1
|
Li Y, Liu X, Li Y, Wang J, Zhang M, Xue W, Zhang M. USP19 exerts a tumor-promoting role in diffuse large B cell lymphoma through stabilizing PARK7. FEBS J 2024; 291:4757-4774. [PMID: 39240655 DOI: 10.1111/febs.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2023] [Revised: 03/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and is associated with a poor prognosis. Data from the Gene Expression Profiling Interactive Analysis (GEPIA) database revealed dysregulated expression of several ubiquitin-specific proteases (USPs) in DLBCL tissues (DLBCL vs. non-DLBCL = 47 vs. 337), including USP19 (log2fold change = 1.17, P < 0.05). USP19 is closely linked to tumorigenesis, but its role in DLBCL progression remains largely unknown. Here, we investigated the role of USP19 in DLBCL development. Genetic manipulation of USP19 using adenovirus-based vectors was performed in two DLBCL cell lines, SUDHL4 and DB cells. The results showed that USP19 knockdown suppressed the proliferation, anchorage-independent growth and xenograft tumor formation of DLBCL cells and arrested the cell cycle at the G1 stage. In parallel, DLBCL cells overexpressing USP19 acquired a more malignant phenotype. Next, to explore USP19 interactors, we performed co-immunoprecipitation/liquid chromatography-mass spectrometry and identified potential interacting proteins. Among them, Parkinson disease protein 7 (PARK7), a member of the peptidase C56 family known to be involved in carcinogenesis, was further validated to bind with and be stabilized by USP19. Additionally, we found that USP19 induced PARK7 deubiquitylation in both DLBCL cell lines, and PARK7 acted as a downstream effector of USP19 in regulating the growth of DLBCL cells. Collectively, USP19 exerts a tumor-promoting role in DLBCL through interacting with and stabilizing PARK7.
Collapse
Affiliation(s)
- Yaqing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Xiyang Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Yulai Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Jieting Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mengqian Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Weili Xue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| |
Collapse
|
2
|
Ma LN, Wu LN, Liu SW, Zhang X, Luo X, Nawaz S, Ma ZM, Ding XC. miR-199a/b-3p inhibits HCC cell proliferation and invasion through a novel compensatory signaling pathway DJ-1\Ras\PI3K/AKT. Sci Rep 2024; 14:224. [PMID: 38168113 PMCID: PMC10762019 DOI: 10.1038/s41598-023-48760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Several studies have reported the effects of DJ-1 gene and miR-199a/b-3p on HCC development. However, whether miR-199a/b-3p regulates HCC progression through a novel compensatory signaling pathway involving DJ-1, Ras, and PI3K/AKT remains unknown. We used (TCGA, HPA, miRWalk and Target scan) databases, cancer and para-tissue HCC patients, dual-luciferase reporter gene analysis, proteomic imprinting, qPCR, cell proliferation, scratch, transport, and flow cytometry to detect the molecular mechanism of DJ-1 and miR-199a/b-3p co-expression in HCC cell lines. Bioinformatics analysis showed that DJ-1 was highly expressed in HCC ((P < 0.001) were closely associated with tumor stage (T), portal vein vascular invasion, OS, DSS, and PFI (P < 0.05); miR-199a/b-3p was lowly expressed in HCC (P < 0.001), which was the upstream regulator of DJ-1. Spearman coefficient r = -0.113, P = 0.031; Dual luciferase gene report verified the negative targeting relationship between them P< 0.001; Western blotting demonstrated that miR-199a/b-3p could inhibit the protein expression of DJ-1, Ras and AKT(P < 0.05); The results of CCK8, cell scratch, Transwell migration and flow cytometry showed that OE + DJ-1 increased the proliferation, migration and invasion ability of HepG2 cells, and decreased the apoptosis process, and the differences were statistically significant (P < 0.05), while miR-199a/b-3p had the opposite effect (P < 0.05).
Collapse
Affiliation(s)
- Li-Na Ma
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Ningxia Sinasheng Biotechnology Co. LTD, Yinchuan, 750004, Ningxia, China
| | - Li-Na Wu
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuai Wei Liu
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Ningxia Sinasheng Biotechnology Co. LTD, Yinchuan, 750004, Ningxia, China
| | - Xu Zhang
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Ningxia Sinasheng Biotechnology Co. LTD, Yinchuan, 750004, Ningxia, China
| | - Xia Luo
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Ningxia Sinasheng Biotechnology Co. LTD, Yinchuan, 750004, Ningxia, China
| | - Shah Nawaz
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zi Min Ma
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Ningxia Sinasheng Biotechnology Co. LTD, Yinchuan, 750004, Ningxia, China.
- Ningxia Sinasheng Biotechnology Co. LTD, Yinchuan, Ningxia, China.
| | - Xiang-Chun Ding
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Ningxia Sinasheng Biotechnology Co. LTD, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
3
|
Targeting Periostin Expression Makes Pancreatic Cancer Spheroids More Vulnerable to Natural Killer Cells. Biomedicines 2023; 11:biomedicines11020270. [PMID: 36830807 PMCID: PMC9952976 DOI: 10.3390/biomedicines11020270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Pancreatic cancer (PaCa) characteristically has a dense tumor microenvironment, which results in poor patient prognosis. Pancreatic stellate cells (PSCs) are the most abundant cells in the PaCa microenvironment and the principal source of collagen. Periostin, a matricellular protein, is produced specifically by PSCs and promotes the aggressiveness of PaCa cells by facilitating extracellular collagen assembly. Here, we aimed to decrease extracellular collagen assembly by suppressing periostin, thereby increasing the cytotoxic activity of natural killer (NK) cells. Periostin expression was suppressed in PSCs (called PSC-P) using CRISPR-Cas9. PaCa cells (BxPC-3) were co-cultured with PSC and PSC-P cells in a 3D environment to form tumor spheroids mimicking the tumor microenvironment. The extracellular collagen production of spheroids was evaluated by Masson's trichrome staining. The cytotoxic activity of NK-92 cells was analyzed by flow cytometry and confocal microscopy via CD107a staining. Cell death in BxPC-3 cells was evaluated by measuring Annexin-V and PI positivity using flow cytometry. As a result, periostin suppression decreased extracellular collagen and increased the infiltration of NK-92 cells into spheroids, and induced cell death in PaCa cells. In conclusion, we suggest that periostin might be a therapeutic target for PaCa and further analysis is warranted using in vivo models for proof-of-concept.
Collapse
|
4
|
Yun S, Cha SS, Kim JH. DJ-1 promotes cell migration by interacting with Mena, the mammalian homolog of Drosophila enabled. Adv Biol Regul 2022; 88:100943. [PMID: 36542983 DOI: 10.1016/j.jbior.2022.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
DJ-1 has gained extensive attention after being identified in 2003 as a protein implicated in the pathogenesis of early-onset Parkinson's disease. Since then, efforts have revealed versatile DJ-1 functions in reactive oxygen species (ROS) control, transcriptional regulation, chaperone function, fertility, and cell transformation. Herein, we report a novel function of DJ-1 in actin cytoskeletal rearrangements. DJ-1 was identified as a new binding partner of Mena, a protein of the Enah/VASP family, and it promoted cancer cell migration by Mena-dependent actin polymerization and filopodia formation. These results suggest a novel molecular mechanism for DJ-1-dependent cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Sanguk Yun
- Department of Biotechnology, Inje University, Gimhae, 50834, Republic of Korea.
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, 50612, Yangsan, Republic of Korea.
| |
Collapse
|
5
|
Han Z, Wang L, Wang D, Zhang L, Bi Y, Zheng X, Liu W, Bai G, Wang Z, Wan W, Ma Y, Cai X, Liu T, Jia Q. DJ-1 promotes osteosarcoma progression through activating CDK4/RB/E2F1 signaling pathway. Front Oncol 2022; 12:1036401. [PMID: 36408174 PMCID: PMC9671360 DOI: 10.3389/fonc.2022.1036401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of the bone characterized by poor prognosis due to chemotherapy resistance and high recurrence rates. DJ-1 (PARK7) is known as an oncogene and its abnormal expression is related to the poor prognosis of various types of malignant tumors. It was found in this study that upregulated expression of DJ-1 was closely correlated with the prognosis of OS patients by promoting the proliferation, migration and chemotherapy resistance of OS cells in vitro through regulating the activity of CDK4 but not through the oxidation mechanism or AKT pathway. The combination of DJ-1 and CDK4 promoted RB phosphorylation, leading to the dissociation of E2F1 into the nucleus to regulate the expression of cell cycle-related genes. The tumor xenograft mouse model demonstrated that DJ-1 knockout suppressed tumor growth in vivo. All these findings indicate that DJ-1 can affect the occurrence and progression of OS by regulating the CDK/RB/E2F1axis, suggesting a novel therapeutic opportunity for OS patients.
Collapse
Affiliation(s)
- Zhitao Han
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongshuo Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Luosheng Zhang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yifeng Bi
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinlei Zheng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weibo Liu
- Department of Orthopaedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guangjian Bai
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhenhua Wang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei Wan
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yong Ma
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaopan Cai
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tielong Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qi Jia
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Identifying chronic alcoholism drug disulfiram as a potent DJ-1 inhibitor for cancer therapeutics. Eur J Pharmacol 2022; 926:175035. [PMID: 35605658 DOI: 10.1016/j.ejphar.2022.175035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/29/2023]
Abstract
As a key regulator involved in tumor development and progression, DJ-1 has been proposed as a potential therapeutic target against cancer. Also, the development of DJ-1 inhibitors holds great interests in cancer treatment. In the current study, by utilizing a small molecule covalent compounds library screening, we found that disulfiram (DSF), an FDA-approved chronic alcoholism drug, is a potent DJ-1 inhibitor. Glyoxalase assay and microscale thermophoresis analysis suggested that DSF exhibits strong inhibitory activity and high affinity to DJ-1 protein. Additionally, DSF similarly inhibited the methylglyoxal detoxification function of DJ-1 protein at the intracellular level. Notably, we discovered that DSF could significantly enhance N-(4-hydroxyphenyl) retinamide-based proliferation inhibition and apoptosis induction in different types of cancer cell lines, but not in normal tissue lines. Thus, our data suggest DSF functions as a potential inhibitor targeting DJ-1, which may provide a potential synergistic treatment option for cancer therapy.
Collapse
|
7
|
Feng S, Lou K, Zou X, Zou J, Zhang G. The Potential Role of Exosomal Proteins in Prostate Cancer. Front Oncol 2022; 12:873296. [PMID: 35747825 PMCID: PMC9209716 DOI: 10.3389/fonc.2022.873296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is the most prevalent malignant tumor in men across developed countries. Traditional diagnostic and therapeutic methods for this tumor have become increasingly difficult to adapt to today’s medical philosophy, thus compromising early detection, diagnosis, and treatment. Prospecting for new diagnostic markers and therapeutic targets has become a hot topic in today’s research. Notably, exosomes, small vesicles characterized by a phospholipid bilayer structure released by cells that is capable of delivering different types of cargo that target specific cells to regulate biological properties, have been extensively studied. Exosomes composition, coupled with their interactions with cells make them multifaceted regulators in cancer development. Numerous studies have described the role of prostate cancer-derived exosomal proteins in diagnosis and treatment of prostate cancer. However, so far, there is no relevant literature to systematically summarize its role in tumors, which brings obstacles to the later research of related proteins. In this review, we summarize exosomal proteins derived from prostate cancer from different sources and summarize their roles in tumor development and drug resistance.
Collapse
Affiliation(s)
- Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| | - Guoxi Zhang
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| |
Collapse
|
8
|
Exploration of the System-Level Mechanisms of the Herbal Drug FDY003 for Pancreatic Cancer Treatment: A Network Pharmacological Investigation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7160209. [PMID: 35591866 PMCID: PMC9113891 DOI: 10.1155/2022/7160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic cancer (PC) is the most lethal cancer with the lowest survival rate globally. Although the prescription of herbal drugs against PC is gaining increasing attention, their polypharmacological therapeutic mechanisms are yet to be fully understood. Based on network pharmacology, we explored the anti-PC properties and system-level mechanisms of the herbal drug FDY003. FDY003 decreased the viability of human PC cells and strengthened their chemosensitivity. Network pharmacological analysis of FDY003 indicated the presence of 16 active phytochemical components and 123 PC-related pharmacological targets. Functional enrichment analysis revealed that the PC-related targets of FDY003 participate in the regulation of cell growth and proliferation, cell cycle process, cell survival, and cell death. In addition, FDY003 was shown to target diverse key pathways associated with PC pathophysiology, namely, the PIK3-Akt, MAPK, FoxO, focal adhesion, TNF, p53, HIF-1, and Ras pathways. Our network pharmacological findings advance the mechanistic understanding of the anti-PC properties of FDY003 from a system perspective.
Collapse
|
9
|
Sadoughi F, Dana PM, Homayoonfal M, Sharifi M, Asemi Z. Molecular basis of melatonin protective effects in metastasis: A novel target of melatonin. Biochimie 2022; 202:15-25. [DOI: 10.1016/j.biochi.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
|
10
|
McCubrey JA, Meher AK, Akula SM, Abrams SL, Steelman LS, LaHair MM, Franklin RA, Martelli AM, Ratti S, Cocco L, Barbaro F, Duda P, Gizak A. Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging (Albany NY) 2022; 14:3365-3386. [PMID: 35477123 PMCID: PMC9085237 DOI: 10.18632/aging.204038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
TP53 is a master regulator of many signaling and apoptotic pathways involved in: aging, cell cycle progression, gene regulation, growth, apoptosis, cellular senescence, DNA repair, drug resistance, malignant transformation, metastasis, and metabolism. Most pancreatic cancers are classified as pancreatic ductal adenocarcinomas (PDAC). The tumor suppressor gene TP53 is mutated frequently (50-75%) in PDAC. Different types of TP53 mutations have been observed including gain of function (GOF) point mutations and various deletions of the TP53 gene resulting in lack of the protein expression. Most PDACs have point mutations at the KRAS gene which result in constitutive activation of KRas and multiple downstream signaling pathways. It has been difficult to develop specific KRas inhibitors and/or methods that result in recovery of functional TP53 activity. To further elucidate the roles of TP53 in drug-resistance of pancreatic cancer cells, we introduced wild-type (WT) TP53 or a control vector into two different PDAC cell lines. Introduction of WT-TP53 increased the sensitivity of the cells to multiple chemotherapeutic drugs, signal transduction inhibitors, drugs and nutraceuticals and influenced key metabolic properties of the cells. Therefore, TP53 is a key molecule which is critical in drug sensitivity and metabolism of PDAC.
Collapse
Affiliation(s)
- James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Michelle M. LaHair
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Richard A. Franklin
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Fulvio Barbaro
- Department of Medicine and Surgery, Re.Mo.Bio.S. Laboratory, Anatomy Section, University of Parma, Parma, Italy
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
11
|
Moving beyond the Tip of the Iceberg: DJ-1 Implications in Cancer Metabolism. Cells 2022; 11:cells11091432. [PMID: 35563738 PMCID: PMC9103122 DOI: 10.3390/cells11091432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
DJ-1, also called Parkinson’s protein 7 (PARK7), is ubiquitously expressed and plays multiple actions in different physiological and, especially, pathophysiological processes, as evidenced by its identification in neurodegenerative diseases and its high expression in different types of cancer. To date, the exact activity of DJ-1 in carcinogenesis has not been fully elucidated, however several recent studies disclosed its involvement in regulating fundamental pathways involved in cancer onset, development, and metastatization. At this purpose, we have dissected the role of DJ-1 in maintaining the transformed phenotype, survival, drug resistance, metastasis formation, and differentiation in cancer cells. Moreover, we have discussed the role of DJ-1 in controlling the redox status in cancer cells, along with the ability to attenuate reactive oxygen species (ROS)-dependent cell death, as well as to mediate ferropotosis. Finally, a mention to the development of therapeutic strategies targeting DJ-1 has been done. We have reported the most recent studies, aiming to shed light on the role played by DJ-1 in different cancer aspects and create the foundation for moving beyond the tip of the iceberg.
Collapse
|
12
|
He X, Sun Y, Fan R, Sun J, Zou D, Yuan Y. Knockdown of the DJ-1 ( PARK7) gene sensitizes pancreatic cancer to erlotinib inhibition. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:364-372. [PMID: 33614917 PMCID: PMC7878983 DOI: 10.1016/j.omto.2021.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/16/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
Abstract
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib, in combination with gemcitabine, has been shown to be a promising therapy in the treatment of pancreatic cancer. Our previous study showed that DJ-1 promotes invasion and metastasis of pancreatic cancer cells by activating SRC/extracellular signal-regulated kinase (ERK)/uPA. The aim of this study was to evaluate whether knockdown of DJ-1 expression can sensitize pancreatic cancer cells to erlotinib treatment. Knockdown of DJ-1 expression accelerated erlotinib-induced cell apoptosis and improved the inhibitory effect of erlotinib on pancreatic cancer cell proliferation (for the BxPC-3, PANC-1, and MiaPACa-2 cell lines, regardless of KRAS mutation status) in vitro and in xenograft tumor growth in vivo. Knockdown of DJ-1 decreased K-RAS expression, membrane translocation, and activity in BxPC-3 cells. Knockdown of DJ-1 also decreased K-RAS, H-RAS, and N-RAS expression in PANC-1 and MiaPACa-2 cells. Knockdown of DJ-1 synergistically inhibited AKT and ERK1/2 phosphorylation with erlotinib in pancreatic cancer cells. These findings indicate that DJ-1 may activate the RAS pathway, reinforcing erlotinib drug resistance. Therefore, blocking DJ-1 in combination with the EGFR tyrosine kinase inhibitor erlotinib may be an attractive therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Xiangyi He
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunwei Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Fan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Douwu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding author: Douwu Zou, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yaozong Yuan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding author: Yaozong Yuan, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
13
|
Shen F, Xiong Y, Zhang L, Li H, Zhao H, Liu X, Yang P. Rapid Sample Preparation Workflow for Serum Sample Analysis with Different Mass Spectrometry Acquisition Strategies. Anal Chem 2020; 93:1578-1585. [PMID: 33372771 DOI: 10.1021/acs.analchem.0c03985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Fast, robust, and high-throughput mass spectrometry-based serum proteomic pipelines have great potential to yield information for biomarker discovery and daily clinical practice. Here, we developed a simple and rapid sample preparation (RSP) workflow by reducing the classical pretreatment time from overnight to less than 1.5 h in an ordinary system. In HeLa cell lysates and serum samples, the number of proteins and tryptic peptides generated using the RSP was comparable to that generated using conventional methods. For fast scanning of the serum proteome, the RSP-supported pipeline could complete a test in less than 2 h with 30 min of LC-MS/MS analysis. Nearly 390 proteins spanning 8 magnitudes of abundance range were identified with high reproducibility, containing over 90 cancer-associated proteins and over 50 FDA-approved biomarkers. For fast assay development, eight candidate biomarker peptides for cardiovascular disease (CVD) were quantified by MRM with high accuracy (CV% <10). After a simple highly abundant protein removal, a deep serum proteome of over 1400 proteins was reached. By analyzing the depleted serum in DIA acquisition mode, over 700 proteins were quantified. The differentially expressed proteins could help us unambiguously distinguish the serum samples from healthy people and patients with pancreatic cancer (PC). Potential biomarkers for PC were also found. The new RSP method, which is rapid and simple, meets the demands of both deep mining and fast analysis of serum proteins. We believe that it will be widely used in serum protein studies and accelerate the transformation from biomarker discovery to clinical application.
Collapse
Affiliation(s)
- Fenglin Shen
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yueting Xiong
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Lei Zhang
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hengchao Li
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Huanhuan Zhao
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiaohui Liu
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200433, China
| | - Pengyuan Yang
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200433, China
| |
Collapse
|
14
|
Lee YJ, Kim WI, Park TH, Bae JH, Nam HS, Cho SW, Choi YJ, Lee SH, Cho MK. Upregulation of DJ-1 expression in melanoma regulates PTEN/AKT pathway for cell survival and migration. Arch Dermatol Res 2020; 313:583-591. [PMID: 32959108 DOI: 10.1007/s00403-020-02139-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2019] [Revised: 03/25/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
Cutaneous melanoma is known to be one of the most dangerous skin cancers because of its metastatic functions. Today, it is essential to investigate specific biomarkers for the target treatment in many diseases including cancers. DJ-1 protein, also known as Parkinson disease 7, has various functions associated with cancer progression including cell survival and migration. Phosphatase and tensin homolog (PTEN) is a tumor suppressor that regulates the PI3K/AKT signaling pathway and its mutations have been reported to frequently occur in many cancers such as thyroid, breast and skin. Recently, DJ-1 has been identified as a negative regulator of PTEN in many human cancer cells. However, the impacts and relationship of DJ-1 and PTEN have not been studied yet in melanoma. To confirm the expression of DJ-1 and PTEN in melanoma compared to normal skin tissues and find out functions of DJ-1 in melanoma cells, Western blot analysis and immunohistochemical staining were used. Transfection of G361 cells with DJ-1-specific small interfering RNA was performed to figure out the roles of DJ-1 and the relationship between DJ-1 and PTEN in melanoma cells. In our study, the DJ-1 protein was significantly increased with loss of PTEN protein in melanoma compared to that in normal skin. Inhibition of DJ-1 in G361 cells induced apoptosis, and suppressed cell survival and migration. Furthermore, suppression of DJ-1 in G361 cells increased the expression of cleaved caspase-3, cleaved PARP, Bax, p53, and Daxx as well as PTEN, while it decreased expression of survivin, caspase-3, and PARP. Also, downregulated DJ-1 inhibited phosphorylation of AKT in G361 cells. Collectively, DJ-1 overexpression could affect the proliferative and invasive capabilities of melanoma cells via regulating the PTEN/AKT pathway and apoptosis-related proteins. This study suggests that DJ-1 may be a potential target for the treatment of melanoma.
Collapse
Affiliation(s)
- Yoon Jin Lee
- Molecular Cancer Research, Soonchunhyang University College of Medicine, Cheonan-si , 31151, Republic of Korea
| | - Woo Il Kim
- Department of Dermatology, Soonchunhyang University Hospital, 59 Daesahwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea
| | - Tae Heum Park
- Department of Dermatology, Soonchunhyang University Hospital, 59 Daesahwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea
| | - Jin Ho Bae
- Department of Dermatology, Soonchunhyang University Hospital, 59 Daesahwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea
| | - Hae Seon Nam
- Molecular Cancer Research, Soonchunhyang University College of Medicine, Cheonan-si , 31151, Republic of Korea
| | - Sung Woo Cho
- Molecular Cancer Research, Soonchunhyang University College of Medicine, Cheonan-si , 31151, Republic of Korea
| | - Young Jin Choi
- Molecular Cancer Research, Soonchunhyang University College of Medicine, Cheonan-si , 31151, Republic of Korea
| | - Sang Han Lee
- Molecular Cancer Research, Soonchunhyang University College of Medicine, Cheonan-si , 31151, Republic of Korea
| | - Moon Kyun Cho
- Department of Dermatology, Soonchunhyang University Hospital, 59 Daesahwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea.
| |
Collapse
|
15
|
Li L, Zhang C, Li Y, Zhang Y, Lei Y. DJ-1 promotes epithelial-to-mesenchymal transition via enhancing FGF9 expression in colorectal cancer. Biol Open 2020; 9:bio051680. [PMID: 32366371 PMCID: PMC7325429 DOI: 10.1242/bio.051680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2020] [Accepted: 04/08/2020] [Indexed: 01/14/2023] Open
Abstract
Tumor metastasis is the main contributor to high recurrence and mortality in colorectal cancer (CRC). In a previous study, we found that DJ-1 plays an important role in CRC metastasis, and is the main target in Ciclopirox olamine (CPX)-treated CRC. However, the mechanism underlying DJ-1-induced CRC metastasis remains elusive. In the present study, our results showed that DJ-1 could activate Wnt signaling resulting in enhanced invasive potential and epithelial-to-mesenchymal transition (EMT) in CRC cells. RNA-seq and bioinformatics analysis reveals that the DJ-1/Wnt signaling pathway may promote CRC cells' EMT by regulating fibroblast growth factor 9 (FGF9) expression. Molecular validation showed that expression of FGF9 was upregulated by the DJ-1/Wnt signaling pathway and decreasing FGF9-expression impeded DJ-1-induced CRC invasive ability and EMT, suggesting that FGF9 is involved in DJ-1-enhanced CRC metastasis. In addition, we show that FGF9 was overexpressed in CRC human specimens and was significantly associated with tumor differentiation. High FGF9 expression was correlated with worse overall survival, and a correlation exhibited between FGF9 and EMT markers (E-cadherin and Vimentin) in CRC samples. Together, our results determined that FGF9 was involved in DJ-1-induced invasion and EMT in CRC cells, and may represent a promising therapeutic candidate for CRC anti-metastatic strategies.
Collapse
Affiliation(s)
- Longhao Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Jin W. Novel Insights into PARK7 (DJ-1), a Potential Anti-Cancer Therapeutic Target, and Implications for Cancer Progression. J Clin Med 2020; 9:jcm9051256. [PMID: 32357493 PMCID: PMC7288009 DOI: 10.3390/jcm9051256] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022] Open
Abstract
The expression of PARK7 is upregulated in various types of cancer, suggesting its potential role as a critical regulator of the pathogenesis of cancer and in the treatment of cancer and neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and Huntington disease. PARK7 activates various intracellular signaling pathways that have been implicated in the induction of tumor progression, which subsequently enhances tumor initiation, continued proliferation, metastasis, recurrence, and resistance to chemotherapy. Additionally, secreted PARK7 has been identified as a high-risk factor for the pathogenesis and survival of various cancers. This review summarizes the current understanding of the correlation between the expression of PARK7 and tumor progression.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
17
|
Wang W, Wang H, Xiang L, Ni T, Jin F, Deng J, Zhang Y, Shintaro I, Zhou Y, Liu Y. DJ‑1 is a new prognostic marker and predicts chemotherapy efficacy in colorectal cancer. Oncol Rep 2020; 44:77-90. [PMID: 32627002 PMCID: PMC7251759 DOI: 10.3892/or.2020.7593] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2019] [Accepted: 03/29/2020] [Indexed: 12/20/2022] Open
Abstract
Protein/nucleic acid deglycase DJ-1 (DJ-1) is a 20-kDa conserved protein, which belongs to the DJ-1/ThiJ/Pfp I protein superfamily. Immunohistochemistry was performed to investigate the expression of DJ-1 in a colorectal cancer (CRC) tissue microarray containing tumor and corresponding adjacent normal tissues. In the present study, DJ-1 expression was significantly upregulated in CRC cells and tissues, compared with that in normal colon cells and adjacent normal tissues, respectively. In addition, patients with high DJ-1 expression levels had a worse overall survival (OS) compared with patients with low expression levels. Multivariate Cox regression analysis revealed that high DJ-1 expression levels was an independent prognostic factor for patients with CRC. Moreover, DJ-1 was able to regulate the PI3K/Akt/p27/cyclin E and PI3K/Akt/mTOR signaling pathways to promote CRC cell growth and metastasis in vitro and in vivo. In addition, DJ-1 regulated the NF-κB/Snail signaling pathway to induce CRC cell epithelial-mesenchymal transition to promote migration and invasion. Notably, patients receiving LFP treatment (oxaliplatin, 5-FU and tetrahydrofolate) had an increased OS compared with patients who underwent only surgery and low DJ-1 expression levels. The findings from the present study suggest that DJ-1 may serve as a promising prognostic marker and predicts chemotherapy efficacy in patients with CRC.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Oncology, Yixing Hospital Affiliated to the Medical College of Yangzhou University, Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Haibo Wang
- Department of Oncology, Yixing Hospital Affiliated to the Medical College of Yangzhou University, Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Liangliang Xiang
- Institute of Combination of Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Tengyang Ni
- Institute of Combination of Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Feng Jin
- Institute of Combination of Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Jianliang Deng
- Department of Oncology, Yixing Hospital Affiliated to the Medical College of Yangzhou University, Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Yunlei Zhang
- Department of Oncology, Yixing Hospital Affiliated to the Medical College of Yangzhou University, Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Ishikawa Shintaro
- Department of Physiology, School of Medicine, Showa University, Shinagawa‑ku, Tokyo 142‑8555, Japan
| | - Yan Zhou
- Department of Oncology, Yixing Hospital Affiliated to the Medical College of Yangzhou University, Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Yanqing Liu
- Department of Oncology, Yixing Hospital Affiliated to the Medical College of Yangzhou University, Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| |
Collapse
|
18
|
de Oliveira G, Paccielli Freire P, Santiloni Cury S, de Moraes D, Santos Oliveira J, Dal-Pai-Silva M, do Reis PP, Francisco Carvalho R. An Integrated Meta-Analysis of Secretome and Proteome Identify Potential Biomarkers of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:E716. [PMID: 32197468 PMCID: PMC7140071 DOI: 10.3390/cancers12030716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is extremely aggressive, has an unfavorable prognosis, and there are no biomarkers for early detection of the disease or identification of individuals at high risk for morbidity or mortality. The cellular and molecular complexity of PDAC leads to inconsistences in clinical validations of many proteins that have been evaluated as prognostic biomarkers of the disease. The tumor secretome, a potential source of biomarkers in PDAC, plays a crucial role in cell proliferation and metastasis, as well as in resistance to treatments, which together contribute to a worse clinical outcome. The massive amount of proteomic data from pancreatic cancer that has been generated from previous studies can be integrated and explored to uncover secreted proteins relevant to the diagnosis and prognosis of the disease. The present study aimed to perform an integrated meta-analysis of PDAC proteome and secretome public data to identify potential biomarkers of the disease. Our meta-analysis combined mass spectrometry data obtained from two systematic reviews of the pancreatic cancer literature, which independently selected 20 studies of the secretome and 35 of the proteome. Next, we predicted the secreted proteins using seven in silico tools or databases, which identified 39 secreted proteins shared between the secretome and proteome data. Notably, the expression of 31 genes of these secretome-related proteins was upregulated in PDAC samples from The Cancer Genome Atlas (TCGA) when compared to control samples from TCGA and The Genotype-Tissue Expression (GTEx). The prognostic value of these 39 secreted proteins in predicting survival outcome was confirmed using gene expression data from four PDAC datasets (validation set). The gene expression of these secreted proteins was able to distinguish high- and low-survival patients in nine additional tumor types from TCGA, demonstrating that deregulation of these secreted proteins may also contribute to the prognosis in multiple cancers types. Finally, we compared the prognostic value of the identified secreted proteins in PDAC biomarkers studies from the literature. This analysis revealed that our gene signature performed equally well or better than the signatures from these previous studies. In conclusion, our integrated meta-analysis of PDAC proteome and secretome identified 39 secreted proteins as potential biomarkers, and the tumor gene expression profile of these proteins in patients with PDAC is associated with worse overall survival.
Collapse
Affiliation(s)
- Grasieli de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Jakeline Santos Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Patrícia Pintor do Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, São Paulo, Brazil;
- Experimental Research Unity, Faculty of Medicine, São Paulo State University, UNESP, Botucatu 18618-970, São Paulo, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| |
Collapse
|
19
|
Zhu X, Luo C, Lin K, Bu F, Ye F, Huang C, Luo H, Huang J, Zhu Z. Overexpression of DJ-1 enhances colorectal cancer cell proliferation through the cyclin-D1/MDM2-p53 signaling pathway. Biosci Trends 2020; 14:83-95. [PMID: 32132307 DOI: 10.5582/bst.2019.01272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Abstract
Emerging evidence indicates that DJ-1 is highly expressed in different cancers. It modulates cancer progression, including cell proliferation, cell apoptosis, invasion, and metastasis. However, its role in colorectal cancer (CRC) remains poorly defined. The current study noted increased DJ-1 expression in CRC tumor tissue and found that its expression was closely related to clinical-pathological features. Similarly, DJ-1 increased in CRC cells (SW480, HT-29, Caco-2, LoVo, HCT116, and SW620), and especially in SW480 and HCT116 cells. Functional analyses indicated that overexpression of DJ-1 promoted CRC cell invasion, migration, and proliferation in vitro and in vivo. Mechanistic studies indicated that DJ-1 increased in CRC cell lines, activated specific protein cyclin-D1, and modulated the MDM2/p53 signaling pathway by regulating the levels of the downstream factors Bax, Caspase-3, and Bcl-2, which are related to the cell cycle and apoptosis. Conversely, knockdown of DJ-1 upregulated p53 expression by disrupting the interaction between p53 and MDM2 and inhibiting CRC cell proliferation, revealing the pro-oncogenic mechanism of DJ-1 in CRC. In conclusion, the current findings provide compelling evidence that DJ-1 might be a promoter of CRC cell invasion, proliferation, and migration via the cyclin-D1/MDM2-p53 signaling pathway. Findings also suggest its potential role as a postoperative adjuvant therapy for patients with CRC.
Collapse
Affiliation(s)
- Xiaojian Zhu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Chen Luo
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Kang Lin
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Fanqin Bu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Fan Ye
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Chao Huang
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Jun Huang
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhengming Zhu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Ma Z, Yang J, Yang Y, Wang X, Chen G, Shi A, Lu Y, Jia S, Kang X, Lu L. Rosmarinic acid exerts an anticancer effect on osteosarcoma cells by inhibiting DJ-1 via regulation of the PTEN-PI3K-Akt signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153186. [PMID: 32088353 DOI: 10.1016/j.phymed.2020.153186] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/30/2019] [Revised: 01/02/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Osteosarcoma is the most common type of primary malignant bone tumor. This disease has exhibited a progressively lower survival rate over the past several decades, which has resulted in it becoming a main cause of death in humans. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, exerts powerful anticancer effects against multiple types of cancer; however, its potential effects on osteosarcoma remain unknown. Hence, the present study investigated the efficacy of RA against osteosarcoma and aimed to clarify the mechanisms underlying this process. METHODS The effects of RA on cell viability, apoptosis, cell cycle distribution, migration, invasion, and signaling molecules were analyzed by CCK-8 assay, flowcytometric analysis, wound healing assay, Transwell assay, proteomic analysis, and use of shRNAs. RESULTS RA exerted anti-proliferation and pro-apoptotic effects on U2OS and MG63 osteosarcoma cells. Apoptosis was induced via extrinsic and intrinsic pathways by increasing the Bax/Bcl-2 ratio, triggering the intracellular production of reactive oxygen species (ROS), reducing the mitochondrial membrane potential (MMP), and upregulating the cleavage rates of caspase-8, caspase-9, and caspase-3. Additionally, RA suppressed the migration and invasion of osteosarcoma cells by inhibiting the expression levels of matrix metalloproteinase-2 and -9 (MMP-2 and -9), which are associated with a weakening of the epithelial-mesenchymal transition (EMT). Moreover, proteomic analyses identified DJ-1 as a potential target for RA. Several studies have indicated an oncogenic role for DJ-1 using knockdowns via the lentiviral-mediated transfection of shRNA, which caused the conspicuous suppression of cell proliferation, migration, and invasion as well as the arrest of cell cycle progression. At the molecular level, the expression levels of DJ-1, p-PI3K, and p-Akt were reduced, whereas the protein levels of phosphatase and tensin homologue (PTEN) were increased. CONCLUSION In conjunction with the high levels of DJ-1 expression in osteosarcoma tissues and cell lines, the present results suggested that RA exhibited anticancer effects in osteosarcoma cells by inhibiting DJ-1 via regulation of the PTEN-PI3K-Akt signaling pathway. Therefore, DJ-1 might be a biological target for RA in osteosarcoma cells.
Collapse
Affiliation(s)
- Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu 730000, China; School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Guohu Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ancheng Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shouning Jia
- Traditional Chinese Medicine Hospital of Qinghai Province, Xining, Qinghai 810000, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China.
| | - Li Lu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu 730000, China; Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
21
|
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Protein Promiscuity in H 2O 2 Signaling. Antioxid Redox Signal 2019; 30:1285-1324. [PMID: 29635930 DOI: 10.1089/ars.2017.7013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Decrypting the cellular response to oxidative stress relies on a comprehensive understanding of the redox signaling pathways stimulated under oxidizing conditions. Redox signaling events can be divided into upstream sensing of oxidants, midstream redox signaling of protein function, and downstream transcriptional redox regulation. Recent Advances: A more and more accepted theory of hydrogen peroxide (H2O2) signaling is that of a thiol peroxidase redox relay, whereby protein thiols with low reactivity toward H2O2 are instead oxidized through an oxidative relay with thiol peroxidases. CRITICAL ISSUES These ultrareactive thiol peroxidases are the upstream redox sensors, which form the first cellular port of call for H2O2. Not all redox-regulated interactions between thiol peroxidases and cellular proteins involve a transfer of oxidative equivalents, and the nature of redox signaling is further complicated through promiscuous functions of redox-regulated "moonlighting" proteins, of which the precise cellular role under oxidative stress can frequently be obscured by "polygamous" interactions. An ultimate goal of redox signaling is to initiate a rapid response, and in contrast to prokaryotic oxidant-responsive transcription factors, mammalian systems have developed redox signaling pathways, which intersect both with kinase-dependent activation of transcription factors, as well as direct oxidative regulation of transcription factors through peroxiredoxin (Prx) redox relays. FUTURE DIRECTIONS We highlight that both transcriptional regulation and cell fate can be modulated either through oxidative regulation of kinase pathways, or through distinct redox-dependent associations involving either Prxs or redox-responsive moonlighting proteins with functional promiscuity. These protein associations form systems of crossregulatory networks with multiple nodes of potential oxidative regulation for H2O2-mediated signaling.
Collapse
Affiliation(s)
- David Young
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandan Pedre
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezeriņa
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara De Smet
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Lewandowska
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria-Armineh Tossounian
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nandita Bodra
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Leonardo Astolfi Rosado
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Breusegem
- 2 Brussels Center for Redox Biology, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
22
|
Cheng YT, Lin JA, Jhang JJ, Yen GC. Protocatechuic acid-mediated DJ-1/PARK7 activation followed by PI3K/mTOR signaling pathway activation as a novel mechanism for protection against ketoprofen-induced oxidative damage in the gastrointestinal mucosa. Free Radic Biol Med 2019; 130:35-47. [PMID: 30326282 DOI: 10.1016/j.freeradbiomed.2018.10.415] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/03/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
Abstract
Oxidative stress contributes to the progression of non-steroidal anti-inflammatory drug (NSAID)-induced gastrointestinal (GI) cell apoptosis. In our previous study, we reported that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a protective role against ketoprofen-induced GI mucosal oxidative injury. Recent reports suggest that Nrf2 could exhibit antioxidative and antiapoptosis responses through up-regulation of DJ-1 (PARK7). In the current study, we proposed that induction of DJ-1 expression by protocatechuic acid (PCA) might provide a potential therapeutic approach for treating oxidative stress-associated GI ulcer diseases. The results indicated that PCA increased mRNA expression of glutathione peroxidase and heme oxygenase-1 through up-regulation of DJ-1 followed by Nrf2 translocation. Furthermore, PCA protected Int-407 cells against ketoprofen-induced oxidative stress by regulating the DJ-1, PI3K, and mTOR pathways. Pretreatment with PCA inhibited mitochondrial ROS generation, up-regulated the mitochondrial membrane potential, and down-regulated pro-apoptotic Bax as well as downstream caspase-8, caspase-9, and caspase-3 activity, and reversed impaired DJ-1 and anti-apoptotic Bcl-2 protein expression in Int-407 cells induced by ketoprofen. Similar to the in vitro results, SD rats treated with PCA before administration of ketoprofen exhibited decreased caspase-3 protein expression as well as oxidative damage, and impairment of the antioxidant system and DJ-1 protein expression in the GI mucosa were reversed. The administration of lansoprazole, a type of proton pump inhibitor (PPI), strongly inhibited ketoprofen-induced GI mucosal injuries via up-regulation of DJ-1, indicating that DJ-1 is essential for the dietary antioxidant- and PPI drug-mediated mechanism of ulcer therapy. These results suggest that DJ-1 could be a novel target for protection against ketoprofen-induced GI ulcers due to its antioxidant and anti-apoptosis characteristics.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Jhih-Jia Jhang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan; Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| |
Collapse
|
23
|
Zheng H, Zhou C, Lu X, Liu Q, Liu M, Chen G, Chen W, Wang S, Qiu Y. DJ-1 promotes survival of human colon cancer cells under hypoxia by modulating HIF-1α expression through the PI3K-AKT pathway. Cancer Manag Res 2018; 10:4615-4629. [PMID: 30410397 PMCID: PMC6199970 DOI: 10.2147/cmar.s172008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023] Open
Abstract
Background Protein/nucleic acid deglycase (DJ-1) and hypoxia-inducible factor-1α (HIF-1α) play significant roles in the progression of various types of cancer and are associated with the phosphatidylinositol 3-kinase (PI3K) pathway. However, their functions in colorectal cancer (CRC) have not been identified. The aim of this study was to analyze the putative signaling pathway encompassing DJ-1, PI3K, and HIF-1α in a series of CRC tissues and cell lines. Purpose This study aimed at exploring the expression status of DJ-1 in colon cancer and its role in survival of cancer cell lines. Methods The expression and localization of DJ-1, PI3K-p110α, phosphorylated Akt (p-AKT), and HIF-1α were determined by immunohistochemistry in 73 resected CRC tissues. The effect of DJ-1 on cell activity was explored by in vitro knockdown and overexpression experiments in SW480 and HT-29 cells. The cells were treated with a PI3K inhibitor (LY294002 or wortmannin), and p-AKT and HIF-1α protein expression were then analyzed. Apoptosis was analyzed by flow cytometry. The expression levels of several HIF-1 target genes were assessed under hypoxic conditions by reverse transcription-PCR and Western blot. Xenograft tumor growth studies were conducted in DJ-1 knockdown or overexpression cells. Results High DJ-1 expression was found in 68.49% (50/73) of CRC tissues and associated with larger tumor size and advanced clinical stages. DJ-1 expression was positively associated with PI3K-p110α, p-AKT, and HIF-1α expression in CRC. HIF-1α and p-AKT protein levels were lower in SW480 and HT-29 cells with stable DJ-1 knockdown than in those with DJ-1 overexpression. PI3K inhibitors almost completely blocked DJ-1-induced AKT phosphorylation. However, the expression of HIF-1α was partially preserved after treatment with PI3K inhibitors. We also show that DJ-1 is necessary for the transcriptional ability of HIF-1α and CRC cell survival after hypoxic stress. Moreover, DJ-1 promoted the growth of established tumor xenografts in nude mice. Conclusion Our findings are the first to show that DJ-1 is overexpressed in CRC. We suggest a model in which DJ-1 mediates CRC cell survival by regulating the PI3K-AKT-HIF-1α pathway.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Thoracic Surgery of Xinqiao Hospital, The Third Military Medical University, Shapingba, 400037, Chongqing, People's Republic of China
| | - Chao Zhou
- Department of General Surgery of Xinqiao Hospital, The Third Military Medical University, Shapingba, 400037, Chongqing, People's Republic of China, ,
| | - Xiao Lu
- Department of Thoracic Surgery of Xinqiao Hospital, The Third Military Medical University, Shapingba, 400037, Chongqing, People's Republic of China
| | - Quanxing Liu
- Department of Thoracic Surgery of Xinqiao Hospital, The Third Military Medical University, Shapingba, 400037, Chongqing, People's Republic of China
| | - Minqiang Liu
- Department of General Surgery of Xinqiao Hospital, The Third Military Medical University, Shapingba, 400037, Chongqing, People's Republic of China, ,
| | - Guoqing Chen
- Department of General Surgery of Xinqiao Hospital, The Third Military Medical University, Shapingba, 400037, Chongqing, People's Republic of China, ,
| | - Weigang Chen
- Department of General Surgery of Xinqiao Hospital, The Third Military Medical University, Shapingba, 400037, Chongqing, People's Republic of China, ,
| | - Shuai Wang
- Department of General Surgery of Xinqiao Hospital, The Third Military Medical University, Shapingba, 400037, Chongqing, People's Republic of China, ,
| | - Yuan Qiu
- Department of General Surgery of Xinqiao Hospital, The Third Military Medical University, Shapingba, 400037, Chongqing, People's Republic of China, ,
| |
Collapse
|
24
|
El-Sokkary GH, Ismail IA, Saber SH. Melatonin inhibits breast cancer cell invasion through modulating DJ-1/KLF17/ID-1 signaling pathway. J Cell Biochem 2018; 120:3945-3957. [PMID: 30260001 DOI: 10.1002/jcb.27678] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most common neoplastic disorder diagnosed in women. The main goal of this study was to explore the effect of melatonin against breast cancer metastasis and compared this with the actions of taxol (a well-known chemotherapeutic drug), and the impact of their combination against breast cancer metastasis. Melatonin showed no cytotoxic effect while taxol showed antiproliferative and cytotoxic effects on MCF-7 and MDA-MB-231 cells. Furthermore, melatonin inhibited the generation of reactive oxygen species. Melatonin and taxol clearly decreased cell migration and invasion at low doses, especially those matching the normal physiological concentration at night. Melatonin and taxol markedly reduced DJ-1 and ID-1 and increased KLF17 messenger RNA and protein expression levels. The present results also showed that melatonin and taxol induced GSK3-β nuclear and Snail cytosolic localization. These changes were accompanied by a concurrent rise in E-cadherin expression. The above data show that normal levels of melatonin may help in preventing breast cancer metastasis through inhibiting DJ-1/KLF17/ID-1 signaling pathway. The combination of melatonin and taxol is a potent candidate against breast cancer metastasis, better than using melatonin or taxol as a single drug.
Collapse
Affiliation(s)
- Gamal H El-Sokkary
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Ismail Ahmed Ismail
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt.,Department of Biology, Faculty of Science, Taibah University, Yanbu Branch, Medina, Saudi Arabia
| | - Saber H Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
25
|
Tashiro S, Caaveiro JMM, Nakakido M, Tanabe A, Nagatoishi S, Tamura Y, Matsuda N, Liu D, Hoang QQ, Tsumoto K. Discovery and Optimization of Inhibitors of the Parkinson's Disease Associated Protein DJ-1. ACS Chem Biol 2018; 13:2783-2793. [PMID: 30063823 DOI: 10.1021/acschembio.8b00701] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023]
Abstract
DJ-1 is a Parkinson's disease associated protein endowed with enzymatic, redox sensing, regulatory, chaperoning, and neuroprotective activities. Although DJ-1 has been vigorously studied for the past decade and a half, its exact role in the progression of the disease remains uncertain. In addition, little is known about the spatiotemporal regulation of DJ-1, or the biochemical basis explaining its numerous biological functions. Progress has been hampered by the lack of inhibitors with precisely known mechanisms of action. Herein, we have employed biophysical methodologies and X-ray crystallography to identify and to optimize a family of compounds inactivating the critical Cys106 residue of human DJ-1. We demonstrate these compounds are potent inhibitors of various activities of DJ-1 in vitro and in cell-based assays. This study reports a new family of DJ-1 inhibitors with a defined mechanism of action, and contributes toward the understanding of the biological function of DJ-1.
Collapse
Affiliation(s)
- Shinya Tashiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Jose M. M. Caaveiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Nakakido
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Aki Tanabe
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | | | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
26
|
Zhou J, Liu H, Zhang L, Liu X, Zhang C, Wang Y, He Q, Zhang Y, Li Y, Chen Q, Zhang L, Wang K, Bu Y, Lei Y. DJ-1 promotes colorectal cancer progression through activating PLAGL2/Wnt/BMP4 axis. Cell Death Dis 2018; 9:865. [PMID: 30158634 PMCID: PMC6115399 DOI: 10.1038/s41419-018-0883-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 02/05/2023]
Abstract
Metastasis remains a big barrier for the clinical treatment of colorectal cancer (CRC). Our previous proteomics analysis identified DJ-1 as a potential metastasis biomarker of CRC. In this study, we found that DJ-1 was upregulated in CRC. The levels of DJ-1 were closely correlated with the depths of invasion and predicted patient outcome. Enforced expression of DJ-1 could enhance CRC proliferation and metastasis in vitro and in vivo by stimulating Wnt-β-catenin signaling. Specifically, DJ-1-induced β-catenin nuclear translocation stimulated TCF transcription activity, which promoted BMP4 expression for CRC cell migration and invasion, and elevated CCND1 expression for CRC cell proliferation, respectively. Furthermore, DJ-1-induced Wnt signaling activation was dependent on PLAGL2 expression. In conclusion, our study demonstrates that DJ-1 can promote CRC metastasis by activating PLAGL2-Wnt-BMP4 axis, suggesting novel therapeutic opportunities for postoperative adjuvant therapy in CRC patients.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Hao Liu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Lian Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Qing He
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Quanmei Chen
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Kui Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
27
|
Wang Q, Li F, Shi W, Zhang Q, Wang J, Yan X, Chai L, Li M. Overexpression of DJ-1 correlates with aggressive clinicopathological characteristics and poor prognosis in malignant tumors: a meta-analysis. Onco Targets Ther 2018; 11:3931-3942. [PMID: 30022836 PMCID: PMC6042497 DOI: 10.2147/ott.s162045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023] Open
Abstract
Purpose A number of studies have investigated the role of DJ-1 in the development and progression of malignant tumors. This meta-analysis aims to systematically estimate the rela-tionship between the expression level of DJ-1 and the malignant biological behaviors of tumors and to assess the clinical significances of DJ-1 in the prognosis and diagnosis of cancer. Materials and methods We searched PubMed, Web of Science, China National Knowledge Infrastructure and Wanfang databases from inception to December 1, 2017. Pooled odds ratio (OR) and hazard ratio (HR) with their 95% confidence interval and the diagnostic value of DJ-1 were calculated. Results Fourteen eligible studies with a total of 1,947 subjects were enrolled in our meta-analysis. The results showed that DJ-1 was overexpressed in cancer patients compared with noncancer patients (OR = 30.72), and elevated expression of DJ-1 was demonstrated to be closely associated with high tumor-node-metastasis stage (OR = 5.52), poor differentiated degree (OR = 2.46), positive lymph node metastasis (OR = 4.12) and worse overall survival (HR = 2.23). In addition, the combined sensitivity and specificity for DJ-1 to discern malignant tumors were 0.73 and 0.93, respectively. The diagnostic OR was 34.87, and the area under the summary receiver operating characteristic curve was 0.88. Conclusion This meta-analysis demonstrated that DJ-1 was an important biomarker in tumor assessment and prognosis prediction.
Collapse
Affiliation(s)
- Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| | - Fangwei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| |
Collapse
|
28
|
Cai XD, Che L, Lin JX, Huang S, Li J, Liu XY, Pan XF, Wang QQ, Chen L, Lin MJ, Huang ZH, Ma HM, Wu Y, Liu SM, Zhou YB. Krüppel-like factor 17 inhibits urokinase plasminogen activator gene expression to suppress cell invasion through the Src/p38/ MAPK signaling pathway in human lung adenocarcionma. Oncotarget 2018; 8:38743-38754. [PMID: 28454121 PMCID: PMC5503568 DOI: 10.18632/oncotarget.17020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2016] [Accepted: 03/30/2017] [Indexed: 11/25/2022] Open
Abstract
Krüppel-like factor 17 (KLF17) has been reported to be involved in invasion and metastasis suppression in lung cancer, but the molecular mechanisms underlying the anti-invasion and anti-metastasis roles of KLF17 in lung cancer are not fully illustrated. Here, we showed that KLF17 inhibited the invasion of A549 and H322 cells; the anti-invasion effect of KLF17 was associated with the suppression of urokinase plasminogen activator (uPA/PLAU) expression. KLF17 can bind with the promoter of uPA and inhibit its expression. Enforced expression of uPA abrogated the anti-invasion effect of KLF17 in A549 and H322 cells. In addition, immunohistochemistry staining showed that the protein expression of KLF17 was negatively correlated with that of uPA in archived samples from patients with lymph node metastasis of lung adenocarcinoma (rho = −0.62, P = 0.01). The mutually exclusive expression of KLF17 with uPA could predict lymph node metastasis for lung adenocarcinoma (AUC = 0.758, P = 0.005). Enforced expression of KLF17 inhibited the expression of phosphorylated Src and phosphorylated p38/MAPK in A549 and H322 cells. The invasiveness of the cells were suppressed by treating with sb203580 (p38/MAPK inhibitor) or HY-13805 (PP2, Src inhibitor). furthermore, p38/MAPK inhibition could block the KLF17-induced reduction of p-p38/MAPK and uPA, and Src inhibition enhanced the KLF17-induced suppression of p-Src and uPA in A549 and H322 cells. In conclusion, our study indicated that KLF17 suppressed the uPA-mediated invasion of lung adenocarcinoma. The Src and p38/MAPK signaling pathways were suggested as mediators of KLF17-induced uPA inhibition, thus providing evidence that KLF17 might be a potential anti-invasion candidate for lung adenocarcinoma.
Collapse
Affiliation(s)
- Xing-Dong Cai
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Che
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jia-Xin Lin
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuai Huang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jiong Li
- Department of Anatomy, The Medical College of Jinan University, Guangzhou 510630, China
| | - Xiao-Yan Liu
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xing-Fei Pan
- Department of Infectious Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Qin-Qin Wang
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Chen
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ming-Juan Lin
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhi-Hong Huang
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hong-Ming Ma
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yi Wu
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Sheng-Ming Liu
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yan-Bin Zhou
- Department of Pulmonary Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
29
|
Abstract
DJ-1 is a gene involved in various cellular processes, including transcriptional regulation, oxidative stress response, fertilization, mitochondrial regulation, inflammatory and fibrogenic niche formation, and glycation damage prevention. Although a disease-associated genetic study within the past decade has demonstrated that the mutation of DJ-1 is associated with autosomal early-onset Parkinson's disease, increasing evidence suggests that DJ-1 also plays a critical role in tumor development and progression. In this review, we provide an overview of current knowledge concerning the role and the mechanism of DJ-1 in cancer and also discuss the possibility of DJ-1 as a therapeutic target against cancer.
Collapse
|
30
|
Liu R, Yang YN, Yi L, Qing J, Li QY, Wang WS, Wang J, Tang YX, Tan H. Diallyl disulfide effect on the invasion and migration ability of HL-60 cells with a high expression of DJ-1 in the nucleus through the suppression of the Src signaling pathway. Oncol Lett 2018; 15:6377-6385. [PMID: 29725397 PMCID: PMC5920463 DOI: 10.3892/ol.2018.8139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2016] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
The present study examined the effect of diallyl disulfide (DADS) on the invasion and migration ability of HL-60 cells with a high expression of parkinsonism associated deglycase (DJ-1) in the nucleus (HHDN), and its molecular mechanism. A western blot assay was used to measure the effects of DADS and an Src inhibitor on the expression of DJ-1 and the Src signal pathway in HHDN. The effects of DADS and Src inhibitors on the invasion and migration ability of HHDN was detected using Transwell migration and invasion chamber experiments. The experiments were divided into three groups: A control group (HL-60 cells), an empty vector group and a high expression group (HHDN cells). Western blot assays revealed that the expression of DJ-1 in HHDN was inhibited in a time-dependent manner following treatment with DADS for 24, 48 and 72 h. Following DADS treatment, the expression of phosphorylated Src (p-Src) and phosphorylated Fak (p-Fak) were significantly decreased in all groups compared with the untreated groups, however the expression level of Src, Fak and integrin did not change significantly. Western blot analysis results revealed that following treatment with DADS and Src inhibitor, the expression levels of p-Src and p-Fak significantly decreased in all three groups compared with untreated groups, whereas the expression levels of Src, Fak and integrin did not change significantly. The expression of DJ-1 in HHND was inhibited in time-dependent manner following treatment with DADS and Src inhibitor for 24, 48 and 72 h. Transwell migration and invasion assay results revealed that DADS and Src inhibitors may suppress migration and invasion in leukemic cells, and a combination of the two treatments may result in more efficient suppression. DADS may downregulate DJ-1-mediated invasion and migration in leukemic cells through suppressing the Src-Fak-Integrin signaling pathway, and the Src inhibitor may enhance the antitumor effect of DADS.
Collapse
Affiliation(s)
- Ran Liu
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China.,Department of Pathology, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ye-Ning Yang
- Department of Pathology, The First People's Hospital of Youxian, Youxian, Hunan 412300, P.R. China
| | - Lan Yi
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Jing Qing
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Qing-Ye Li
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Wen-Song Wang
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Juan Wang
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Yu-Xian Tang
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Hui Tan
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| |
Collapse
|
31
|
Wang X, Zhao X, Yi Z, Ma B, Wang H, Pu Y, Wang J, Wang S. WNT5A promotes migration and invasion of human osteosarcoma cells via SRC/ERK/MMP-14 pathway. Cell Biol Int 2018; 42:598-607. [PMID: 29345412 DOI: 10.1002/cbin.10936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2017] [Accepted: 01/13/2018] [Indexed: 01/01/2023]
Abstract
WNT5A, a representative ligand of activating several non-canonical WNT signal pathways, plays significant roles in oncogenesis and tumor inhibition. It has been shown that the non-receptor tyrosine kinase SRC is required for WNT5A-induced invasion of osteosarcoma cells. However, the precise molecular mechanism underlying WNT5A/SRC-mediated osteosarcoma cells invasion remains poorly defined. The study was designed to explore the role of ERK1/2 in WNT5A/SRC-induced osteosarcoma cells invasion and the downstream target of the SRC/ERK1/2 signalings. We found that WNT5A (100 ng/mL) remarkably stimulated migration and invasion of human osteosarcoma MG-63 cells, whereas inhibiting either SRC kinase activity by siRNA-mediated SRC silence or ERK1/2 phosphorylation by PD98059 treatment suppressed these effects, which suggested that the activation of SRC and ERK1/2 is essential for WNT5A-induced MG-63 cells migration and invasion. Furthermore, ERK1/2 phosphorylation induced by WNT5A was dramatically blocked by SRC siRNA. Additionally, our study further demonstrated that MMP-14 was upregulated after exposure to WNT5A in MG-63 cells, and the increased expression was blocked by SRC siRNA or PD98059. Collectively, these results indicate that WNT5A activates SRC/ERK1/2 signal pathway, leading to the upregulation of MMP-14 expression and MG-63 cells migration and invasion.
Collapse
Affiliation(s)
- Xingwen Wang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Xin Zhao
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Zhigang Yi
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Bing Ma
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Hong Wang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Yanchuan Pu
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Jing Wang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Shuanke Wang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
32
|
Oh SE, Mouradian MM. Cytoprotective mechanisms of DJ-1 against oxidative stress through modulating ERK1/2 and ASK1 signal transduction. Redox Biol 2017; 14:211-217. [PMID: 28954246 PMCID: PMC5614756 DOI: 10.1016/j.redox.2017.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2017] [Revised: 09/09/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
DJ-1 is a highly conserved multifunctional protein linked to both neurodegeneration and neoplasia. Among its various activities is an antioxidant property leading to cytoprotection under oxidative stress conditions. This is associated with the ability to modulate signal transduction events that determine how the cell regulates normal processes such as growth, senescence, apoptosis, and autophagy in order to adapt to environmental stimuli and stresses. Alterations in DJ-1 expression or function can disrupt homeostatic signaling networks and initiate cascades that play a role in the pathogenesis of conditions such as Parkinson's disease and cancer. DJ-1 plays a major role in various signaling pathways. Related to its anti-oxidant properties, it mediates cell survival and proliferation by activating the extracellular signal-regulated kinase (ERK1/2) pathway and attenuates cell death signaling by inhibiting apoptosis signal-regulating kinase 1 (ASK1) activation. Here, we review the ways through which DJ-1 regulates these pathways, focusing on how its regulation of signal transduction contributes to cellular homeostasis and the pathologic states that result from their dysregulation.
Collapse
Affiliation(s)
- Stephanie E Oh
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - M Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States.
| |
Collapse
|
33
|
Han B, Wang J, Gao J, Feng S, Zhu Y, Li X, Xiao T, Qi J, Cui W. DJ-1 as a potential biomarker for the early diagnosis in lung cancer patients. Tumour Biol 2017; 39:1010428317714625. [PMID: 28653888 DOI: 10.1177/1010428317714625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
DJ-1 is a novel oncogene that can transform NIH3T3 cells in cooperation with the activated ras gene. DJ-1 appears to have its greatest effect on tumourigenesis, and it may have a greater impact on early-stage lung cancers. In this study, we proposed to investigate the clinical value of DJ-1 protein in the early diagnosis of lung cancer and compared its diagnostic value with other biomarkers. Preoperative serum DJ-1 levels were measured in 300 lung cancer patients and compared with benign pulmonary disease (n = 44) and healthy volunteers (n = 64). Using tissue microarrays and immunohistochemical analyses, we compared the DJ-1 expression between the primary squamous cell carcinoma tumours and matched metastatic tissues from a lymph node. The baseline preoperative serum DJ-1 of lung cancer patients was significantly higher than that of benign diseases and healthy controls (p < 0.001). In the early-stage subgroup, the median DJ-1 concentration (ng/mL) was significantly higher than that of the advanced stage (12.90 vs 7.75, p < 0.05). Using immunohistochemistry, we observed that the DJ-1 staining intensity was generally weaker and less common in the metastatic tissues compared with that in the primary tumour (McNemar-Bowker Test, p = 0.008). DJ-1 was highly expressed in the early stage of lung cancer, and its expression was significantly decreased after metastasis. Therefore, DJ-1 may be a potential biomarker for the early diagnosis and monitoring of lung cancer metastasis.
Collapse
Affiliation(s)
- Binbin Han
- 1 Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiwen Wang
- 2 Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jia Gao
- 1 Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shana Feng
- 1 Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu Zhu
- 1 Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuexiang Li
- 1 Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Xiao
- 3 State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Qi
- 1 Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Cui
- 1 Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
34
|
Di Cello A, Di Sanzo M, Perrone FM, Santamaria G, Rania E, Angotti E, Venturella R, Mancuso S, Zullo F, Cuda G, Costanzo F. DJ-1 is a reliable serum biomarker for discriminating high-risk endometrial cancer. Tumour Biol 2017; 39:1010428317705746. [DOI: 10.1177/1010428317705746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Annalisa Di Cello
- Unit of Obstetrics and Gynaecology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesca Marta Perrone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Erika Rania
- Unit of Obstetrics and Gynaecology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Elvira Angotti
- Laboratory of Clinical Biochemistry, AOU Mater Domini, Catanzaro, Italy
| | - Roberta Venturella
- Unit of Obstetrics and Gynaecology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Serafina Mancuso
- Laboratory of Clinical Biochemistry, AOU Mater Domini, Catanzaro, Italy
| | - Fulvio Zullo
- Unit of Obstetrics and Gynaecology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
35
|
Tat-DJ-1 enhances cell survival by inhibition of oxidative stress, NF-κB and MAPK activation in HepG2 cells. Biotechnol Lett 2017; 39:511-521. [DOI: 10.1007/s10529-017-2286-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2016] [Accepted: 01/04/2017] [Indexed: 12/29/2022]
|
36
|
Oh SE, Mouradian MM. Regulation of Signal Transduction by DJ-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:97-131. [PMID: 29147906 DOI: 10.1007/978-981-10-6583-5_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
The ability of DJ-1 to modulate signal transduction has significant effects on how the cell regulates normal processes such as growth, senescence, apoptosis, and autophagy to adapt to changing environmental stimuli and stresses. Perturbations of DJ-1 levels or function can disrupt the equilibrium of homeostatic signaling networks and set off cascades that play a role in the pathogenesis of conditions such as cancer and Parkinson's disease.DJ-1 plays a major role in various pathways. It mediates cell survival and proliferation by activating the extracellular signal-regulated kinase (ERK1/2) pathway and the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. It attenuates cell death signaling by inhibiting apoptosis signal-regulating kinase 1 (ASK1) activation as well as by inhibiting mitogen-activated protein kinase kinase kinase 1 (MEKK1/MAP3K1) activation of downstream apoptotic cascades. It also modulates autophagy through the ERK, Akt, or the JNK/Beclin1 pathways. In addition, DJ-1 regulates the transcription of genes essential for male reproductive function, such as spermatogenesis, by relaying nuclear receptor androgen receptor (AR) signaling. In this chapter, we summarize the ways that DJ-1 regulates these pathways, focusing on how its role in signal transduction contributes to cellular homeostasis and the pathologic states that result from dysregulation.
Collapse
Affiliation(s)
- Stephanie E Oh
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - M Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
37
|
Raninga PV, Di Trapani G, Vuckovic S, Tonissen KF. Targeted knockdown of DJ-1 induces multiple myeloma cell death via KLF6 upregulation. Apoptosis 2016; 21:1422-1437. [DOI: 10.1007/s10495-016-1303-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
|
38
|
Abstract
Background This study aimed to investigate the expression of DJ-1 in cervical carcinoma and its effects on cell viability and apoptosis. Material/Methods Cervical carcinoma cell line Hela and 85 tissue samples, including 45 primary tumor biopsies, 30 para-carcinoma tissues, and 10 normal cervical tissues samples were used in this study. The expressions of DJ-1 in cervical carcinoma tissue, para-carcinoma tissue, and normal tissue samples were investigated by immunohistochemistry. DJ-1 expression in Hela cells was also investigated by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. DJ-1 was interfered and transfected with siRNA, then cell viability and apoptosis were assayed by MTT and flow cytometry, respectively. Additionally, the expressions of phosphatase and tensin homolog (PTEN), AKT, and phospho-AKT (P-AKT) were detected. Results Immunohistochemistry results showed that DJ-1 was highly expressed in cervical carcinoma tissues. In Hela cells, the expression of DJ-1 was significantly higher than that in normal controls (P<0.05). When cells were treated with DJ-1 siRNA, the cell viability decreased significantly (P<0.05), and the percentage of apoptosis cells increased significantly (P<0.05). In addition, the expressions of PTEN and AKT were significantly higher in the DJ-1 siRNA treatment group than those in the control group (P<0.05). The expression of p-AKT was significantly lower in the DJ-1 siRNA treatment group than in the control group and the DJ-1 over-expression group (P<0.05). Conclusions The aberrant up-regulation of DJ-1 expression might be an important step in the pathogenesis of cervical carcinoma.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathology, Ankang Hospital of Traditional Chinese Medicine, Ankang, Shaanxi, China (mainland)
| | - Weiwei Gao
- Department of Obstetrics and Gynecology, Ankang Hospital of Traditional Chinese Medicine, Ankang, Shaanxi, China (mainland)
| |
Collapse
|
39
|
Kokuryo T, Hibino S, Suzuki K, Watanabe K, Yokoyama Y, Nagino M, Senga T, Hamaguchi M. Nek2 siRNA therapy using a portal venous port-catheter system for liver metastasis in pancreatic cancer. Cancer Sci 2016; 107:1315-20. [PMID: 27316377 PMCID: PMC5021025 DOI: 10.1111/cas.12993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 01/16/2023] Open
Abstract
Nek2 (NIMA-related kinase 2) is a serine-threonine kinase and human homolog of the mitotic regulator NIMA of Aspergillus nidulan. We reported the efficiency of Nek2 siRNA in several cancer xenograft models using cholangiocarcinoma, breast cancer and colorectal cancer. Pancreatic cancer is difficult to treat due to its rapid progression and resistance to chemotherapy. Novel treatments are urgently required to improve survival in pancreatic cancer, and siRNA are a promising therapeutic option. However, finding an in vivo drug delivery system of siRNA remains a major problem for clinical application. In this study, the overexpression of Nek2 was identified in pancreatic cancer cell lines. Nek2 siRNA inhibited tumor growth in a subcutaneous xenograft mouse model of pancreatic cancer, prolonged the survival time in an intraperitoneal xenograft mouse model and efficiently prevented the progression of liver metastasis using a portal venous port-catheter system. Taken together, Nek2 is an effective therapeutic target in pancreatic cancer. An adequate delivery system is considered important in treating advanced pancreatic cancer, such as peritoneal dissemination and liver metastasis. Further investigations are required on the safety and side effects of the portal venous port-catheter system. We hope that Nek2 siRNA will be a novel therapeutic strategy for pancreatic cancer with liver metastasis and peritoneal dissemination.
Collapse
Affiliation(s)
- Toshio Kokuryo
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shigeru Hibino
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazushi Suzuki
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsutaka Watanabe
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michinari Hamaguchi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
40
|
Schumann C, Chan S, Khalimonchuk O, Khal S, Moskal V, Shah V, Alani AWG, Taratula O, Taratula O. Mechanistic Nanotherapeutic Approach Based on siRNA-Mediated DJ-1 Protein Suppression for Platinum-Resistant Ovarian Cancer. Mol Pharm 2016; 13:2070-83. [PMID: 27170529 DOI: 10.1021/acs.molpharmaceut.6b00205] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
We report an efficient therapeutic modality for platinum resistant ovarian cancer based on siRNA-mediated suppression of a multifunctional DJ-1 protein that is responsible for the proliferation, growth, invasion, oxidative stress, and overall survival of various cancers. The developed therapeutic strategy can work alone or in concert with a low dose of the first line chemotherapeutic agent cisplatin, to elicit a maximal therapeutic response. To achieve an efficient DJ-1 knockdown, we constructed the polypropylenimine dendrimer-based nanoplatform targeted to LHRH receptors overexpressed on ovarian cancer cells. The quantitative PCR and Western immunoblotting analysis revealed that the delivered DJ-1 siRNA downregulated the expression of targeted mRNA and corresponding protein by more than 80% in various ovarian cancer cells. It was further demonstrated that siRNA-mediated DJ-1 suppression dramatically impaired proliferation, viability, and migration of the employed ovarian cancer cells. Finally, the combinatorial approach led to the most pronounced therapeutic response in all the studied cell lines, outperforming both siRNA-mediated DJ-1 knockdown and cisplatin treatment alone. It is noteworthy that the platinum-resistant cancer cells (A2780/CDDP) with the highest basal level of DJ-1 protein are most susceptible to the developed therapy and this susceptibility declines with decreasing basal levels of DJ-1. Finally, we interrogate the molecular underpinnings of the DJ-1 knockdown effects in the treatment of the ovarian cancer cells. By using various experimental techniques, it was revealed that DJ-1 depletion (1) decreases the activity of the Akt pathway, thereby reducing cellular proliferation and migration and increasing the antiproliferative effect of cisplatin on ovarian cancer cells; (2) enhances the activity of p53 tumor suppressor protein therefore restoring cell cycle arrest functionality and upregulating the Bax-caspase pathway, triggering cell death; and (3) weakens the cellular defense mechanisms against inherited oxidative stress thereby increasing toxic intracellular radicals and amplifying the reactive oxygen species created by the administration of cisplatin.
Collapse
Affiliation(s)
- Canan Schumann
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Portland, Oregon 97201, United States
| | - Stephanie Chan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Portland, Oregon 97201, United States
| | - Oleh Khalimonchuk
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Shannon Khal
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Portland, Oregon 97201, United States
| | - Vitaliya Moskal
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Portland, Oregon 97201, United States
| | - Vidhi Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Portland, Oregon 97201, United States
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Portland, Oregon 97201, United States
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Portland, Oregon 97201, United States
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Portland, Oregon 97201, United States
| |
Collapse
|
41
|
Chen LS, Yang JY, Liang H, Cortes JE, Gandhi V. Protein profiling identifies mTOR pathway modulation and cytostatic effects of Pim kinase inhibitor, AZD1208, in acute myeloid leukemia. Leuk Lymphoma 2016; 57:2863-2873. [PMID: 27054578 DOI: 10.3109/10428194.2016.1166489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Pim kinases phosphorylate and regulate a number of key acute myeloid leukemia (AML) cell survival proteins, and Pim inhibitors have recently entered clinical trial for hematological malignancies. AZD1208 is a small molecule pan-Pim kinase inhibitor and AZD1208 treatment resulted in growth inhibition and cell size reduction in AML cell lines including FLT3-WT (OCI-AML-3, KG-1a, and MOLM-16) and FLT3-ITD mutated (MOLM-13 and MV-4-11). There was limited apoptosis induction (<10% increase) in the AML cell lines evaluated with up to 3 μM AZD1208 for 24 h, suggesting that growth inhibition is not through apoptosis induction. Using reverse phase protein array (RPPA) and immunoblot analysis, we identified that AZD1208 resulted in suppression of mTOR signaling, including inhibition of protein phosphorylation of mTOR (Ser2448), p70S6K (Thr389), S6 (Ser235/236), and 4E-BP1 (Ser65). Consistent with mTOR inhibition, there was also a reduction in protein synthesis that correlated with cell size reduction and growth inhibition with AZD1208; our study provides insights into the mechanism of AZD1208.
Collapse
Affiliation(s)
- Lisa S Chen
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ji-Yeon Yang
- b Department of Applied Mathematics , Kumoh National Institute of Technology , Gumi , Korea
| | - Han Liang
- c Department of Bioinformatics and Computational Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,d Department of Systems Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jorge E Cortes
- e Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Varsha Gandhi
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,e Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
42
|
The hypusine cascade promotes cancer progression and metastasis through the regulation of RhoA in squamous cell carcinoma. Oncogene 2016; 35:5304-5316. [PMID: 27041563 DOI: 10.1038/onc.2016.71] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022]
Abstract
Metastasis is a critical factor contributing to poor prognosis in cancer, but the underlying mechanisms of metastasis are still poorly understood. We established a highly metastatic cell subline (HOC313-LM) derived from an oral squamous cell carcinoma cell line (HOC313) for uncovering the mechanisms of metastasis, and identified deoxyhypusine synthase (DHPS) as a metastasis-associated gene within the specific amplification at 19p13.2-p13.13 in HOC313-LM. DHPS-mediated hypusine-modification of eukaryotic translation factor 5A facilitated the translation of RhoA, resulting in the activation of the RhoA signaling pathway and leading to not only increased cell motility, invasion and metastasis of cancer cells in vitro, but also increased tumor growth in vivo. Moreover, the use of N1-Guanyl-1,7-diaminoheptane, a DHPS inhibitor, resulted in a significant decrease in tumor formation in vivo. In patients with esophageal squamous cell carcinoma (ESCC), overexpression of DHPS in ESCC tumors was significantly associated with worse recurrence-free survival, and correlated with distant metastasis. The elucidation of these molecular mechanisms within the hypusine cascade suggests opportunities for novel therapeutic targets in SCC.
Collapse
|
43
|
Abstract
Onset of cancer and neurodegenerative disease occurs by abnormal cell growth and neuronal cell death, respectively, and the number of patients with both diseases has been increasing in parallel with an increase in mean lifetime, especially in developed countries. Although both diseases are sporadic, about 10% of the diseases are genetically inherited, and analyses of such familial forms of gene products have contributed to an understanding of the molecular mechanisms underlying the onset and pathogenesis of these diseases. I have been working on c-myc, a protooncogene, for a long time and identified various c-Myc-binding proteins that play roles in c-Myc-derived tumorigenesis. Among these proteins, some proteins have been found to be also responsible for the onset of neurodegenerative diseases, including Parkinson's disease, retinitis pigmentosa and cerebellar atrophy. In this review, I summarize our findings indicating the common mechanisms of onset between cancer and neurodegenerative diseases, with a focus on genes such as DJ-1 and Myc-Modulator 1 (MM-1) and signaling pathways that contribute to the onset and pathogenesis of cancer and neurodegenerative diseases.
Collapse
|
44
|
Zhou S, Tang X, Tang F. Krüppel-like factor 17, a novel tumor suppressor: its low expression is involved in cancer metastasis. Tumour Biol 2016; 37:1505-1513. [PMID: 26662959 PMCID: PMC4842221 DOI: 10.1007/s13277-015-4588-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
Krüppel-like factor (KLF) family is highly conserved zinc finger transcription factors that regulate cell proliferation, differentiation, apoptosis, and migration. KLF17 is a member of the KLF family. Recent studies have demonstrated that KLF17 low expression and inactivation are caused by microRNA, gene mutation, and loss of heterozygosity in human tumors, which participates in tumor progression. KLF17 low expression increases cancer metastatic viability; its mechanism is that low KLF17 mediates epithelial-mesenchymal transition (EMT) through regulating EMT-related genes expression; the reduced-KLF17 also increases cancer metastasis though upregulating inhibitor of DNA binding 1 (ID1). Additionally, mutant p53 proteins are capable of developing a complex with KLF17, which mediate the depletion of KLF17 inhibiting EMT gene transcription and increases cancer metastasis. KLF17 downregulation also mediates the activation of TGF-β pathway.
Collapse
Affiliation(s)
- Shan Zhou
- Medical Research Center and Clinical Laboratory, Zhuhai People’s Hospital and Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000 Guangdong China
| | - Xiaowei Tang
- Metallurgical Science and Engineering, Central South University, 21# Lushan South Road, Changsha, 410083 China
| | - Faqing Tang
- Medical Research Center and Clinical Laboratory, Zhuhai People’s Hospital and Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000 Guangdong China
| |
Collapse
|
45
|
Pai P, Rachagani S, Lakshmanan I, Macha MA, Sheinin Y, Smith LM, Ponnusamy MP, Batra SK. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol 2015; 10:224-39. [PMID: 26526617 DOI: 10.1016/j.molonc.2015.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 01/15/2023] Open
Abstract
Aberrant Wnt signaling frequently occurs in pancreatic cancer (PC) and contributes to disease progression/metastases. Likewise, the transmembrane-mucin MUC4 is expressed de novo in early pancreatic intraepithelial neoplasia (PanINs) and incrementally increases with PC progression, contributing to metastasis. To determine the mechanism of MUC4 upregulation in PC, we examined factors deregulated in early PC progression, such as Wnt/β-catenin signaling. MUC4 promoter analysis revealed the presence of three putative TCF/LEF-binding sites, leading us to hypothesize that MUC4 can be regulated by β-catenin. Immunohistochemical (IHC) analysis of rapid autopsy PC tissues showed a correlation between MUC4 and cytosolic/nuclear β-catenin expression. Knock down (KD) of β-catenin in CD18/HPAF and T3M4 cell lines resulted in decreased MUC4 transcript and protein. Three MUC4 promoter luciferase constructs, p3778, p3000, and p2700, were generated. The construct p3778, encompassing the entire MUC4 promoter, elicited increased luciferase activity in the presence of stabilized β-catenin. Mutation of the TCF/LEF site closest to the transcription start site (i.e., -2629/-2612) and furthest from the start site (i.e., -3425/-3408) reduced MUC4 promoter luciferase activity. Transfection with dominant negative TCF4 decreased MUC4 transcript and protein levels. Chromatin immunoprecipitation confirmed enrichment of β-catenin on -2629/-2612 and -3425/-3408 of the MUC4 promoter in CD18/HPAF. Functionally, CD18/HPAF and T3M4 β-catenin KD cells showed decreased migration and decreased Vimentin, N-cadherin, and pERK1/2 expression. Tumorigenicity studies in athymic nude mice showed CD18/HPAF β-catenin KD cells significantly reduced primary tumor sizes and metastases compared to scrambled control cells. We show for the first time that β-catenin directly governs MUC4 in PC.
Collapse
Affiliation(s)
- Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Yuri Sheinin
- Department of Pathology and Microbiology, UNMC, Omaha, NE 68198-5900, USA
| | - Lynette M Smith
- Department of Biostatistics, UNMC College of Public Health, UNMC, Omaha, NE 68198-4375, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, UNMC, Omaha, NE 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, UNMC, Omaha, NE 68198-5950, USA; Fred and Pamela Buffett Cancer Center, UNMC, Omaha, NE 68198, USA.
| |
Collapse
|
46
|
Hintsala HR, Soini Y, Haapasaari KM, Karihtala P. Dysregulation of redox-state-regulating enzymes in melanocytic skin tumours and the surrounding microenvironment. Histopathology 2015; 67:348-57. [PMID: 25627040 DOI: 10.1111/his.12659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2014] [Accepted: 01/22/2015] [Indexed: 11/26/2022]
Abstract
AIMS To investigate redox-regulating enzymes that may have a special role in melanoma pathogenesis due to continuous exposure to microenvironment-produced and ultraviolet radiation-induced oxidative stress. METHODS AND RESULTS We assessed immunohistochemically the expression of antioxidant enzymes peroxiredoxins (Prxs) I-IV, sulfiredoxin (Srx) and redox-regulated proto-oncogene DJ-1 in material consisting of 30 benign naevi, 14 lentigo malignas and 67 malignant melanomas. Evaluation of immunostaining was performed with special attention paid to protein expression in different tumour compartments. In particular, the expression patterns of nuclear Prx I and Prx II and cytoplasmic DJ-1 were decreased significantly in melanomas compared with dysplastic and benign naevi. In multivariate analysis, several prognostic factors were identified: Prx III expression in the cytoplasm of stromal fibroblasts was associated with shortened melanoma-specific survival [hazard ratio (HR) 6.730; 95% confidence interval (CI) 1.579-28.689], while cytoplasmic Prx IV expression in endothelial cells (HR 6.563; 95% CI 1.750-24.620) and Srx expression in the cytoplasm of keratinocytes (HR 6.988; 95% CI 1.559-31.324) were associated with better prognosis independently of ulceration, thickness of melanoma or its diagnostic type. CONCLUSIONS Redox-regulating enzymes have the potential to serve as novel prognostic factors and targeting them may offer new therapeutic options in malignant melanoma.
Collapse
Affiliation(s)
- Hanna-Riikka Hintsala
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Cancer Center of Eastern Finland, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
- University of Oulu and Department of Pathology, Oulu University Hospital, Oulu, Finland
- Department of Oncology and Radiotherapy, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ylermi Soini
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Cancer Center of Eastern Finland, Kuopio, Finland
| | | | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
47
|
Tanti GK, Pandey S, Goswami SK. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt. Biochem Biophys Res Commun 2015; 463:524-31. [DOI: 10.1016/j.bbrc.2015.05.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023]
|
48
|
Takahashi-Niki K, Kato-Ose I, Murata H, Maita H, Iguchi-Ariga SMM, Ariga H. Epidermal Growth Factor-dependent Activation of the Extracellular Signal-regulated Kinase Pathway by DJ-1 Protein through Its Direct Binding to c-Raf Protein. J Biol Chem 2015; 290:17838-17847. [PMID: 26048984 DOI: 10.1074/jbc.m115.666271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2015] [Indexed: 11/06/2022] Open
Abstract
DJ-1 is an oncogene and also a causative gene for familial Parkinson disease. DJ-1 has various functions, and the oxidative status of cysteine at position 106 (Cys-106) is crucial for determination of the activation level of DJ-1. Although DJ-1 requires activated Ras for its oncogenic activity and although it activates the extracellular signal-regulated kinase (ERK) pathway, a cell growth pathway downstream of Ras, the precise mechanism underlying activation of the ERK pathway by DJ-1 is still not known. In this study, we found that DJ-1 directly bound to the kinase domain of c-Raf but not to Ras and that Cys-106 mutant DJ-1 bound to c-Raf more weakly than did wild-type DJ-1. Co-localization of DJ-1 with c-Raf in the cytoplasm was enhanced in epidermal growth factor (EGF)-treated cells. Knockdown of DJ-1 expression attenuated the phosphorylation level of c-Raf in EGF-treated cells, resulting in reduced activation of MEK and ERK1/2. Although EGF-treated DJ-1 knock-out cells also showed attenuated c-Raf activation, reintroduction of wild-type DJ-1, but not C106S DJ-1, into DJ-1 knock-out cells restored c-Raf activation in a DJ-1 binding activity in a c-Raf-dependent manner. DJ-1 was not responsible for activation of c-Raf in phorbol myristate acetate-treated cells. Furthermore, DJ-1 stimulated self-phosphorylation activity of c-Raf in vitro, but DJ-1 was not a target for Raf kinase. Oxidation of Cys-106 in DJ-1 was not affected by EGF treatment. These findings showed that DJ-1 is a positive regulator of the EGF/Ras/ERK pathway through targeting c-Raf.
Collapse
Affiliation(s)
| | - Izumi Kato-Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812
| | - Hiroaki Murata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812
| | - Hiroshi Maita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812
| | | | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812.
| |
Collapse
|
49
|
DJ-1-induced phosphatase and tensin homologue downregulation is associated with proliferative and invasive activity of laryngeal cancer cells. Mol Med Rep 2015; 12:2003-8. [DOI: 10.3892/mmr.2015.3617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2014] [Accepted: 03/12/2015] [Indexed: 11/05/2022] Open
|
50
|
Chen LL, Tian JJ, Su L, Jing Y, Zhang SC, Zhang HX, Wang XQ, Zhu CB. DJ-1: a promising marker in metastatic uveal melanoma. J Cancer Res Clin Oncol 2015; 141:315-21. [PMID: 25129821 DOI: 10.1007/s00432-014-1804-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2014] [Accepted: 08/08/2014] [Indexed: 01/30/2023]
Abstract
PURPOSE Overexpression of DJ-1 was associated with metastatic uveal melanoma (UM). The purpose of this study was to evaluate the potential of serum DJ-1 as a biomarker for metastasis of uveal melanoma. METHODS Serum DJ-1 levels were determined by ELISA assays in 27 patients with metastatic UM metastatic uveal melanoma and in 76 patients who were disease free for at least 10 years and 30 age- and sex-matched controls. Receiver operating characteristic (ROC) curve was used to evaluate the feasibility of DJ-1 in detection of metastatic uveal melanoma. RESULTS Serum DJ-1 levels were significantly higher in patients with metastatic UM compared with patients who were disease free for at least 10 years (P < 0.001) or with controls (P < 0.001). ROC curve for DJ-1 revealed an area under the curve of 86.3%, and when 3.350 ng/mL was used as the cutoff value, a sensitivity of 74.1% and a specificity of 94.3% were achieved. Comparison of DJ-1 and liver function tests (LFTs) ROC curves indicated that DJ-1 was superior to LFTs in detection of metastatic UM. CONCLUSIONS Our data suggest that DJ-1 might be a promising serum marker for monitoring metastatic uveal melanoma.
Collapse
Affiliation(s)
- Li-Li Chen
- Department of Traditional Chinese Medicine Ophthalmology, Jinan 2nd People's Hospital (The Ophthalmologic Hospital of Jinan), Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|