FEN1 expression. Moreover, low miR-140-5p levels and high FEN1 expression predicted a poor clinical outcome. The effects of FEN1 overexpression could be partially abolished by miR-140-5p. miR-140-5p down-regulation and FEN1 overexpression were observed in a TGFβ1 induced EMT model. TGFβ1 mediated EMT could be blocked by miR-140-5p overexpression or FEN1 silencing. Taken together, our findings suggest that FEN1 is regulated by the TGFβ1- miR-140-5p axis and promotes EMT in HCC.
Collapse
Affiliation(s)
- Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Di Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 4001016, China
| | - Hao Hong
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shuangyan Yang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shiying Li
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hong Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hui Tang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
17
|
Moghbeli M. Genetic and molecular biology of breast cancer among Iranian patients. J Transl Med 2019; 17:218. [PMID: 31286981 PMCID: PMC6615213 DOI: 10.1186/s12967-019-1968-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract Background, Breast cancer (BC) is one of the leading causes of cancer related deaths in Iran. This high ratio of mortality had a rising trend during the recent years which is probably associated with late diagnosis. Main body Therefore it is critical to define a unique panel of genetic markers for the early detection among our population. In present review we summarized all of the reported significant genetic markers among Iranian BC patients for the first time, which are categorized based on their cellular functions. Conclusions This review paves the way of introducing a unique ethnic specific panel of diagnostic markers among Iranian BC patients. Indeed, this review can also clarify the genetic and molecular bases of BC progression among Iranians.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Moazeni-Roodi A, Ghavami S, Ansari H, Hashemi M. Association between the flap endonuclease 1 gene polymorphisms and cancer susceptibility: An updated meta-analysis. J Cell Biochem 2019; 120:13583-13597. [PMID: 30937972 DOI: 10.1002/jcb.28633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 11/10/2022]
Abstract
Flap endonuclease 1 (FEN1) has emerged as an important enzyme in the maintenance of genomic instability and preventing carcinogenesis. The relationship between FEN1 -69G>A (rs174538)+4150G>T (rs4246215) polymorphisms and cancer susceptibility has been reported; however, results were inconclusive. In the present study, a meta-analysis of data from eligible reports was carried out to summarize the possible relationship between FEN1 polymorphisms and cancer risk. A total of 11 articles, including 20 studies with 7366 cases and 9028 controls and 18 studies with 6649 cases and 8325 controls for FEN1 rs174538 and FEN1 rs4246215 polymorphisms, respectively, were recruited for meta-analysis. Overall, meta-analyses showed that FEN1 rs174538 and rs4246215 polymorphisms are significantly associated with the decreased risk of cancer. The stratified analysis proposed that both variants were associated with protection against gastrointestinal cancer, breast cancer, hepatocellular cancer, esophageal cancer, gastric cancer, colorectal cancer, and lung cancer. In conclusion, this meta-analysis revealed an association between FEN1 polymorphisms and cancer risk. Additional studies in a larger study population that include subjects from a variety of ethnicities are warranted to further verify our findings.
Collapse
Affiliation(s)
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| | - Hossein Ansari
- Department of Epidemiology and Biostatistics, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hashemi
- Genetics of Non-communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
19
|
Chen Z, Chen J, Huang X, Wu Y, Huang K, Xu W, Xie L, Zhang X, Liu H. Identification of Potential Key Genes for Hepatitis B Virus-Associated Hepatocellular Carcinoma by Bioinformatics Analysis. J Comput Biol 2019; 26:485-494. [PMID: 30864827 DOI: 10.1089/cmb.2018.0244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus-associated (HBV(+)) hepatocellular carcinoma (HCC) accounts for a large proportion of liver cancer with poor clinical outcomes and treatment options. However, the underlying molecular mechanisms are still poorly understood. To explore potential key genes in the development of HBV(+)HCC, four series of data (GSE14520, GSE94660, GSE25599, and GSE55092) derived from Gene Expression Omnibus database were analyzed. Totally, 84 upregulated and 46 downregulated common differentially expressed genes (DEGs) were discovered. Gene ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that these DEGs were mainly enriched in cell division and DNA replication biological processes, nucleoplasm and microtubule cellular components, protein-binding molecular functions, and cell cycle and DNA replication pathways. Through protein-protein interaction analysis, 10 hub DEGs with the highest degree of connectivity were indicated, including TOP2A, CDC20, MAD2L1, BUB1B, RFC4, CCNB1, CDKN3, CCNB2, TPX2, and FEN1. Kaplan-Meier analysis revealed that high expression of TOP2A and CDC20 was associated with poor overall survival, relapse-free survival, and high serum alpha-fetoprotein level in HBV(+)HCC. In conclusion, TOP2A and CDC20 were two potential key genes for HBV(+)HCC. Their value in the diagnosis and treatment of HBV(+)HCC requires further investigation.
Collapse
Affiliation(s)
- Zide Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiehua Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Wu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kuiyuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weikang Xu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linqing Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Liu J, Zheng B, Li Y, Yuan Y, Xing C. Genetic Polymorphisms of DNA Repair Pathways in Sporadic Colorectal Carcinogenesis. J Cancer 2019; 10:1417-1433. [PMID: 31031852 PMCID: PMC6485219 DOI: 10.7150/jca.28406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
DNA repair systems play a critical role in maintaining the integrity and stability of the genome, which mainly include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR) and double-strand break repair (DSBR). The polymorphisms in different DNA repair genes that are mainly represented by single-nucleotide polymorphisms (SNPs) can potentially modulate the individual DNA repair capacity and therefore exert an impact on individual genetic susceptibility to cancer. Sporadic colorectal cancer arises from the colorectum without known contribution from germline causes or significant family history of cancer or inflammatory bowel disease. In recent years, emerging studies have investigated the association between polymorphisms of DNA repair system genes and sporadic CRC. Here, we review recent insights into the polymorphisms of DNA repair pathway genes, not only individual gene polymorphism but also gene-gene and gene-environment interactions, in sporadic colorectal carcinogenesis.
Collapse
Affiliation(s)
- Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Bowen Zheng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Ying Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| |
Collapse
|
21
|
rs4246215 is targeted by hsa-miR1236 to regulate FEN1 expression but is not associated with Fuchs' endothelial corneal dystrophy. PLoS One 2018; 13:e0204278. [PMID: 30260965 PMCID: PMC6160067 DOI: 10.1371/journal.pone.0204278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023] Open
Abstract
Fuchs' Endothelial Corneal Dystrophy (FECD) is a genetically complex disorder that affects individuals above 40 years of age; molecular pathogenesis of its associated genes is poorly understood. This study aims at assessing the association of flap endonuclease 1 (FEN1) polymorphisms, c.-69G>A (rs174538) and c.4150G>T (rs4246215) with FECD. Comet assay analysis reaffirmed that endogenous DNA damage was greater in FECD individuals. However, genetic analysis in 79 FECD patients and 234 unrelated control individuals prove that both the FEN1 polymorphisms, c.-69G>A (rs174538) and c.4150G>T (rs4246215), failed to show any genetic association with the FECD disease phenotype. In silico analysis and luciferase reporter assay identified 'G' allele of the 3'UTR located FEN1 polymorphism c.4150G>T as the target for binding of hsa-miR-1236-3p. This study indicates that although FEN1 polymorphisms, c.-69G>A (rs174538) and c.4150G>T (rs4246215) are not genetically associated with FECD, its transcript regulation reported in other diseases such as lung cancer which are genetically associated by rs4246215 could be mediated through miRNA, hsa-miR-1236-3p.
Collapse
|
22
|
Zhang N, Lu Y, Liu X, Yu D, Lv Z, Yang M. Functional Evaluation of ZNF350 Missense Genetic Variants Associated with Breast Cancer Susceptibility. DNA Cell Biol 2018; 37:543-550. [PMID: 29653063 DOI: 10.1089/dna.2018.4160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ZNF350, a BRCA1-interacting protein, could mediate BRCA1-induced sequence-specific transcriptional repression of several genes, including GADD45α. As a potential breast cancer susceptibility gene, single nucleotide polymorphisms (SNPs), especially missense SNPs, may influence the transcriptional repression of its target tumor suppressor genes and individuals' breast cancer risk. Using the gene-based haplotype-tagging SNPs strategy, we evaluated the association between six ZNF350 polymorphisms and breast cancer risk in a case-control set from a northern Chinese population. The impact of ZNF350 variations on transcriptional repression of GADD45α was also examined. It was found that ZNF350 rs2278420 (L66P) and rs2278415 (S501R) missense genetic variants are in complete linkage disequilibrium and have a significant impact on inter-individual susceptibility to breast cancer. Additionally, ZNF350 GGCGT or GGCGC haplotype is also associated with a significantly increased breast cancer risk compared with the GGCAC haplotype. ZNF350 L66P variant modifies the risk of breast cancer not only by itself but also in a gene-environment interaction manner with age, age at menarche, menopause status, or estrogen receptor status. Interestingly, we observed that ZNF350 L66P and S501R SNPs could weaken the capability of ZNF350-mediated GADD45α transcription repression and it may be an underlying mechanism of the observed epidemiological associations. Our results highlight ZNF350 as an important gene in human mammary oncogenesis and ZNF350 missense genetic polymorphisms confer susceptibility to breast cancer.
Collapse
Affiliation(s)
- Nasha Zhang
- 1 Cheeloo College of Medicine, Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| | - Youhua Lu
- 2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| | - Xijun Liu
- 2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| | - Dianke Yu
- 3 School of Public Health, Qingdao University , Qingdao, China
| | - Zheng Lv
- 4 Cancer Center, The First Affiliated Hospital of Jilin University , Changchun, China
| | - Ming Yang
- 2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
23
|
Deshmukh AL, Chandra S, Singh DK, Siddiqi MI, Banerjee D. Identification of human flap endonuclease 1 (FEN1) inhibitors using a machine learning based consensus virtual screening. MOLECULAR BIOSYSTEMS 2018; 13:1630-1639. [PMID: 28685785 DOI: 10.1039/c7mb00118e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human Flap endonuclease1 (FEN1) is an enzyme that is indispensable for DNA replication and repair processes and inhibition of its Flap cleavage activity results in increased cellular sensitivity to DNA damaging agents (cisplatin, temozolomide, MMS, etc.), with the potential to improve cancer prognosis. Reports of the high expression levels of FEN1 in several cancer cells support the idea that FEN1 inhibitors may target cancer cells with minimum side effects to normal cells. In this study, we used large publicly available, high-throughput screening data of small molecule compounds targeted against FEN1. Two machine learning algorithms, Support Vector Machine (SVM) and Random Forest (RF), were utilized to generate four classification models from huge PubChem bioassay data containing probable FEN1 inhibitors and non-inhibitors. We also investigated the influence of randomly selected Zinc-database compounds as negative data on the outcome of classification modelling. The results show that the SVM model with inactive compounds was superior to RF with Matthews's correlation coefficient (MCC) of 0.67 for the test set. A Maybridge database containing approximately 53 000 compounds was screened and top ranking 5 compounds were selected for enzyme and cell-based in vitro screening. The compound JFD00950 was identified as a novel FEN1 inhibitor with in vitro inhibition of flap cleavage activity as well as cytotoxic activity against a colon cancer cell line, DLD-1.
Collapse
Affiliation(s)
- Amit Laxmikant Deshmukh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Sharat Chandra
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India. and AcSIR (Academy of Scientific and Innovative Research), India
| | - Deependra Kumar Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India. and AcSIR (Academy of Scientific and Innovative Research), India
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India. and AcSIR (Academy of Scientific and Innovative Research), India
| |
Collapse
|
24
|
Lin S, Wang M, Liu X, Lu Y, Gong Z, Guo Y, Yang P, Tian T, Dai C, Zheng Y, Xu P, Li S, Zhu Y, Dai Z. FEN1 gene variants confer reduced risk of breast cancer in chinese women: A case-control study. Oncotarget 2018; 7:78110-78118. [PMID: 27801669 PMCID: PMC5363647 DOI: 10.18632/oncotarget.12948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
This study aimed to assess the associations of two common Flap endonuclease 1 (FEN1) polymorphisms (rs4246215 and rs174538) with breast cancer risk in northwest Chinese women. We conducted a case-control study with 560 breast cancer patients and 583 age-matched healthy controls from Northwest China. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to estimate the associations. We found a significantly reduced risk of breast cancer associated with T allele of rs4246215 (allele model: OR 0.81, 95% CI 0.68–0.96; homozygote model: OR = 0.59, 95% CI = 0.40–0.87; recessive model: OR = 0.61, 95% CI = 0.42–0.89), especially in postmenopausal women (OR = 0.58, 95% CI = 0.35–0.97). Furthermore, the polymorphism showed a decreased association with larger tumor size (heterozygote model: OR = 0.63, 95% CI = 0.44–0.92; dominant model: OR = 0.63, 95% CI = 0.44–0.90). For rs174538, we did not find any difference in all genetic models. However, rs174538 was associated with lymph node metastasis (heterozygote model: OR = 0.57, 95% CI = 0.39–0.81; dominant model: OR = 0.61, 95% CI = 0.43–0.86) and estrogen receptor status (heterozygote model: OR = 1.50, 95% CI = 1.05–2.15; dominant model: OR = 1.42, 95% CI = 1.01–1.98). Haplotype analysis showed that Trs4246215Grs174538 haplotype was a protective factor of breast cancer (OR = 0.34, 95% CI = 0.14–0.81). Our results suggest that FEN1 polymorphisms may reduce the risk of breast cancer in Chinese women.
Collapse
Affiliation(s)
- Shuai Lin
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Meng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xinghan Liu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ye Lu
- Department of Student Affairs, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhuoqing Gong
- Department of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengtao Yang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Tian Tian
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Cong Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yi Zheng
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Peng Xu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shanli Li
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuyao Zhu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
25
|
Chou AK, Shen MY, Chen FY, Hsiao CL, Shih LC, Chang WS, Tsai CW, Ying TH, Wu MH, Huang CY, Bau DAT. The Association of Flap Endonuclease 1 Genotypes with the Susceptibility of Endometriosis. Cancer Genomics Proteomics 2017; 14:455-460. [PMID: 29109095 DOI: 10.21873/cgp.20055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/05/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIM Flap endonuclease 1 (FEN1), a protein with multiple functions in genome stability maintenance, is important in cancer prevention. The two functional germline variants of FEN1, rs174538 and rs4246215, regarding cancer susceptibility have been reported in lung, breast, liver, esophageal, gastric, colorectal cancer, glioma and leukemia, but not endometriosis. In this study, we firstly aimed at evaluating the contribution of FEN1 genotypes to endometriosis risk in a representative Taiwan population. MATERIALS AND METHODS In total, 153 patients with endometriosis and 636 non-cancer healthy controls were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methodology. RESULTS The genotypes of FEN1 rs174538, but not those of rs4246215, were differently distributed between the endometriosis and control groups. In detail, the AA of FEN1 rs174538 genotypes were significantly less frequently found among endometriosis patients than among controls (odds ratio [OR]=0.43, 95% confidence interval [CI]=0.24-0.78, p=0.0125). The A allele at FEN1 rs174538 was also significantly less frequent among cases than controls (OR=0.65, 95%CI=0.50-0.86, p=0.0021). As for age of first menarche, those with first menarche at the age >12.8 carrying the FEN1 rs174538 AA genotype conferred lower OR of 0.29 (95%CI=0.11-0.78, p=0.0381) for endometriosis. Regarding the full pregnancy status, those without having had a full-term pregnancy carrying the FEN1 rs174538 AA genotype were of lower risk (ORs=0.12, 95%CI=0.03-0.53, p=0.0050). CONCLUSION The FEN1 rs174538 A allele is a novel protective biomarker for endometriosis and this genotype may have interactions with age- and hormone-related factors on the development of endometriosis.
Collapse
Affiliation(s)
- An-Kuo Chou
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Ming-Yi Shen
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan Hospital, Taichung, Taiwan, R.O.C.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
| | - Fang-Yu Chen
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan Hospital, Taichung, Taiwan, R.O.C
| | - Chieh-Lun Hsiao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Liang-Chun Shih
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Ming-Hsien Wu
- Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C
| | - Chung-Yu Huang
- Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C. .,Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
26
|
Zhang K, Keymeulen S, Nelson R, Tong TR, Yuan YC, Yun X, Liu Z, Lopez J, Raz DJ, Kim JY. Overexpression of Flap Endonuclease 1 Correlates with Enhanced Proliferation and Poor Prognosis of Non-Small-Cell Lung Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:242-251. [PMID: 29037854 DOI: 10.1016/j.ajpath.2017.09.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/31/2023]
Abstract
Flap endonuclease 1 (FEN1) plays a crucial role in both DNA replication and damage repair. In this study, FEN1 expression and its clinical-pathologic significance in non-small-cell lung cancer (NSCLC) was investigated. Quantitative RT-PCR and immunohistochemistry analysis identified that both FEN1 mRNA and protein were highly overexpressed in about 36% of 136 cancer tissues compared to adjacent tissues, in which FEN1 was generally undetectable. Notably, patients with FEN1-overexpressed cancers were prone to have poor differentiation and poor prognosis. A strong positive correlation between the levels of FEN1 and Ki-67 staining was identified in these NSCLC tissues (r = 0.485), suggesting overexpressed FEN1 conferred a proliferative advantage to NSCLC. Furthermore, knockdown of FEN1 resulted in G1/S or G2/M phase cell cycle arrest and suppressed in vitro cellular proliferation in NSCLC cancer cells. Consistently, a selective FEN1 inhibitor was shown to effectively inhibit cellular proliferation of NSCLC cells in a dose-dependent manner. Additionally, knockdown of FEN1 significantly attenuated homologous DNA repair efficiency and enhanced cytotoxic effects of cisplatin in NSCLC cells. Taken together, these findings have indicated that overexpressed FEN1 represents a prognostic biomarker and potential therapeutic target for NSCLC treatment, which warrants further study.
Collapse
Affiliation(s)
- Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California.
| | - Sawa Keymeulen
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Rebecca Nelson
- Division of Biostatistics, City of Hope National Medical Center, Duarte, California
| | - Tommy R Tong
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Yate-Ching Yuan
- Bioinformatics Core Facility, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California
| | - Xinwei Yun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Zheng Liu
- Bioinformatics Core Facility, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California
| | - Joshua Lopez
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Jae Y Kim
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
27
|
Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas. Oncotarget 2017; 8:98623-98634. [PMID: 29228715 PMCID: PMC5716755 DOI: 10.18632/oncotarget.21697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/03/2017] [Indexed: 12/17/2022] Open
Abstract
Most genome-wide association studies (GWAS) were analyzed using single marker tests in combination with stringent correction procedures for multiple testing. Thus, a substantial proportion of associated single nucleotide polymorphisms (SNPs) remained undetected and may account for missing heritability in complex traits. Model selection procedures present a powerful alternative to identify associated SNPs in high-dimensional settings. In this GWAS including 1060 colorectal cancer cases, 689 cases of advanced colorectal adenomas and 4367 controls we pursued a dual approach to investigate genome-wide associations with disease risk applying both, single marker analysis and model selection based on the modified Bayesian information criterion, mBIC2, implemented in the software package MOSGWA. For different case-control comparisons, we report models including between 1-14 candidate SNPs. A genome-wide significant association of rs17659990 (P=5.43×10-9, DOCK3, chromosome 3p21.2) with colorectal cancer risk was observed. Furthermore, 56 SNPs known to influence susceptibility to colorectal cancer and advanced adenoma were tested in a hypothesis-driven approach and several of them were found to be relevant in our Austrian cohort. After correction for multiple testing (α=8.9×10-4), the most significant associations were observed for SNPs rs10505477 (P=6.08×10-4) and rs6983267 (P=7.35×10-4) of CASC8, rs3802842 (P=8.98×10-5, COLCA1,2), and rs12953717 (P=4.64×10-4, SMAD7). All previously unreported SNPs demand replication in additional samples. Reanalysis of existing GWAS datasets using model selection as tool to detect SNPs associated with a complex trait may present a promising resource to identify further genetic risk variants not only for colorectal cancer.
Collapse
|
28
|
Krupa R, Czarny P, Wigner P, Wozny J, Jablkowski M, Kordek R, Szemraj J, Sliwinski T. The Relationship Between Single-Nucleotide Polymorphisms, the Expression of DNA Damage Response Genes, and Hepatocellular Carcinoma in a Polish Population. DNA Cell Biol 2017; 36:693-708. [PMID: 28598207 DOI: 10.1089/dna.2017.3664] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanism of hepatocellular carcinoma (HCC) is related to DNA damage caused by oxidative stress products induced by hepatitis B virus (HBV) or C (HCV) infection and exposure to environmental pollutants. Single-nucleotide polymorphisms (SNPs) of DNA damage response (DDR) genes may influence individual susceptibility to environmental risk factors and affect DNA repair efficacy, which, in turn, can influence the risk of HCC. The study evaluates a panel of 15 SNPs in 11 DDR genes (XRCC1, XRCC3, XPD, MUTYH, LIG1, LIG3, hOGG1, PARP1, NFIL1, FEN1, and APEX1) in 65 HCC patients, 50 HBV- and 50 HCV-infected non-cancerous patients, and 50 healthy controls. It also estimates the mRNA expression of nine DDR genes in cancerous and adjacent healthy liver tissues. Two of the investigated polymorphisms (rs1052133 and rs13181) were associated with HCC risk. For all investigated genes, the level of mRNA was significantly lower in HCC cancer tissue than in non-cancerous liver tissue. Seven of the investigated polymorphisms were statistically related to gene expression in cancer tissues. The disruption of DDR genes may be responsible for hepatocellular transformation in HCV-infected patients.
Collapse
Affiliation(s)
- Renata Krupa
- 1 Department of Molecular Genetics, University of Lodz , Lodz, Poland
| | - Piotr Czarny
- 2 Department of Medical Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Paulina Wigner
- 1 Department of Molecular Genetics, University of Lodz , Lodz, Poland
| | - Joanna Wozny
- 3 Department of Infectious and Liver Diseases, Medical University of Lodz , Lodz, Poland
| | - Maciej Jablkowski
- 3 Department of Infectious and Liver Diseases, Medical University of Lodz , Lodz, Poland
| | - Radzislaw Kordek
- 4 Department of Pathology, Medical University of Lodz , Lodz, Poland
| | - Janusz Szemraj
- 2 Department of Medical Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Tomasz Sliwinski
- 1 Department of Molecular Genetics, University of Lodz , Lodz, Poland
| |
Collapse
|
29
|
Kathera C, Zhang J, Janardhan A, Sun H, Ali W, Zhou X, He L, Guo Z. Interacting partners of FEN1 and its role in the development of anticancer therapeutics. Oncotarget 2017; 8:27593-27602. [PMID: 28187440 PMCID: PMC5432360 DOI: 10.18632/oncotarget.15176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Protein-protein interaction (PPI) plays a key role in cellular communication, Protein-protein interaction connected with each other with hubs and nods involved in signaling pathways. These interactions used to develop network based biomarkers for early diagnosis of cancer. FEN1(Flap endonuclease 1) is a central component in cellular metabolism, over expression and decrease of FEN1 levels may cause cancer, these regulation changes of Flap endonuclease 1reported in many cancer cells, to consider this data may needs to develop a network based biomarker. The current review focused on types of PPI, based on nature, detection methods and its role in cancer. Interacting partners of Flap endonuclease 1 role in DNA replication repair and development of anticancer therapeutics based on Protein-protein interaction data.
Collapse
Affiliation(s)
- Chandrasekhar Kathera
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Avilala Janardhan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hongfang Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wajid Ali
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaolong Zhou
- The Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
30
|
Sang Y, Bo L, Gu H, Yang W, Chen Y. Flap endonuclease-1 rs174538 G>A polymorphisms are associated with the risk of esophageal cancer in a Chinese population. Thorac Cancer 2017; 8:192-196. [PMID: 28319330 PMCID: PMC5415465 DOI: 10.1111/1759-7714.12422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/01/2017] [Accepted: 01/07/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Esophageal cancer has a high mortality rate, particularly in Asia, and there are obvious racial differences in regard to incidence. The purpose of our study was to assess the genetic susceptibility of functional single nucleotide polymorphisms in flap endonuclease-1 (FEN1) in esophageal squamous cell carcinoma ESCC. METHODS Clinical blood samples of 629 ESCC cases and 686 control samples were collected. The ligation detection reaction method was used to determine FEN 1 rs174538 G>A genotypes. RESULTS A significantly decreased risk of ESCC was associated with FEN1 rs174538 GA genotypes among patients under 63 years old. CONCLUSIONS Our results suggest that functional polymorphism FEN1 rs174538 G>A might affect personal susceptibility to ESCC. This result provides a solid theoretical foundation for further clinical study using larger sample sizes.
Collapse
Affiliation(s)
- Yonghua Sang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiyong Gu
- Department of Cardiothoracic Surgery, Shanghai Chest Hospital, Shanghai, China.,Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wengtao Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Gastric Cancer Associated Genes Identified by an Integrative Analysis of Gene Expression Data. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7259097. [PMID: 28232943 PMCID: PMC5292384 DOI: 10.1155/2017/7259097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 01/13/2023]
Abstract
Gastric cancer is one of the most severe complex diseases with high morbidity and mortality in the world. The molecular mechanisms and risk factors for this disease are still not clear since the cancer heterogeneity caused by different genetic and environmental factors. With more and more expression data accumulated nowadays, we can perform integrative analysis for these data to understand the complexity of gastric cancer and to identify consensus players for the heterogeneous cancer. In the present work, we screened the published gene expression data and analyzed them with integrative tool, combined with pathway and gene ontology enrichment investigation. We identified several consensus differentially expressed genes and these genes were further confirmed with literature mining; at last, two genes, that is, immunoglobulin J chain and C-X-C motif chemokine ligand 17, were screened as novel gastric cancer associated genes. Experimental validation is proposed to further confirm this finding.
Collapse
|
32
|
Zhou L, Fu G, Wei J, Shi J, Pan W, Ren Y, Xiong X, Xia J, Shen Y, Li H, Yang M. The identification of two regulatory ESCC susceptibility genetic variants in the TERT-CLPTM1L loci. Oncotarget 2016; 7:5495-506. [PMID: 26716642 PMCID: PMC4868701 DOI: 10.18632/oncotarget.6747] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/07/2015] [Indexed: 01/25/2023] Open
Abstract
The chromosome 5p15.33 TERT-CLPTM1L region has been identified by genome-wide association studies as a susceptibility locus of multiple malignancies. However, the involvement of this locus in esophageal squamous cell carcinoma (ESCC) development is still largely unclear. We fine-mapped the TERT-CLPTM1L region through genotyping 15 haplotype-tagging single nucleotide polymorphisms (htSNPs) using a two stage case-control strategy. After analyzing 2098 ESCC patients and frequency-matched 2150 unaffected controls, we found that rs2853691, rs2736100 and rs451360 genetic polymorphisms are significantly associated with ESCC risk in Chinese (all P<0.05). Reporter gene assays indicated that the ESCC susceptibility SNP rs2736100 locating in a potential TERT intronic promoter has a genotype-specific effect on TERT expression. Similarly, the CLPTM1L rs451360 SNP also showed allelic impacts on gene expression. After measuring TERT and CLPTM1L expression in sixty-six pairs of esophageal cancer and normal tissues, we observed that the rs2736100 G risk allele carriers showed elevated oncogene TERT expression. Also, subjects with the rs451360 protective T allele had much lower oncogene CLPTM1L expression than those with G allele in tissue specimens. Results of these analyses underline the complexity of genetic regulation of telomere biology and further support the important role of telomerase in carcinogenesis. Our data also support the involvement of CLPTM1L in ESCC susceptibility.
Collapse
Affiliation(s)
- Liqing Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian, Jiangsu Province, China
| | - Guobin Fu
- Department of Oncology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Jinyu Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Juan Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenting Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yanli Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiangyu Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jianhong Xia
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian, Jiangsu Province, China
| | - Yue Shen
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian, Jiangsu Province, China
| | - Hongliang Li
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian, Jiangsu Province, China
| | - Ming Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
33
|
Pan W, Du J, Shi M, Jin G, Yang M. Short leukocyte telomere length, alone and in combination with smoking, contributes to increased risk of gastric cancer or esophageal squamous cell carcinoma. Carcinogenesis 2016; 38:12-18. [PMID: 27797826 DOI: 10.1093/carcin/bgw111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/03/2016] [Accepted: 10/14/2016] [Indexed: 01/19/2023] Open
Abstract
In humans, telomeres shorten along with division of somatic cells. Shortened telomere length might result in genomic instability and has been associated with several malignancies. However, the findings in different populations remain conflicting. Therefore, we assessed the association of telomere length in peripheral blood leukocytes with risk of gastric cancer (GC) or esophageal squamous cell carcinoma (ESCC) in a Chinese Han population. A total of 574 GC cases, 740 ESCC cases and 774 age- and sex-matched healthy controls were included in this analysis. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression. The GC or ESCC patients had significantly shorter relative telomere length (RTL) (median ± SD: GC: 1.20 ± 0.42; ESCC: 1.27 ± 0.48) than controls (1.41 ± 0.58). Four-fold increased GC risk (OR = 4.10, 95% CI = 2.78-6.05, P = 1.10 × 10-12) or 1.56-fold increased ESCC risk (95% CI = 1.12-2.18, P = 0.009) among subjects in the shortest quartile of telomere length was found compared with the highest quartile. We also observed a cumulative effect between short RTL and smoking in intensifying risk of GC (P = 4.50 × 10-9) or ESCC (P = 5.92 × 10-33). Moreover, there were cumulative effects between RTL, smoking and drinking in elevating risk of GC (Ptrend = 0.001) or ESCC (Ptrend = 1.57 × 10-32). Interestingly, RTL-related rs621559 and rs398652 genetic variants are significantly associated with GC risk. These results indicate that short RTL is involved in susceptibility to developing GC or ESCC, alone and in a gene-environment interaction manner. Short telomere length might be a potential molecular marker, in combination with lifestyle risk factors, to identify high-risk individuals.
Collapse
Affiliation(s)
- Wenting Pan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China and
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Meng Shi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China and
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China,
| |
Collapse
|
34
|
Rezaei M, Hashemi M, Sanaei S, Mashhadi MA, Hashemi SM, Bahari G, Taheri M. FEN1 -69G>A and +4150G>T polymorphisms and breast cancer risk. Biomed Rep 2016; 5:455-460. [PMID: 27699013 DOI: 10.3892/br.2016.738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023] Open
Abstract
Flap endonuclease 1 (FEN1), a DNA repair protein, is important in preventing carcinogenesis. Two functional germ line variants -69G>A (rs174538) and +4150G>T (rs4246215) in the FEN1 gene have been associated with risk of various types of cancer. The aim of the present study was to evaluate the possible impact of FEN1 polymorphisms on risk of breast cancer (BC) in a sample of Iranian subjects. The FEN1 -69G>A and +4150G>T polymorphisms were analyzed in a case-control study that included 266 BC patients and 225 healthy females. Polymerase chain reaction-restriction fragment length polymorphism analysis was used to genotype the variants. The findings demonstrated that the FEN1 -69G>A and +4150G>T polymorphisms were not associated with BC risk in co-dominant, dominant and recessive inheritance models. The findings indicated that GG/GT, GA/GG and GA/TT genotypes significantly decreased the risk of BC when compared with -69GG/+4150GG. Furthermore, haplotype analysis indicated that -69G/+4150T as well as -69A/+4150G significantly decreased the risk of BC compared with -69G/+4150G. Thus, these findings demonstrated that haplotypes of FEN1 -69G>A and +4150G>T polymorphisms decreased the risk of BC in an Iranian population. Further studies with larger sample sizes and different ethnicities are required to validate the present findings.
Collapse
Affiliation(s)
- Maryam Rezaei
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Sara Sanaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Mohammad Ali Mashhadi
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Seyed Mehdi Hashemi
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Mohsen Taheri
- Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| |
Collapse
|
35
|
Yang X, Yu D, Ren Y, Wei J, Pan W, Zhou C, Zhou L, Liu Y, Yang M. Integrative Functional Genomics Implicates EPB41 Dysregulation in Hepatocellular Carcinoma Risk. Am J Hum Genet 2016; 99:275-86. [PMID: 27453575 DOI: 10.1016/j.ajhg.2016.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/30/2016] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWASs) have provided many insights into cancer genetics. However, the molecular mechanisms of many susceptibility SNPs defined by GWASs in cancer heritability and in promoting cancer risk remain elusive. New research strategies, including functional evaluations, are warranted to systematically explore truly causal genetic variants. In this study, we developed an integrative functional genomics methodology to identify cancer susceptibility SNPs in transcription factor-binding sites across the whole genome. Employing integration of functional genomic data from c-Myc cistromics, 1000 Genomes, and the TRANSFAC matrix, we successfully annotated 12 SNPs present in the c-Myc cistrome with properties consistent with modulating c-Myc binding affinity in hepatocellular carcinoma (HCC). After genotyping these 12 SNPs in 1,806 HBV-related HCC case subjects and 1,708 control subjects, we identified a HCC susceptibility SNP, rs157224G>T, in Chinese populations (T allele: odds ratio = 1.64, 95% confidence interval = 1.32-2.02; p = 5.2 × 10(-6)). This polymorphism leads to HCC predisposition through modifying c-Myc-mediated transcriptional regulation of EPB41, with the risk rs157224T allele showing significantly decreased gene expression. Based on cell proliferation, wound healing, and transwell assays as well as the mouse xenograft model, we identify EPB41 as a HCC susceptibility gene in vitro and in vivo. Consistent with this notion, we note that EPB41 expression is significantly decreased in HCC tissue specimens, especially in portal vein metastasis or intrahepatic metastasis, compared to normal tissues. Our results highlight the involvement of regulatory genetic variants in HCC and provide pathogenic insights of this malignancy via a genome-wide approach.
Collapse
|
36
|
Schmit SL, Schumacher FR, Edlund CK, Conti DV, Ihenacho U, Wan P, Van Den Berg D, Casey G, Fortini BK, Lenz HJ, Tusié-Luna T, Aguilar-Salinas CA, Moreno-Macías H, Huerta-Chagoya A, Ordóñez-Sánchez ML, Rodríguez-Guillén R, Cruz-Bautista I, Rodríguez-Torres M, Muñóz-Hernández LL, Arellano-Campos O, Gómez D, Alvirde U, González-Villalpando C, González-Villalpando ME, Le Marchand L, Haiman CA, Figueiredo JC. Genome-wide association study of colorectal cancer in Hispanics. Carcinogenesis 2016; 37:547-556. [PMID: 27207650 PMCID: PMC4876992 DOI: 10.1093/carcin/bgw046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/13/2016] [Indexed: 01/01/2023] Open
Abstract
This manuscript describes the first large-scale genome-wide association study of colorectal cancer in Hispanics and Latinos. Our results demonstrate the broad replication of known susceptibility regions and the importance of fine-mapping in ethnic minority populations. Genome-wide association studies (GWAS) have identified 58 susceptibility alleles across 37 regions associated with the risk of colorectal cancer (CRC) with P < 5×10−8. Most studies have been conducted in non-Hispanic whites and East Asians; however, the generalizability of these findings and the potential for ethnic-specific risk variation in Hispanic and Latino (HL) individuals have been largely understudied. We describe the first GWAS of common genetic variation contributing to CRC risk in HL (1611 CRC cases and 4330 controls). We also examine known susceptibility alleles and implement imputation-based fine-mapping to identify potential ethnicity-specific association signals in known risk regions. We discovered 17 variants across 4 independent regions that merit further investigation due to suggestive CRC associations (P < 1×10−6) at 1p34.3 (rs7528276; Odds Ratio (OR) = 1.86 [95% confidence interval (CI): 1.47–2.36); P = 2.5×10−7], 2q23.3 (rs1367374; OR = 1.37 (95% CI: 1.21–1.55); P = 4.0×10−7), 14q24.2 (rs143046984; OR = 1.65 (95% CI: 1.36–2.01); P = 4.1×10−7) and 16q12.2 [rs142319636; OR = 1.69 (95% CI: 1.37–2.08); P=7.8×10−7]. Among the 57 previously published CRC susceptibility alleles with minor allele frequency ≥1%, 76.5% of SNPs had a consistent direction of effect and 19 (33.3%) were nominally statistically significant (P < 0.05). Further, rs185423955 and rs60892987 were identified as novel secondary susceptibility variants at 3q26.2 (P = 5.3×10–5) and 11q12.2 (P = 6.8×10−5), respectively. Our findings demonstrate the importance of fine mapping in HL. These results are informative for variant prioritization in functional studies and future risk prediction modeling in minority populations.
Collapse
Affiliation(s)
- Stephanie L Schmit
- Department of Preventive Medicine.,University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Fredrick R Schumacher
- Department of Preventive Medicine.,University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher K Edlund
- Department of Preventive Medicine.,University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - David V Conti
- Department of Preventive Medicine.,University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ugonna Ihenacho
- Department of Preventive Medicine.,University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Peggy Wan
- Department of Preventive Medicine.,University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Graham Casey
- Department of Preventive Medicine.,University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Barbara K Fortini
- Department of Biology, Claremont McKenna College, Claremont, CA 91711, USA
| | - Heinz-Josef Lenz
- Department of Preventive Medicine.,University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Teresa Tusié-Luna
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, 14000 México City, México.,Instituto de Investigaciones Biomédicas, UNAM. Unidad de Biología Molecular y Medicina Genómica, UNAM/INCMNSZ, Coyoacán, 04510 México City, México
| | - Carlos A Aguilar-Salinas
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, 14000 México City, México
| | | | - Alicia Huerta-Chagoya
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, 14000 México City, México.,Instituto de Investigaciones Biomédicas, UNAM. Unidad de Biología Molecular y Medicina Genómica, UNAM/INCMNSZ, Coyoacán, 04510 México City, México
| | | | | | | | | | | | - Olimpia Arellano-Campos
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, 14000 México City, México
| | - Donají Gómez
- Universidad Autónoma Metropolitana, Tlalpan 14387, México City, México
| | - Ulices Alvirde
- Universidad Autónoma Metropolitana, Tlalpan 14387, México City, México
| | - Clicerio González-Villalpando
- Unidad de Investigación en Diabetes, Instituto Nacional de Salud Pública, México City, México.,Centro de Estudios en Diabetes, 01120 México City, México and
| | | | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Christopher A Haiman
- Department of Preventive Medicine.,University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jane C Figueiredo
- Department of Preventive Medicine.,University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
37
|
Pan W, Zhou L, Ge M, Zhang B, Yang X, Xiong X, Fu G, Zhang J, Nie X, Li H, Tang X, Wei J, Shao M, Zheng J, Yuan Q, Tan W, Wu C, Yang M, Lin D. Whole exome sequencing identifies lncRNA GAS8-AS1 and LPAR4 as novel papillary thyroid carcinoma driver alternations. Hum Mol Genet 2016; 25:1875-84. [PMID: 26941397 DOI: 10.1093/hmg/ddw056] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. However, we know little of mutational spectrum in the Chinese population. Thus, here we report the identification of somatic mutations for Chinese PTC using 402 tumor-normal pairs (Discovery: 91 pairs via exome sequencing; validation: 311 pairs via Sanger sequencing). We observed three distinct mutational signatures, evidently different from the two mutational signatures among Caucasian PTCs. Ten significantly mutated genes were identified, most previously uncharacterized. Notably, we found that long non-coding RNA (lncRNA) GAS8-AS1 is the secondary most frequently altered gene and acts as a novel tumor suppressor in PTC. As a mutation hotspot, the c.713A>G/714T>C dinucleotide substitution was found among 89.1% patients with GAS8-AS1 mutations and associated with advanced PTC disease (P = 0.009). Interestingly, the wild-type lncRNA GAS8-AS1 (A713T714) showed consistently higher capability to inhibit cancer cell growth compared to the mutated lncRNA (G713C714). Further studies also elucidated the oncogene nature of the G protein-coupled receptor LPAR4 and its c.872T>G (p.Ile291Ser) mutation in PTC malignant transformation. The BRAF c.1799T>A (p.Val600Glu) substitution was present in 59.0% Chinese PTCs, more frequently observed in patients with lymph node metastasis (P = 1.6 × 10(-4)). Together our study defines a exome mutational spectrum of PTC in the Chinese population and highlights lncRNA GAS8-AS1 and LPAR4 as potential diagnostics and therapeutic targets.
Collapse
Affiliation(s)
- Wenting Pan
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqing Zhou
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian 223002, Jiangsu Province, China
| | - Minghua Ge
- Department of Head and Neck Surgery, Zhejiang Province Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| | - Bin Zhang
- Department of Head and Neck Surgical Oncology and
| | - Xinyu Yang
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiangyu Xiong
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guobin Fu
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Jian Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xilin Nie
- Department of Head and Neck Surgery, Zhejiang Province Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| | - Hongmin Li
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Xiaohu Tang
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinyu Wei
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingming Shao
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jian Zheng
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Qipeng Yuan
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Chen Wu
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China,
| | - Ming Yang
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China, Shandong Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| |
Collapse
|
38
|
Ge Y, Yan X, Jin Y, Yang X, Yu X, Zhou L, Han S, Yuan Q, Yang M. MiRNA-192 [corrected] and miRNA-204 Directly Suppress lncRNA HOTTIP and Interrupt GLS1-Mediated Glutaminolysis in Hepatocellular Carcinoma. PLoS Genet 2015; 11:e1005726. [PMID: 26710269 PMCID: PMC4692503 DOI: 10.1371/journal.pgen.1005726] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022] Open
Abstract
Accumulated evidence demonstrated that long non-coding RNAs (lncRNAs) play a pivotal role in tumorigenesis. However, it is still largely unknown how these lncRNAs were regulated by small ncRNAs, such as microRNAs (miRNAs), at the post-transcriptional level. We here use lncRNA HOTTIP as an example to study how miRNAs impact lncRNAs expression and its biological significance in hepatocellular carcinoma (HCC). LncRNA HOTTIP is a vital oncogene in HCC, one of the deadliest cancers worldwide. In the current study, we identified miR-192 and miR-204 as two microRNAs (miRNAs) suppressing HOTTIP expression via the Argonaute 2 (AGO2)-mediated RNA interference (RNAi) pathway in HCC. Interaction between miR-192 or miR-204 and HOTTIP were further confirmed using dual luciferase reporter gene assays. Consistent with this notion, a significant negative correlation between these miRNAs and HOTTIP exists in HCC tissue specimens. Interestingly, the dysregulation of the three ncRNAs was associated with overall survival of HCC patients. In addition, the posttranscriptional silencing of HOTTIP by miR-192, miR-204 or HOTTIP siRNAs could significantly suppress viability of HCC cells. On the contrary, antagonizing endogenous miR-192 or miR-204 led to increased HOTTIP expression and stimulated cell proliferation. In vivo mouse xenograft model also support the tumor suppressor role of both miRNAs. Besides the known targets (multiple 5’ end HOX A genes, i.e. HOXA13), glutaminase (GLS1) was identified as a potential downstream target of the miR-192/-204-HOTTIP axis in HCC. Considering glutaminolysis as a crucial hallmark of cancer cells and significantly inhibited cell viability after silencingGLS1, we speculate that the miR-192/-204-HOTTIP axis may interrupt HCC glutaminolysis through GLS1 inhibition. These results elucidate that the miR-192/-204-HOTTIP axis might be an important molecular pathway during hepatic cell tumorigenesis. Our data in clinical HCC samples highlight miR-192, miR-204 and HOTTIP with prognostic and potentially therapeutic implications. Accumulated evidence demonstrated that long non-coding RNAs (lncRNAs) play a pivotal role in tumorigenesis. Here, we for the first time demonstrated how microRNAs (miRNAs) impact onco-lncRNA HOTTIP expression and its biological significance in hepatocellular carcinoma (HCC). We identified miR-192 and miR-204 as two miRNAs suppressing HOTTIP expression via the Argonaute 2-mediated RNA interference pathway. The dysregulation of the three ncRNAs was associated with overall survival of HCC patients. The posttranscriptional silencing of HOTTIP by miR-192, miR-204 or HOTTIP siRNAs could significantly suppress viability of HCC cells in vitro and in vivo. Besides one of the known target gene HOXA13, glutaminase was identified as a potential downstream target of the miR-192/-204-HOTTIP axis in HCC. Our data will have high impact on our understanding of how miRNAs are involved in the fine-regulation of lncRNAs and the potential translation in clinic.
Collapse
Affiliation(s)
- Yunxia Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaodan Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinyu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiang Yu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Liqing Zhou
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian, Jiangsu Province, China
| | - Sichong Han
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ming Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- * E-mail:
| |
Collapse
|
39
|
Jiao X, Wu Y, Zhou L, He J, Yang C, Zhang P, Hu R, Luo C, Du J, Fu J, Shi J, He R, Li D, Jun W. Variants and haplotypes in Flap endonuclease 1 and risk of gallbladder cancer and gallstones: a population-based study in China. Sci Rep 2015; 5:18160. [PMID: 26668074 PMCID: PMC4678911 DOI: 10.1038/srep18160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
The role of FEN1 genetic variants on gallstone and gallbladder cancer susceptibility is unknown. FEN1 SNPs were genotyped using the polymerase chain reaction-restriction fragment length polymorphism method in blood samples from 341 gallbladder cancer patients and 339 healthy controls. The distribution of FEN1-69G > A genotypes among controls (AA, 20.6%; GA, 47.2% and GG 32.2%) was significantly different from that among gallbladder cancer cases (AA, 11.1%; GA, 48.1% and GG, 40.8%), significantly increased association with gallbladder cancer was observed for subjects with both the FEN1-69G > A GA (OR = 1.73, 95% CI = 1.01-2.63) and the FEN1-69G > A GG (OR = 2.29, 95% CI = 1.31-3.9). The distribution of FEN1 -4150T genotypes among controls (TT, 21.8%;GT, 49.3% and GG 28.9%) was significantly different from that among gallbladder cancer cases (TT, 12.9%; GT, 48.4% and GG 38.7%), significantly increased association with gallbladder cancer was observed for subjects with both the FEN1-4150T GT(OR = 1.93, 95% CI = 1.04-2.91) and the FEN1-4150T GG(OR = 2.56, 95% CI = 1.37-5.39). A significant trend towards increased association with gallbladder cancer was observed with potentially higher-risk FEN1-69G > A genotypes (P < 0.001, χ2 trend test) and FEN14150G > T (P < 0.001, χ2 trend test) in gallstone presence but not in gallstone absence (P = 0.81, P = 0.89, respectively). In conclusion, this study revealed firstly that FEN1 polymorphisms and haplotypes are associated with gallbladder cancer risk.
Collapse
Affiliation(s)
- Xingyuan Jiao
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
- Department of General Surgery and Transplantation Surgery, University Hospital Duisburg-Essen, D-45122, Germany
| | - Ying Wu
- Department of Biostatistics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Liansuo Zhou
- Department of General Surgery, The First Affiliated Hospital, Xian Medical College, Xian 710061, China
| | - Jinyun He
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chonghua Yang
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Peng Zhang
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ronglin Hu
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Canqiao Luo
- Deparment of Pathology, Sun Yat-Sen University School of Medicine, Guangzhou 510080, China
| | - Jun Du
- Department of Molecular Biology, Sun Yat-Sen University School of Pharmacy, Guangzhou 510080, China
| | - Jian Fu
- Department of General Surgery and Transplantation Surgery, University Hospital Duisburg-Essen, D-45122, Germany
| | - Jinsen Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xian Jiaotong University, Xian 710061, China
| | - Rui He
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dongming Li
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wang Jun
- Department of Anatomy, Shenzhen University School of Medicine, Shenzhen 518060, China
| |
Collapse
|
40
|
Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells. FEBS Lett 2015; 589:3989-97. [DOI: 10.1016/j.febslet.2015.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023]
|
41
|
Xie C, Wang K, Chen D. Flap endonuclease 1 silencing is associated with increasing the cisplatin sensitivity of SGC‑7901 gastric cancer cells. Mol Med Rep 2015; 13:386-92. [PMID: 26718738 DOI: 10.3892/mmr.2015.4567] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 09/24/2015] [Indexed: 11/05/2022] Open
Abstract
Flap endonuclease 1 (FEN1), which is key in DNA replication and repair, has been demonstrated to be intimately involved in the development and progression of cancer. Our previous study determined that the downregulation of FEN1 can suppress the proliferation of, and induce apoptosis in, gastric cancer SGC‑7901 cells. In addition, several FEN1 inhibitors have been identified to increase sensitisation to DNA injury agents. These results may provide a promising treatment method to enhance the traditional chemotherapeutics used for the treatment of gastric cancer. Thus, the aim of the present study was to determine the role of FEN1 in the chemosensitivity of SGC‑7901 cells. The protein expression levels of FEN1 in cisplatin (CDDP)‑treated SGC‑7901 cells were detected using western blot analysis. FEN1 was silenced via specific FEN1‑targeted small interfering RNAs (siRNA). The survival and apoptotic rates of the SGC‑7901 cells were assessed using an MTT assay and flow cytometry, respectively. Relevant apoptotic factors were detected using western blotting. The results showed that the expression of FEN1 was significantly induced by CDDP in a dose‑ and time‑dependent manner. The targeting of FEN1 in SGC‑7901 cells, in combination with CDDP treatment, significantly inhibited their proliferation and effectively increased their apoptotic rate. In addition, in the cells targeted with FEN1‑siRNA and exposed to CDDP, the levels of Bcl‑2‑associated X protein were significantly increased, whereas the expression levels of Bcl‑2 and Bcl‑extra large were effectively decreased, compared with the cells exposed to negative control‑siRNA and CDDP. These results suggest a potential chemotherapeutic target, which exhibits enhanced sensitivity to CDDP following FEN1 silencing in SGC‑7901 cells via decreased survival and increased apoptosis.
Collapse
Affiliation(s)
- Chunhong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kejia Wang
- Department of Gastroenterology, Banan People's Hospital of Chongqing, Chongqing 400016, P.R. China
| | - Daorong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
42
|
Xu T, Brandmaier S, Messias AC, Herder C, Draisma HHM, Demirkan A, Yu Z, Ried JS, Haller T, Heier M, Campillos M, Fobo G, Stark R, Holzapfel C, Adam J, Chi S, Rotter M, Panni T, Quante AS, He Y, Prehn C, Roemisch-Margl W, Kastenmüller G, Willemsen G, Pool R, Kasa K, van Dijk KW, Hankemeier T, Meisinger C, Thorand B, Ruepp A, Hrabé de Angelis M, Li Y, Wichmann HE, Stratmann B, Strauch K, Metspalu A, Gieger C, Suhre K, Adamski J, Illig T, Rathmann W, Roden M, Peters A, van Duijn CM, Boomsma DI, Meitinger T, Wang-Sattler R. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diabetes Care 2015; 38:1858-67. [PMID: 26251408 DOI: 10.2337/dc15-0658] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/24/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Metformin is used as a first-line oral treatment for type 2 diabetes (T2D). However, the underlying mechanism is not fully understood. Here, we aimed to comprehensively investigate the pleiotropic effects of metformin. RESEARCH DESIGN AND METHODS We analyzed both metabolomic and genomic data of the population-based KORA cohort. To evaluate the effect of metformin treatment on metabolite concentrations, we quantified 131 metabolites in fasting serum samples and used multivariable linear regression models in three independent cross-sectional studies (n = 151 patients with T2D treated with metformin [mt-T2D]). Additionally, we used linear mixed-effect models to study the longitudinal KORA samples (n = 912) and performed mediation analyses to investigate the effects of metformin intake on blood lipid profiles. We combined genotyping data with the identified metformin-associated metabolites in KORA individuals (n = 1,809) and explored the underlying pathways. RESULTS We found significantly lower (P < 5.0E-06) concentrations of three metabolites (acyl-alkyl phosphatidylcholines [PCs]) when comparing mt-T2D with four control groups who were not using glucose-lowering oral medication. These findings were controlled for conventional risk factors of T2D and replicated in two independent studies. Furthermore, we observed that the levels of these metabolites decreased significantly in patients after they started metformin treatment during 7 years' follow-up. The reduction of these metabolites was also associated with a lowered blood level of LDL cholesterol (LDL-C). Variations of these three metabolites were significantly associated with 17 genes (including FADS1 and FADS2) and controlled by AMPK, a metformin target. CONCLUSIONS Our results indicate that metformin intake activates AMPK and consequently suppresses FADS, which leads to reduced levels of the three acyl-alkyl PCs and LDL-C. Our findings suggest potential beneficial effects of metformin in the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Tao Xu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefan Brandmaier
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ana C Messias
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany German Center for Diabetes Research, Düsseldorf, Germany
| | - Harmen H M Draisma
- Department of Biological Psychology, Faculty of Psychology and Education, VU University Amsterdam, Amsterdam, the Netherlands EMGO Institute for Health and Care Research, Amsterdam, the Netherlands Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Zhonghao Yu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Janina S Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Margit Heier
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Monica Campillos
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gisela Fobo
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Renee Stark
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christina Holzapfel
- Else Kroener-Fresenius-Center for Nutritional Medicine, Faculty of Medicine, Technische Universität München, Munich, Germany
| | - Jonathan Adam
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Shen Chi
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Rotter
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tommaso Panni
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anne S Quante
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ying He
- Shanghai Center for Bioinformation Technology, Shanghai, China Bioinformatics Center, Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cornelia Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Werner Roemisch-Margl
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gonneke Willemsen
- Department of Biological Psychology, Faculty of Psychology and Education, VU University Amsterdam, Amsterdam, the Netherlands EMGO Institute for Health and Care Research, Amsterdam, the Netherlands
| | - René Pool
- Department of Biological Psychology, Faculty of Psychology and Education, VU University Amsterdam, Amsterdam, the Netherlands EMGO Institute for Health and Care Research, Amsterdam, the Netherlands
| | - Katarina Kasa
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Hankemeier
- Faculty of Science, Leiden Academic Centre for Drug Research, Analytical BioSciences, the Netherlands
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Ruepp
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany German Center for Diabetes Research, Neuherberg, Germany
| | - Yixue Li
- Shanghai Center for Bioinformation Technology, Shanghai, China Bioinformatics Center, Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - H-Erich Wichmann
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany Institute of Medical Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Bernd Stratmann
- Heart and Diabetes Center NRW, Diabetes Center, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany German Center for Diabetes Research, Neuherberg, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany German Center for Diabetes Research, Düsseldorf, Germany Department of Endocrinology and Diabetology, Medical Faculty, Düsseldorf, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany German Center for Diabetes Research, Neuherberg, Germany Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Cornelia M van Duijn
- Neuroscience Campus Amsterdam, Amsterdam, the Netherlands Center for Medical Systems Biology, Leiden, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Faculty of Psychology and Education, VU University Amsterdam, Amsterdam, the Netherlands EMGO Institute for Health and Care Research, Amsterdam, the Netherlands
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
43
|
Yang X, Gao F, Ma F, Ren Y, Chen H, Liang X, Han S, Xiong X, Pan W, Zhou C, Zhou L, Yang M. Association of the functional BCL-2 rs2279115 genetic variant and small cell lung cancer. Tumour Biol 2015; 37:1693-8. [PMID: 26311051 DOI: 10.1007/s13277-015-3934-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/17/2015] [Indexed: 01/22/2023] Open
Abstract
As a well-known oncogene, B cell lymphoma-2 (BCL-2) can promote cancer cell survival through preventing their apoptosis. Several functional BCL-2 single nucleotide polymorphisms (SNPs), such as rs2279115, rs1801018, and rs1564483, have been identified and might contribute to cancer susceptibility. However, the involvement of these SNPs in small cell lung cancer (SCLC) was still unclear. As a result, we investigated associations between these three genetic variants and SCLC risk in a case-control design. Genotypes were determined in two independent case-control sets consisted of 520 SCLC patients and 1040 controls from two medical centers. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated utilizing unconditional logistic regression. We found that only BCL-2 rs2279115 genetic variant significantly contributed to decreased SCLC risk in Chinese Han populations, with the rs2279115 A allele as the protective allele. Stratified analyses of association between BCL2 rs2279115 SNP and SCLC risk indicated that the functional polymorphism was only significantly associated with decreased risk of the limited stage SCLC but not the extensive stage disease. Our results indicate that the BCL-2 rs2279115 genetic variant was associated with SCLC risk in Chinese populations and support the hypothesis that SNPs in regulatory regions of oncogenes might contribute to cancer susceptibility.
Collapse
Affiliation(s)
- Xinyu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, P. O. Box 53, Beijing, 100029, China
| | - Feng Gao
- Health Division of Guard Bureau, General Staff Department of Chinese PLA, Beijing, China
| | - Fei Ma
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanli Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, P. O. Box 53, Beijing, 100029, China
| | - Hongwei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, P. O. Box 53, Beijing, 100029, China
| | - Xue Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, P. O. Box 53, Beijing, 100029, China
| | - Sichong Han
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, P. O. Box 53, Beijing, 100029, China
| | - Xiangyu Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, P. O. Box 53, Beijing, 100029, China
| | - Wenting Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, P. O. Box 53, Beijing, 100029, China
| | - Changchun Zhou
- Clinical Laboratory, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Liqing Zhou
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian, Jiangsu Province, China
| | - Ming Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, P. O. Box 53, Beijing, 100029, China.
| |
Collapse
|
44
|
Ren H, Ma H, Ke Y, Ma X, Xu D, Lin S, Wang X, Dai ZJ. Flap endonuclease 1 polymorphisms (rs174538 and rs4246215) contribute to an increased cancer risk: Evidence from a meta-analysis. Mol Clin Oncol 2015; 3:1347-1352. [PMID: 26807246 DOI: 10.3892/mco.2015.617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/26/2015] [Indexed: 11/05/2022] Open
Abstract
Flap endonuclease-1 (FEN1) is a key factor during the maintenance of genomic stability and protection against tumorigenesis. Since the identification of functional polymorphisms of FEN1 (rs174538 and rs4246215), numerous studies have evaluated the association between the two single-nucleotide polymorphisms and cancer risk. To derive a more precise estimation, a meta-analysis was performed on the association between the FEN1 polymorphisms (rs174538 and rs4246215) and cancer risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to estimate the strength of the associations. Thirteen case-control studies, including 5,108 cases and 6,382 case-free controls, were identified. For rs174538, individuals with the GG or GA genotype had an increased risk of cancer when compared to the -69AA genotype (AA vs. GG: OR, 1.85; 95% CI, 1.65-2.08; P<0.00001; AA vs. GA: OR, 1.43; 95% CI, 1.27-1.60; P<0.00001; AA vs. GG+GA: OR, 1.28; 95% CI, 1.16-1.42; P<0.00001). For rs4246215, similar results were identified, as the GG or GT genotype was significantly associated with the increased cancer risk when compared to TT (TT vs. GG: OR, 1.71; 95% CI, 1.52-1.92; P<0.00001; TT vs. GT: OR, 1.34; 95% CI, 1.20-1.50; P<0.00001; TT vs. GG+GT: OR, 1.50; 95% CI, 1.35-1.67; P<0.00001). The present meta-analysis indicated that FEN1 rs174538 and rs4246215 polymorphisms may contribute to an increased risk of cancer.
Collapse
Affiliation(s)
- Hongtao Ren
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongbing Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yue Ke
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Dan Xu
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710028, P.R. China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xijing Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhi-Jun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710028, P.R. China
| |
Collapse
|
45
|
Pan W, Yang J, Wei J, Chen H, Ge Y, Zhang J, Wang Z, Zhou C, Yuan Q, Zhou L, Yang M. Functional BCL-2 regulatory genetic variants contribute to susceptibility of esophageal squamous cell carcinoma. Sci Rep 2015; 5:11833. [PMID: 26132559 PMCID: PMC4487241 DOI: 10.1038/srep11833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
B-cell lymphoma-2 (BCL-2) prevents apoptosis and its overexpression could promote cancer cell survival. Multiple functional BCL-2 genetic polymorphisms, such as rs2279115, rs1801018 and rs1564483, have been identified previously and might be involved in cancer development through deregulating BCL-2 expression. Therefore, we examined associations between these three polymorphisms and esophageal squamous cell carcinoma (ESCC) susceptibility as well as its biological function in vivo. Genotypes were determined in two independent case-control sets consisted of 1588 ESCC patients and 1600 controls from two regions of China. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression. The impact of the rs2279115 polymorphism on BCL-2 expression was detected using esophagus tissues. Our results demonstrated that the BCL-2 rs2279115 AA genotype was significantly associated with decreased ESCC risk compared with the CC genotype (OR = 0.72, 95% CI = 0.57–0.90, P = 0.005), especially in nonsmokers (OR = 0.42, 95% CI = 0.29–0.59, P = 0.001) or nondrinkers (OR = 0.44, 95% CI = 0.32–0.62, P = 0.002). Genotype-phenotype correlation studies demonstrated that subjects with the rs2279115 CA and AA genotypes had a statistically significant decrease of BCL-2 mRNA expression compared to the CC genotype in both normal and cancerous esophagus tissues. Our results indicate that the BCL-2 rs2279115 polymorphism contributes to ESCC susceptibility in Chinese populations.
Collapse
Affiliation(s)
- Wenting Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jinyun Yang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Jinyu Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Hongwei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yunxia Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jingfeng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhiqiong Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Changchun Zhou
- Clinical Laboratory, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Liqing Zhou
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian, Jiangsu Province, China
| | - Ming Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
46
|
Pan W, Liu L, Wei J, Ge Y, Zhang J, Chen H, Zhou L, Yuan Q, Zhou C, Yang M. A functional lncRNA HOTAIR genetic variant contributes to gastric cancer susceptibility. Mol Carcinog 2015; 55:90-6. [PMID: 25640751 DOI: 10.1002/mc.22261] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
Long noncoding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) acts as an oncogene in gastric cancer development. HOTAIR could induce genome-wide retargeting of polycomb-repressive complex 2, trimethylates histone H3 lysine-27 (H3K27me3) and deregulation of multiple downstream genes. Additionally, as the ceRNA of miR-331-3p, HOTAIR may modulate HER2 deregulation in gastric cancer cells. We hypothesized that the functional single nucleotide polymorphisms (SNP) in HOTAIR may affect HOTAIR expression and/or its function and, thus, gastric cancer risk. We examined the association between three haplotype-tagging SNPs (htSNP) across the whole HOTAIR locus and gastric cancer risk as well as the functional relevance of a gastric cancer susceptibility SNP rs920778. Genotypes were determined in two independent hospital-based case-control sets that consisted of 800 gastric cancer patients and 1600 controls. The allele-specific regulation on HOTAIR expression by the rs920778 SNP was examined in vitro and in vivo. We found that the HOTAIR rs920778 TT carriers had a 1.66- and 1.87-fold increased gastric cancer risk in Jinan and Huaian populations compared with the CC carriers (P = 4.2 × 10(-4) and 6.5 × 10(-5)). During inspecting functional relevance of the rs920778 SNP, we observed an allelic regulation of rs920778 on HOTAIR expression in both gastric cancer cell lines and tissue samples, with higher HOTAIR expression among T allele carriers. These findings elucidate that functional genetic variants influencing lncRNA expression may explain a portion of gastric cancer genetic basis.
Collapse
Affiliation(s)
- Wenting Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lisheng Liu
- Clinical Laboratory, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Jinyu Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yunxia Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jingfeng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Hongwei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Liqing Zhou
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian, Jiangsu Province, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Changchun Zhou
- Clinical Laboratory, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Ming Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
47
|
Wang X, Li M, Wang Z, Han S, Tang X, Ge Y, Zhou L, Zhou C, Yuan Q, Yang M. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J Biol Chem 2014; 290:3925-35. [PMID: 25538231 DOI: 10.1074/jbc.m114.596866] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MALAT1, a highly conserved long noncoding RNA, is deregulated in several types of cancers. However, its role in esophageal squamous cell carcinoma (ESCC) and its posttranscriptional regulation remain poorly understood. In this study we provide first evidences that a posttranscriptional regulation mechanism of MALAT1 by miR-101 and miR-217 exists in ESCC cells. This posttranscriptional silencing of MALAT1 could significantly suppress the proliferation of ESCC cells through the arrest of G2/M cell cycle, which may be due to MALAT1-mediated up-regulation of p21 and p27 expression and the inhibition of B-MYB expression. Moreover, we also found the abilities of migration and invasion of ESCC cells were inhibited after overexpression of miR-101, miR-217, or MALAT1 siRNA. This might be attributed to the deregulation of downstream genes of MALAT1, such as MIA2, HNF4G, ROBO1, CCT4, and CTHRC1. A significant negative correlation exists between miR-101 or miR-217 and MALAT1 in 42 pairs of ESCC tissue samples and adjacent normal tissues. Mice xenograft data also support the tumor suppressor role of both miRNAs in ESCCs.
Collapse
Affiliation(s)
- Xinyu Wang
- From the State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Li
- From the State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqiong Wang
- From the State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sichong Han
- From the State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohu Tang
- From the State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunxia Ge
- From the State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqing Zhou
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian 223002, Jiangsu Province, China, and
| | - Changchun Zhou
- Clinical Laboratory, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Qipeng Yuan
- From the State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Yang
- From the State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China,
| |
Collapse
|
48
|
A functional TNFAIP2 3'-UTR rs8126 genetic polymorphism contributes to risk of esophageal squamous cell carcinoma. PLoS One 2014; 9:e109318. [PMID: 25383966 PMCID: PMC4226436 DOI: 10.1371/journal.pone.0109318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/30/2014] [Indexed: 11/24/2022] Open
Abstract
Background Accumulated evidences demonstrated that single nucleotide polymorphisms (SNPs) in mRNA 3'-untranslated region (3'-UTR) may impact microRNAs (miRNAs)-mediated expression regulation of oncogenes and tumor suppressors. There is a TNFAIP2 3'-UTR rs8126 T>C genetic variant which has been proved to be associated with head and neck cancer susceptibility. This SNP could disturb binding of miR-184 with TNFAIP2 mRNA and influence TNFAIP2 regulation. However, it is still unclear how this polymorphism is involved in development of esophageal squamous cell carcinoma (ESCC). Therefore, we hypothesized that the functional TNFAIP2 rs8126 SNP may affect TNFAIP2 expression and, thus, ESCC risk. Methods We investigated the association between the TNFAIP2 rs8126 variant and ESCC risk as well as the functional relevance on TNFAIP2 expression in vivo. Genotypes were determined in a case-control set consisted of 588 ESCC patients and 600 controls. The allele-specific regulation on TNFAIP2 expression by the rs8126 SNP was examined in normal and cancerous tissue specimens of esophagus. Results We found that individuals carrying the rs8126 CC or CT genotype had an OR of 1.89 (95%CI = 1.23–2.85, P = 0.003) or 1.38 (95%CI = 1.05–1.73, P = 0.017) for developing ESCC in Chinese compared with individual carrying the TT genotype. Carriers of the rs8126 CC and CT genotypes had significantly lower TNFAIP2 mRNA levels than those with the TT genotypes in normal esophagus tissues (P<0.05). Conclusions Our data demonstrate that functional TNFAIP2 rs8126 genetic variant is a ESCC susceptibility SNP. These results support the hypothesis that genetic variants interrupting miRNA-mediated gene regulation might be important genetic modifiers of cancer risk.
Collapse
|
49
|
Pan W, Cheng G, Xing H, Shi J, Lu C, Wei J, Li L, Zhou C, Yuan Q, Zhou L, Yang M. Leukocyte telomere length-related rs621559 and rs398652 genetic variants influence risk of HBV-related hepatocellular carcinoma. PLoS One 2014; 9:e110863. [PMID: 25365256 PMCID: PMC4218833 DOI: 10.1371/journal.pone.0110863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/19/2014] [Indexed: 01/08/2023] Open
Abstract
Recent genome-wide association studies (GWAS) have identified eleven leukocyte telomere length (LTL)-related single nucleotide polymorphisms (SNPs). Since LTL has been associated with risk of many malignancies, LTL-related SNPs may contribute to cancer susceptibility. To test this hypothesis in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), we genotyped these eleven LTL-related SNPs in a case-control set including 1186 HBV-related HCC cases, 508 chronic HBV carriers and 1308 healthy controls at the discovery stage. The associations of HCC risk with these SNPs were further confirmed in an independent case-control set. We found that 1p34.2 rs621559 and 14q21 rs398652 were significantly associated with HBV-related HCC risk (both P<0.005 after Bonferroni corrections). There was no significant difference of either rs621559 or rs398652 genotypes between chronic HBV carriers and healthy controls, demonstrating that the association was not due to predisposition to HBV infection. In the pooled analyses (1806 HBV-related HCC cases and 1954 controls), we observed a decreased HCC risk, 0.72-times, associated with the 1p34.2 rs621559 AA genotype compared to the GG genotype (P = 1.6×10−6). Additionally, there was an increased HCC risk, 1.27-fold, associated with the rs398652 GG genotype (P = 3.3×10−6). A statistical joint effect between the rs621559 GG and rs398652 GG genotypes may exist in elevating risk of HBV-related HCC. We show, for the first time, that rs398652 and rs621559 might be marker genetic variants for risk of HBV-related HCC in the Chinese population.
Collapse
Affiliation(s)
- Wenting Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Guangxia Cheng
- Clinical Laboratory, Jinan Infectious Disease Hospital, Shandong University, Jinan, Shandong Province, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Juan Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jinyu Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lichao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Changchun Zhou
- Clinical Laboratory, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Liqing Zhou
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian, Jiangsu Province, China
- * E-mail: (MY); (LZ)
| | - Ming Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- * E-mail: (MY); (LZ)
| |
Collapse
|
50
|
Abdel-Fatah TMA, Russell R, Albarakati N, Maloney DJ, Dorjsuren D, Rueda OM, Moseley P, Mohan V, Sun H, Abbotts R, Mukherjee A, Agarwal D, Illuzzi JL, Jadhav A, Simeonov A, Ball G, Chan S, Caldas C, Ellis IO, Wilson DM, Madhusudan S. Genomic and protein expression analysis reveals flap endonuclease 1 (FEN1) as a key biomarker in breast and ovarian cancer. Mol Oncol 2014; 8:1326-38. [PMID: 24880630 PMCID: PMC4690463 DOI: 10.1016/j.molonc.2014.04.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 12/27/2022] Open
Abstract
FEN1 has key roles in Okazaki fragment maturation during replication, long patch base excision repair, rescue of stalled replication forks, maintenance of telomere stability and apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA expression in multiple cohorts of breast cancer [training set (128), test set (249), external validation (1952)]. FEN1 protein expression was evaluated in 568 oestrogen receptor (ER) negative breast cancers, 894 ER positive breast cancers and 156 ovarian epithelial cancers. FEN1 mRNA overexpression was highly significantly associated with high grade (p = 4.89 × 10(-57)), high mitotic index (p = 5.25 × 10(-28)), pleomorphism (p = 6.31 × 10(-19)), ER negative (p = 9.02 × 10(-35)), PR negative (p = 9.24 × 10(-24)), triple negative phenotype (p = 6.67 × 10(-21)), PAM50.Her2 (p = 5.19 × 10(-13)), PAM50. Basal (p = 2.7 × 10(-41)), PAM50.LumB (p = 1.56 × 10(-26)), integrative molecular cluster 1 (intClust.1) (p = 7.47 × 10(-12)), intClust.5 (p = 4.05 × 10(-12)) and intClust. 10 (p = 7.59 × 10(-38)) breast cancers. FEN1 mRNA overexpression is associated with poor breast cancer specific survival in univariate (p = 4.4 × 10(-16)) and multivariate analysis (p = 9.19 × 10(-7)). At the protein level, in ER positive tumours, FEN1 overexpression remains significantly linked to high grade, high mitotic index and pleomorphism (ps < 0.01). In ER negative tumours, high FEN1 is significantly associated with pleomorphism, tumour type, lymphovascular invasion, triple negative phenotype, EGFR and HER2 expression (ps < 0.05). In ER positive as well as in ER negative tumours, FEN1 protein overexpression is associated with poor survival in univariate and multivariate analysis (ps < 0.01). In ovarian epithelial cancers, similarly, FEN1 overexpression is associated with high grade, high stage and poor survival (ps < 0.05). We conclude that FEN1 is a promising biomarker in breast and ovarian epithelial cancer.
Collapse
Affiliation(s)
| | - Roslin Russell
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Nada Albarakati
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Dorjbal Dorjsuren
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Oscar M Rueda
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Paul Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Vivek Mohan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Hongmao Sun
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Rachel Abbotts
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Abhik Mukherjee
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Jennifer L Illuzzi
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Stephen Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Carlos Caldas
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ian O Ellis
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - David M Wilson
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK; Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK.
| |
Collapse
|