1
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zhao L, Ma XK, Liu Y, Yue YB, Yan M. [Correlation between 25-hydroxyvitamin D and nephroblastoma in children and its value in assessing disease prognosis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:483-488. [PMID: 37272174 DOI: 10.7499/j.issn.1008-8830.2212089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
OBJECTIVES To study the correlation between 25-hydroxyvitamin D [25-(OH)D] and nephroblastoma in children and its value in assessing the prognosis of the disease. METHODS A total of 50 children with nephroblastoma who were admitted from January 2018 to December 2022 were included as the nephroblastoma group, and according to the postoperative pathological type, they were divided into a good prognosis group with 38 children and a poor prognosis group with 12 children. A total of 50 healthy children who underwent physical examination during the same period of time served as the healthy control group. The above groups were compared in terms of serum creatinine and 25-(OH)D level. A Spearman correlation analysis was used to investigate the correlation between serum 25-(OH)D level and therapeutic effect reaction. A multivariate logistic regression analysis was used to identify the risk factors affecting the prognosis of nephroblastoma in children. RESULTS The nephroblastoma group had significantly lower levels of serum creatinine and 25-(OH)D than the healthy control group (P<0.05). Compared with the good prognosis group, the poor prognosis group had a significantly larger tumor diameter, a significantly higher proportion of children with stage III-IV tumors, a significantly higher rate of tumor metastasis, and significantly lower serum levels of creatinine and 25-(OH)D (P<0.05). The Spearman correlation analysis showed that serum 25-(OH)D level was negatively correlated with therapeutic effect reaction (rs=-0.685, P<0.001). The multivariate logistic regression analysis showed that tumor diameter ≥10 cm, stage III-IV tumors, presence of tumor metastasis, and 25-(OH)D <19 ng/mL were closely associated with the poor prognosis of nephroblastoma in children (P<0.05). Serum 25-(OH)D level had an area under the curve of 0.805 (95%CI: 0.706-0.903, P<0.001) in evaluating the prognosis of nephroblastoma in children, with a Youden index of 0.512, a sensitivity of 0.938, and a specificity of 0.575 at the optimal cut-off value of 1.764 ng/mL. CONCLUSIONS There is a significant correlation between 25-(OH)D level and the prognosis of nephroblastoma in children, and 25-(OH)D can be used for prognosis prediction.
Collapse
Affiliation(s)
- Li Zhao
- Department of Pediatrics, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Xu-Kai Ma
- Department of Pediatrics, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Yu Liu
- Department of Pediatrics, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Ying-Bin Yue
- Department of Pediatrics, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Mei Yan
- Department of Pediatrics, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| |
Collapse
|
3
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| |
Collapse
|
4
|
Huang J, An Q, Ju BM, Zhang J, Fan P, He L, Wang L. Role of vitamin D/VDR nuclear translocation in down-regulation of NF-κB/NLRP3/caspase-1 axis in lupus nephritis. Int Immunopharmacol 2021; 100:108131. [PMID: 34536747 DOI: 10.1016/j.intimp.2021.108131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Vitamin D receptor (VDR) and NLRP3 inflammasome play critical roles in lupus nephritis (LN) pathogenesis. AIM OF THE STUDY This study explored the therapeutic effect of VDR agonist on LN and its molecular mechanism to inhibit NLRP3 signalling. METHODS C57BL/6 mice, lupus-prone MRL/lpr mice, and VDR agonist paricacitol-treated MRL/lpr mice (300 ng/kg/mouse per dose, 5 times/week for 8 weeks from 8 weeks old) were used to assess kidney histopathology and measure proteinuria, serum anti-ds-DNA antibody and expression of NF-κB/NLRP3/caspase-1/IL-1β/IL-18 axis. We used mouse renal tubular epithelial cells (mRTECs) to identify protein-protein interactions and examine the effects of paricalcitol. RESULTS AND CONCLUSION LN pathogenesis decreased after paricalcitol treatment. We observed a marked improvement in renal pathology and a time-dependent decrease urine protein and serum anti-dsDNA antibody levels. In 16-week-old MRL/lpr LN mice, the upregulated expression of NLRP3/caspase-1/IL-1β/IL-18 axis was significantly downregulated after paricalcitol treatment. Paricalcitol can reverse the apoptosis induced by anti-dsDNA antibody via the NF-κB/NLRP3/caspase-1/IL-1β/IL-18 axis in mRTECs. Furthermore, paricalcitol suppressed NF-κB nuclear translocation by competitively binding to importin-4. In summary, the VDR agonist can alleviate LN by modulating the NF-κB/NLRP3/caspase-1/IL-1β/IL-18 axis and suppressing the NF-κB nuclear translocation.
Collapse
Affiliation(s)
- Jing Huang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qi An
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Bo-Miao Ju
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jing Zhang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ping Fan
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Lan He
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Lei Wang
- The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an 710004, Shaanxi, China.
| |
Collapse
|
5
|
Fang P, Zhou L, Lim LY, Fu H, Yuan ZX, Lin J. Targeting Strategies for Renal Cancer Stem Cell Therapy. Curr Pharm Des 2020; 26:1964-1978. [PMID: 32188377 DOI: 10.2174/1381612826666200318153106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is an intractable genitourinary malignancy that accounts for approximately 4% of adult malignancies. Currently, there is no approved targeted therapy for RCC that has yielded durable remissions, and they remain palliative in intent. Emerging evidence has indicated that renal tumorigenesis and RCC treatment-resistance may originate from renal cancer stem cells (CSCs) with tumor-initiating capacity (CSC hypothesis). A better understanding of the mechanism underlying renal CSCs will help to dissect RCC heterogeneity and drug treatment efficiency, to promote more personalized and targeted therapies. In this review, we summarized the stem cell characteristics of renal CSCs. We outlined the targeting strategies and challenges associated with developing therapies that target renal CSCs angiogenesis, immunosuppression, signaling pathways, surface biomarkers, microRNAs and nanomedicine. In conclusion, CSCs are an important role in renal carcinogenesis and represent a valid target for treatment of RCC patients.
Collapse
Affiliation(s)
- Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuting Zhou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lee Y Lim
- Department of Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA 6009, Perth, Australia
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Li Y, Lin Q, Chang S, Zhang R, Wang J. Vitamin D3 mediates miR-15a-5p inhibition of liver cancer cell proliferation via targeting E2F3. Oncol Lett 2020; 20:292-298. [PMID: 32565955 PMCID: PMC7285896 DOI: 10.3892/ol.2020.11572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D3 has been demonstrated to suppress the development and progression of liver cancer, but the mechanism is unclear. The effects of vitamin D3 and microRNA (miR)-15a-5p on liver cancer cells were investigated in the present study using MTT and colony formation assays, flow cytometry, western blotting and reverse transcription-quantitative PCR. A dual-luciferase reporter assay was performed to determine whether E2F transcription factor 3 (E2F3) was a target of miR-15a-5p. The effects of silencing the E2F3 gene expression in liver cancer cells were investigated using a small interfering RNA. Vitamin D3 suppressed liver cancer cell proliferation, induced apoptosis and increased miR-15a-5p expression. Treatment with the miR-15a-5p mimics significantly suppressed liver cancer cell proliferation compared with that of the controls. Bioinformatics analysis and a dual-luciferase reporter assay demonstrated that E2F3 was a target of miR-15a-5p and that silencing E2F3 inhibited liver cancer cell proliferation. Therefore, Vitamin D3 suppressed cell proliferation by miR-15a-5p-mediated silencing of E2F3 gene expression. These findings suggested a role for vitamin D3 and E2F3 targeting as potential novel liver cancer therapies.
Collapse
Affiliation(s)
- Yulong Li
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China.,Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qiang Lin
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Su'E Chang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Rong Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jingjie Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
7
|
Slominski AT, Brożyna AA, Zmijewski MA, Janjetovic Z, Kim TK, Slominski RM, Tuckey RC, Mason RS, Jetten AM, Guroji P, Reichrath J, Elmets C, Athar M. The Role of Classical and Novel Forms of Vitamin D in the Pathogenesis and Progression of Nonmelanoma Skin Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:257-283. [PMID: 32918223 PMCID: PMC7490773 DOI: 10.1007/978-3-030-46227-7_13] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonmelanoma skin cancers including basal and squamous cell carcinomas (SCC and BCC) represent a significant clinical problem due to their relatively high incidence, imposing an economic burden to healthcare systems around the world. It is accepted that ultraviolet radiation (UVR: λ = 290-400 nm) plays a crucial role in the initiation and promotion of BCC and SCC with UVB (λ = 290-320 nm) having a central role in this process. On the other hand, UVB is required for vitamin D3 (D3) production in the skin, which supplies >90% of the body's requirement for this prohormone. Prolonged exposure to UVB can also generate tachysterol and lumisterol. Vitamin D3 itself and its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 hydroxyderivatives show photoprotective functions in the skin. These include regulation of keratinocyte proliferation and differentiation, induction of anti-oxidative responses, inhibition of DNA damage and induction of DNA repair mechanisms, and anti-inflammatory activities. Studies in animals have demonstrated that D3 hydroxyderivatives can attenuate UVB or chemically induced epidermal cancerogenesis and inhibit growth of SCC and BCC. Genomic and non-genomic mechanisms of action have been suggested. In addition, vitamin D3 itself inhibits hedgehog signaling pathways which have been implicated in many cancers. Silencing of the vitamin D receptor leads to increased propensity to develop UVB or chemically induced epidermal cancers. Other targets for vitamin D compounds include 1,25D3-MARRS, retinoic orphan receptors α and γ, aryl hydrocarbon receptor, and Wnt signaling. Most recently, photoprotective effects of lumisterol hydroxyderivatives have been identified. Clinical trials demonstrated a beneficial role of vitamin D compounds in the treatment of actinic keratosis. In summary, recent advances in vitamin D biology and pharmacology open new exciting opportunities in chemoprevention and treatment of skin cancers.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- VA Medical Center, Birmingham, AL, USA.
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radomir M Slominski
- Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Rebecca S Mason
- Physiology & Bosch Institute, School of Medical Sciences, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Purushotham Guroji
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jörg Reichrath
- Center for Clinical and Experimental Photodermatology and Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Ibe K, Yamada T, Okamoto S. Synthesis and vitamin D receptor affinity of 16-oxa vitamin D 3 analogues. Org Biomol Chem 2019; 17:10188-10200. [PMID: 31769776 DOI: 10.1039/c9ob02339a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel 16-oxa-vitamin D3 analogues were synthesized using a tandem Ti(ii)-mediated enyne cyclization/Cu-catalyzed allylation, Ru-catalyzed ring-closing metathesis reaction, and a low-valent titanium (LVT)-mediated stereoselective radical reduction of 8α,14α-epoxide as the key steps for the synthesis of the 16-oxa-C,D ring unit. The vitamin D receptor-binding affinity of the synthesized analogues, 16-oxa-1α,25-(OH)2VD3 and 16-oxa-19-nor-1α,25-(OH)2VD3, was evaluated by fluorescence polarization vitamin D receptor competitor assay and time-resolved fluorescence energy transfer vitamin D receptor co-activator assay.
Collapse
Affiliation(s)
- Kouta Ibe
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Takeshi Yamada
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Sentaro Okamoto
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| |
Collapse
|
9
|
Abdel-Rahman N, Sharawy MH, Megahed N, El-Awady MS. Vitamin D3 abates BDL-induced cholestasis and fibrosis in rats via regulating Hedgehog pathway. Toxicol Appl Pharmacol 2019; 380:114697. [DOI: 10.1016/j.taap.2019.114697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022]
|
10
|
Faye PA, Poumeaud F, Miressi F, Lia AS, Demiot C, Magy L, Favreau F, Sturtz FG. Focus on 1,25-Dihydroxyvitamin D3 in the Peripheral Nervous System. Front Neurosci 2019; 13:348. [PMID: 31031586 PMCID: PMC6474301 DOI: 10.3389/fnins.2019.00348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, we draw attention to the roles of calcitriol (1,25-dihydroxyvitamin D3) in the trophicity of the peripheral nervous system. Calcitriol has long been known to be crucial in phosphocalcium homeostasis. However, recent discoveries concerning its involvement in the immune system, anti-cancer defenses, and central nervous system development suggest a more pleiotropic role than previously thought. Several studies have highlighted the impact of calcitriol deficiency as a promoting factor of various central neurological diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Based on these findings and recent publications, a greater role for calcitriol may be envisioned in the peripheral nervous system. Indeed, calcitriol is involved in myelination, axonal homogeneity of peripheral nerves, and neuronal-cell differentiation. This may have useful clinical consequences, as calcitriol supplementation may be a simple means to avoid the onset and/or development of peripheral nervous-system disorders.
Collapse
Affiliation(s)
- Pierre Antoine Faye
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, Limoges, France
| | - François Poumeaud
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Federica Miressi
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Anne Sophie Lia
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, Limoges, France
| | - Claire Demiot
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Laurent Magy
- CHU de Limoges, Reference Center for Rare Peripheral Neuropathies, Department of Neurology, Limoges, France
| | - Frédéric Favreau
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, Limoges, France
| | - Franck G. Sturtz
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, Limoges, France
| |
Collapse
|
11
|
Zhu H, Lu J, Zhao H, Chen Z, Cui Q, Lin Z, Wang X, Wang J, Dong H, Wang S, Tan J. Functional Long Noncoding RNAs (lncRNAs) in Clear Cell Kidney Carcinoma Revealed by Reconstruction and Comprehensive Analysis of the lncRNA-miRNA-mRNA Regulatory Network. Med Sci Monit 2018; 24:8250-8263. [PMID: 30444862 PMCID: PMC6251074 DOI: 10.12659/msm.910773] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A variety of treatment strategies have been developed for clear cell kidney carcinoma (KIRC); however, there is still a need for effective therapeutic targets and prognostic molecular biomarkers. Given that long noncoding RNAs (lncRNAs) has been emerging as an important regulator in tumorigenesis, we explored potential functional lncRNAs in KIRC by comprehensively analyzing the lncRNA-miRNA-mRNA regulatory network with bioinformatics processing tools. MATERIAL AND METHODS RNA-seq/miRNA-seq data of KIRC in The Cancer Genome Atlas (TCGA) were obtained and analyzed. The "edgeR" package in R software was used to identify differentially expressed lncRNAs (DElncRNAs, differentially expressed long noncoding RNAs), miRNAs (DEmiRNAs, differentially expressed micro RNAs), and mRNAs (DEmRNAs, differentially expressed messenger RNAs) in KIRC and normal samples. A global triple network was conducted based on the competing endogenous RNA (ceRNA) theory, and survival analysis was conducted by "survival" package in R software. RESULTS A total of 4246 DElncRNAs, 179 DEmiRNAs, and 5758 DEmRNAs were identified, among which a subset of them (321 lncRNAs, 26 miRNAs, and 1068 mRNAs) were found to constitute a global ceRNA network in KIRC. Four lncRNAs (ENTPD3-AS1, FGD5-AS1, LIFR-AS1, and UBAC2-AS1) were revealed to be potential therapeutic targets as well as prognostic biomarkers of KIRC by our extensive functional analysis. CONCLUSIONS We reported here the identification of functional lncRNAs in KIRC via a TCGA data-based bioinformatics analysis. We believe that this study might contribute to improving the comprehension of the lncRNA-mediated ceRNA regulatory mechanisms in the tumorigenesis of KIRC. Meanwhile, our results suggested that 4 lncRNAs might act as potential therapeutic targets or candidate prognostic biomarkers in KIRC.
Collapse
|
12
|
Qian W, Kong X, Zhang T, Wang D, Song J, Li Y, Li X, Geng H, Min J, Kong Q, Liu J, Liu Z, Wang D, Zhang Z, Yu D, Zhong C. Cigarette smoke stimulates the stemness of renal cancer stem cells via Sonic Hedgehog pathway. Oncogenesis 2018; 7:24. [PMID: 29540668 PMCID: PMC5852977 DOI: 10.1038/s41389-018-0029-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/05/2017] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are essentially responsible for tumor initiation, growth, progression, metastasis and recurrence, and cigarette smoke (CS) is closely involved in the occurrence and development of kidney cancer. However, the effect of CS on renal CSCs has not been elucidated yet. In the present study, tumorsphere formation assay was used to enrich renal CSCs from 786-O and ACHN cells. We illustrated that CS effectively promoted renal CSCs stemness by enhancing tumorsphere formation, increasing the expression of renal CSCs markers (CD133, CD44, ALDHA1, Oct4, and Nanog) and elevating CD133+ cell population. Moreover, our results showed that CS triggered the activation of Sonic Hedgehog (SHH) pathway, while inhibition of SHH pathway dampened the promotive effects of CS on renal CSCs. Finally, higher levels of renal CSCs markers and SHH pathway-related proteins were observed in kidney cancer tissues from smokers than non-smoking cancer tissues. Taken together, these results demonstrated the important role of SHH pathway in regulating CS-induced renal CSCs stemness augment. Findings from this study could provide new insight into the molecular mechanisms of CS-elicited stemness of renal CSCs.
Collapse
Affiliation(s)
- Weiwei Qian
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiaochuan Kong
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Dengdian Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jin Song
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jie Min
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qi Kong
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jie Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhiqi Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Daming Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhiqiang Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
13
|
Lang H, Béraud C, Bethry A, Danilin S, Lindner V, Coquard C, Rothhut S, Massfelder T. Establishment of a large panel of patient-derived preclinical models of human renal cell carcinoma. Oncotarget 2018; 7:59336-59359. [PMID: 27449081 PMCID: PMC5312316 DOI: 10.18632/oncotarget.10659] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 07/05/2016] [Indexed: 12/15/2022] Open
Abstract
The objective of the present work was to establish a large panel of preclinical models of human renal cell carcinoma (RCC) directly from patients, faithfully reproducing the biological features of the original tumor. RCC tissues (all stages/subtypes) were collected for 8 years from 336 patients undergoing surgery, xenografted subcutaneously in nude mice, and serially passaged into new mice up to 13 passages. Tissue samples from the primary tumor and tumors grown in mice through passages were analyzed for biological tissue stability by histopathology, mRNA profiling, von Hippel-Lindau gene sequencing, STR fingerprinting, growth characteristics and response to current therapies. Metastatic models were also established by orthotopic implantation and analyzed by imagery. We established a large panel of 30 RCC models (passage > 3, 8.9% success rate). High tumor take rate was associated with high stage and grade. Histopathologic, molecular and genetic characteristics were preserved between original tumors and case-matched xenografts. The models reproduced the sensitivity to targeted therapies observed in the clinic. Overall, these models constitute an invaluable tool for the clinical design of efficient therapies, the identification of predictive biomarkers and translational research.
Collapse
Affiliation(s)
- Hervé Lang
- Department of Urology, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, 67091 France
| | - Claire Béraud
- UROLEAD SAS, School of Medicine, Strasbourg, 67085 France
| | - Audrey Bethry
- UROLEAD SAS, School of Medicine, Strasbourg, 67085 France
| | - Sabrina Danilin
- INSERM U1113, Section of Cell Signalisation and Communication in Kidney and Prostate Cancer, University of Strasbourg, School of Medicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67085 France
| | - Véronique Lindner
- Department of Pathology, Hôpitaux Universitaires de Strasbourg, Hôpital de Strasbourg-Hautepierre, Strasbourg, 67200 France
| | - Catherine Coquard
- INSERM U1113, Section of Cell Signalisation and Communication in Kidney and Prostate Cancer, University of Strasbourg, School of Medicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67085 France
| | - Sylvie Rothhut
- INSERM U1113, Section of Cell Signalisation and Communication in Kidney and Prostate Cancer, University of Strasbourg, School of Medicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67085 France
| | - Thierry Massfelder
- INSERM U1113, Section of Cell Signalisation and Communication in Kidney and Prostate Cancer, University of Strasbourg, School of Medicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67085 France
| |
Collapse
|
14
|
Protective Effect of 1,25-Dihydroxy Vitamin D3 on Pepsin-Trypsin-Resistant Gliadin-Induced Tight Junction Injuries. Dig Dis Sci 2018; 63:92-104. [PMID: 28871457 DOI: 10.1007/s10620-017-4738-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tight junction (TJ) injuries induced by pepsin-trypsin-resistant gliadin (PT-G) play an important role in the pathogenesis of celiac disease. Previously, 1,25-dihydroxy vitamin D3 (VD3) was reported to be a TJ regulator that attenuates lipopolysaccharide- and alcohol-induced TJ injuries. However, whether VD3 can attenuate PT-G-induced TJ injuries is unknown. AIM The aim of this study was to evaluate the effects of VD3 on PT-G-induced TJ injuries. METHODS Caco-2 monolayers were used as in vitro models. After being cultured for 21 days, the monolayers were treated with PT-G plus different concentrations of VD3. Then, the changes in trans-epithelial electrical resistance and FITC-dextran 4000 (FD-4) flux were determined to evaluate the monolayer barrier function. TJ protein levels were measured to assess TJ injury severity, and myeloid differentiation factor 88 (MyD88) expression and zonulin release levels were determined to estimate zonulin release signaling pathway activity. Additionally, a gluten-sensitized mouse model was established as an in vivo model. After the mice were treated with VD3 for 7 days, we measured serum FD-4 concentrations, TJ protein levels, MyD88 expression, and zonulin release levels to confirm the effect of VD3. RESULTS Both in vitro and in vivo, VD3 significantly attenuated the TJ injury-related increase in intestinal mucosa barrier permeability. Moreover, VD3 treatment up-regulated TJ protein expression levels and significantly decreased MyD88 expression and zonulin release levels. CONCLUSIONS VD3 has protective effects against PT-G-induced TJ injuries both in vitro and in vivo, which may correlate with the disturbance of the MyD88-dependent zonulin release signaling pathway.
Collapse
|
15
|
Yang S, Li A, Wang J, Liu J, Han Y, Zhang W, Li YC, Zhang H. Vitamin D Receptor: A Novel Therapeutic Target for Kidney Diseases. Curr Med Chem 2018; 25:3256-3271. [PMID: 29446731 PMCID: PMC6142412 DOI: 10.2174/0929867325666180214122352] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Kidney disease is a serious problem that adversely affects human health, but critical knowledge is lacking on how to effectively treat established chronic kidney disease. Mounting evidence from animal and clinical studies has suggested that Vitamin D Receptor (VDR) activation has beneficial effects on various renal diseases. METHODS A structured search of published research literature regarding VDR structure and function, VDR in various renal diseases (e.g., IgA nephropathy, idiopathic nephrotic syndrome, renal cell carcinoma, diabetic nephropathy, lupus nephritis) and therapies targeting VDR was performed for several databases. RESULT Included in this study are the results from 177 published research articles. Evidence from these papers indicates that VDR activation is involved in the protection against renal injury in kidney diseases by a variety of mechanisms, including suppression of RAS activation, anti-inflammation, inhibiting renal fibrogenesis, restoring mitochondrial function, suppression of autoimmunity and renal cell apoptosis. CONCLUSION VDR offers an attractive druggable target for renal diseases. Increasing our understanding of VDR in the kidney is a fertile area of research and may provide effective weapons in the fight against kidney diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Zhang
- Address correspondence to this author is at the Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Tel: 86-731-88638238; E-mail:
| |
Collapse
|
16
|
Bao C, Kramata P, Lee HJ, Suh N. Regulation of Hedgehog Signaling in Cancer by Natural and Dietary Compounds. Mol Nutr Food Res 2017; 62. [PMID: 29164817 DOI: 10.1002/mnfr.201700621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/14/2017] [Indexed: 12/12/2022]
Abstract
The aberrant Hedgehog (Hh) signaling induced by mutations or overexpression of the signaling mediators has been implicated in cancer, associated with processes including inflammation, tumor cell growth, invasion, and metastasis, as well as cancer stemness. Small molecules targeting the regulatory components of the Hh signaling pathway, especially Smoothened (Smo), have been developed for the treatment of cancer. However, acquired resistance to a Smo inhibitor vismodegib observed in clinical trials suggests that other Hh signaling components need to be explored as potential anticancer targets. Natural and dietary compounds provide a resource for the development of potent agents affecting intracellular signaling cascades, and numerous studies have been conducted to evaluate the efficacy of natural products in targeting the Hh signaling pathway. In this review, we summarize the role of Hh signaling in tumorigenesis, discuss results from recent studies investigating the effect of natural products and dietary components on Hh signaling in cancer, and provide insight on novel small molecules as potential Hh signaling inhibitors.
Collapse
Affiliation(s)
- Cheng Bao
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Pavel Kramata
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hong Jin Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
17
|
Shen Y, Yu D, Qi P, Wang X, Guo X, Zhang A. Calcitriol induces cell senescence of kidney cancer through JMJD3 mediated histone demethylation. Oncotarget 2017; 8:100187-100195. [PMID: 29245970 PMCID: PMC5725012 DOI: 10.18632/oncotarget.22124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Calcitriol, also known as 1,25-dihydroxyvitamin D3 (1,25(OH)2VD3), is a biologically active form of vitamin D and has a wide range of anticancer activity against various cancer cell lines. However, the mechanism of calcitriol remains to be further studied. In this study, the biological effect and epigenetic regulation of calcitriol on kidney cancer cells were investigated. Calcitriol can significantly inhibit cell proliferation of kidney cancer cell lines 786-O (P<0.05). Calcitriol also induced cell apoptosis and senescence of 786-O and ACHN (P<0.05). Calcitriol can increase the expression of histone demethylase JMJD3 and cell senescence marker p16INK4A (P<0.05). Knockdown of JMJD3 decreased p16INK4A upregulation after calcitriol treatment (P<0.05), and also reduced calcitriol-induced cell senescence (P<0.05). This study reveals a new mechanism of anticancer activity of calcitriol by showing that histone demethylase JMJD3 induced by calcitriol increases p16INK4A expression and cell senescence. Therefore, these results provide new strategy for treatment and prevention of kidney cancer.
Collapse
Affiliation(s)
- Yongqing Shen
- Department of Nursing, Hebei University of Chinese Medicine, Shijiazhuang 050020, Hebei, China
| | - Dan Yu
- Longgang District Central Hospital, Shenzhen 518116, Guangdong, China
| | - Pan Qi
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei, China
| | - Xuliang Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Xiaoqiang Guo
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong, China.,Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, Guangdong, China
| | - Aili Zhang
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei, China
| |
Collapse
|
18
|
Makarova A, Wang G, Dolorito JA, Kc S, Libove E, Epstein EH. Vitamin D 3 Produced by Skin Exposure to UVR Inhibits Murine Basal Cell Carcinoma Carcinogenesis. J Invest Dermatol 2017; 137:2613-2619. [PMID: 28774592 DOI: 10.1016/j.jid.2017.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 01/14/2023]
Abstract
The effect of UVR on human basal cell carcinoma (BCC) epidemiology is complex-the incidence rises until approximately 30,000 hours of lifetime sunlight exposure and then plateaus. We hypothesize that UVR has opposing effects on BCC carcinogenesis-stimulatory via mutagenesis and inhibitory via production of hedgehog-inhibiting vitamin D3 (D3). We find that UVR exposure of ionizing radiation-treated Ptch1+/- mice accelerates BCC carcinogenesis in male mice, in which UVR does not produce D3. By contrast, in female mice, in which UVR does produce D3, UVR fails to accelerate BCC carcinogenesis, thus mirroring the plateauing in humans. However, if D3 production is attenuated in female mice by deletion of keratinocyte lathosterol 5-desaturase, then UVR accelerates ionizing radiation-induced BCC carcinogenesis. Congruently, chronic topical application of D3 inhibits ionizing radiation-induced BCC tumorigenesis. These findings confirm that UVR-induced production of D3 in keratinocytes significantly restrains murine BCC tumorigenesis and demonstrate the counterintuitive conclusion that UVR has anti-BCC carcinogenic effects that can explain, at least in part, the complex relationship between exposure to UVR and BCC incidence.
Collapse
Affiliation(s)
- Anastasia Makarova
- UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA.
| | - Grace Wang
- UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - John A Dolorito
- UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Subheksha Kc
- UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Eileen Libove
- UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Ervin H Epstein
- UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA.
| |
Collapse
|
19
|
Luan W, Hammond LA, Cotter E, Osborne GW, Alexander SA, Nink V, Cui X, Eyles DW. Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-mitotic Dopamine Neurons in Rat Mesencephalon. Mol Neurobiol 2017; 55:2443-2453. [PMID: 28365874 DOI: 10.1007/s12035-017-0497-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/15/2017] [Indexed: 01/05/2023]
Abstract
Developmental vitamin D (DVD) deficiency has been proposed as an important risk factor for schizophrenia. Our previous study using Sprague Dawley rats found that DVD deficiency disrupted the ontogeny of mesencephalic dopamine neurons by decreasing the mRNA level of a crucial differentiation factor of dopamine cells, the nuclear receptor related 1 protein (Nurr1). However, it remains unknown whether this reflects a reduction in dopamine cell number or in Nurr1 expression. It is also unclear if any particular subset of developing dopamine neurons in the mesencephalon is selectively affected. In this study, we employed state-of-the-art spinning disk confocal microscopy optimized for the imaging of tissue sections and 3D segmentation to assess post-mitotic dopamine cells on a single-cell basis in the rat mesencephalon at embryonic day 15. Our results showed that DVD deficiency did not alter the number, morphology, or positioning of post-mitotic dopamine cells. However, the ratio of Nurr1+TH+ cells in the substantia nigra pars compacta (SNc) compared with the ventral tegmental area (VTA) was increased in DVD-deficient embryos. In addition, the expression of Nurr1 in immature dopamine cells and mature dopamine neurons in the VTA was decreased in DVD-deficient group. Tyrosine hydroxylase was selectively reduced in SNc of DVD-deficient mesencephalon. We conclude that DVD deficiency induced early alterations in mesencephalic dopamine development may in part explain the abnormal dopamine-related behaviors found in this model. Our findings may have broader implications for how certain environmental risk factors for schizophrenia may shape the ontogeny of dopaminergic systems and by inference increase the risk of schizophrenia.
Collapse
Affiliation(s)
- Wei Luan
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Edmund Cotter
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Geoffrey William Osborne
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | | - Virginia Nink
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Darryl Walter Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
20
|
Maleklou N, Allameh A, Kazemi B. Targeted delivery of vitamin D3-loaded nanoparticles to C6 glioma cell line increased resistance to doxorubicin, epirubicin, and docetaxel in vitro. In Vitro Cell Dev Biol Anim 2016; 52:989-1000. [PMID: 27503515 DOI: 10.1007/s11626-016-0072-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
Abstract
In recent years, targeted delivery systems have been used along with combinatorial therapy to decrease drug resistance and increase cancer therapy efficacy. The anti-proliferative effects of vitamin D3 (VD3) on cancerous cells, such as C6 glioma, with active hedgehog pathways raised the question as to whether pre-targeting C6 glioma cells with VD3-loaded nanoparticles (VD3NPs) can enhance the anti-tumor effects of doxorubicin, epirobicin, and docetaxel on this drug-resistant cell line. Here, studying at cellular, nuclear, protein, and gene levels we demonstrated that VD3NP-doxorubicin and VD3NP-epirobicin combinations increased the probability of chemotherapy/radiotherapy resistance and cancer stem cell (CSC) properties in C6 glioma significantly (P < 0.05), compared to doxorubicin and epirobicin alone. However, VD3NP-docetaxel combination may have the potential in sensitizing C6 cells to ionizing irradiation, but this combination also increased the CSC properties and the probability of drug resistance significantly (P < 0.05), compared to docetaxel alone. Although our previous study showed that targeted delivery of VD3 reduced the rate of proliferation significantly (P < 0.05) in C6 glioma cells (a drug-resistant cell line), here we concluded that combinatorial therapy of exogenous VD3 with doxorubicin, epirobicin, and docetaxel not only did not lead to the enhancement of cytotoxic effects of the aforementioned drugs but also increased the cancerous characteristics in C6 glioma, in vitro.
Collapse
Affiliation(s)
- Nargess Maleklou
- Medical Physics and Biomedical Engineering Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Departments of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Abstract
Vitamin D, also known as cholecalciferol, is the precursor to the active steroid hormone 1, 25-dihydroxyvitamin D3 (calcitriol; 1, 25(OH)2D3). The main physiological role for 1, 25(OH)2D3 is to regulate calcium and inorganic phosphate homeostasis for bone health. More recently, vitamin D has been investigated for its effects in the prevention and treatment of a variety of diseases such as cancer, autoimmune disorders, and cardiovascular disease. Preclinical data strongly support a role for vitamin D in the prevention of cancer through its anti-proliferative, pro-apoptotic, and anti-angiogenic effects on cells. Epidemiologic and clinical studies have shown mixed data on the correlation between serum vitamin D levels and cancer risk. This report seeks to outline results from the most recent preclinical and clinical studies investigating the potential role of vitamin D in cancer prevention.
Collapse
Affiliation(s)
- Rachel A Ness
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
22
|
From molecular interaction to acute promyelocytic leukemia: Calculating leukemogenesis and remission from endogenous molecular-cellular network. Sci Rep 2016; 6:24307. [PMID: 27098097 PMCID: PMC4838884 DOI: 10.1038/srep24307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/10/2016] [Indexed: 12/24/2022] Open
Abstract
Acute promyelocytic leukemia (APL) remains the best example of a malignancy that can be cured clinically by differentiation therapy. We demonstrate that APL may emerge from a dynamical endogenous molecular-cellular network obtained from normal, non-cancerous molecular interactions such as signal transduction and translational regulation under physiological conditions. This unifying framework, which reproduces APL, normal progenitor, and differentiated granulocytic phenotypes as different robust states from the network dynamics, has the advantage to study transition between these states, i.e. critical drivers for leukemogenesis and targets for differentiation. The simulation results quantitatively reproduce microarray profiles of NB4 and HL60 cell lines in response to treatment and normal neutrophil differentiation, and lead to new findings such as biomarkers for APL and additional molecular targets for arsenic trioxide therapy. The modeling shows APL and normal states mutually suppress each other, both in "wiring" and in dynamical cooperation. Leukemogenesis and recovery under treatment may be a consequence of spontaneous or induced transitions between robust states, through "passes" or "dragging" by drug effects. Our approach rationalizes leukemic complexity and constructs a platform towards extending differentiation therapy by performing "dry" molecular biology experiments.
Collapse
|
23
|
Krajewski W, Dzięgała M, Kołodziej A, Dembowski J, Zdrojowy R. Vitamin D and urological cancers. Cent European J Urol 2016; 69:139-47. [PMID: 27551550 PMCID: PMC4986303 DOI: 10.5173/ceju.2016.784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Introduction Vitamin D controls calcium and phosphate homeostasis. Additionally, it has been proven that vitamin D is an important modulator of cellular differentiation and proliferation in a number of normal and malignant cells. Vitamin D can regulate proliferation, apoptosis, and cell adhesion at the tumor cell level. It also modifies tumor angiogenesis, invasion, and metastasis and also decreases oxidative DNA damage. Material and methods The Medline and Web of Science databases were searched without time limit on October 2015 using the terms ‘vitamin D’ in conjunction with ‘kidney cancer’, ‘bladder cancer’, ‘prostate cancer’, and ‘testis cancer’. Autoalerts in Medline were also run and reference lists of original articles, review articles, and book chapters were searched for further eligible articles. Results In recent years, vitamin D has received vast attention due to suggestions that it may have a crucial role in the prevention and therapy of various cancers. Many epidemiologic studies have reported the impact of VD3 on preventing several cancers and other pathologies. Assuming that vitamin D status changes cancer risk, enough vitamin D supply would be an easy, economical, and safe cancer incidence and mortality reduction method. However, despite numerous researches, the role of vitamin D in cancer incidence and therapy remains unclear. Conclusions The impact of vitamin D is well described in breast, colon, and prostate cancer; yet, there is only little published about other malignancies.
Collapse
Affiliation(s)
- Wojciech Krajewski
- Department of Urology and Oncologic Urology, Wrocław Medical University, Wrocław, Poland
| | - Mateusz Dzięgała
- Department of Urology and Oncologic Urology, Wrocław Medical University, Wrocław, Poland
| | - Anna Kołodziej
- Department of Urology and Oncologic Urology, Wrocław Medical University, Wrocław, Poland
| | - Janusz Dembowski
- Department of Urology and Oncologic Urology, Wrocław Medical University, Wrocław, Poland
| | - Romuald Zdrojowy
- Department of Urology and Oncologic Urology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
24
|
Hadden MK. Hedgehog and Vitamin D Signaling Pathways in Development and Disease. VITAMIN D HORMONE 2016; 100:231-53. [DOI: 10.1016/bs.vh.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Inhibition of Hedgehog-Signaling Driven Genes in Prostate Cancer Cells by Sutherlandia frutescens Extract. PLoS One 2015; 10:e0145507. [PMID: 26710108 PMCID: PMC4694108 DOI: 10.1371/journal.pone.0145507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
Sutherlandia frutescens (L) R. Br. (Sutherlandia) is a South African botanical that is traditionally used to treat a variety of health conditions, infections and diseases, including cancer. We hypothesized Sutherlandia might act through Gli/ Hedgehog (Hh)-signaling in prostate cancer cells and used RNA-Seq transcription profiling to profile gene expression in TRAMPC2 murine prostate cancer cells with or without Sutherlandia extracts. We found 50% of Hh-responsive genes can be repressed by Sutherlandia ethanol extract, including the canonical Hh-responsive genes Gli1 and Ptch1 as well as newly distinguished Hh-responsive genes Hsd11b1 and Penk.
Collapse
|
26
|
Kim JH, Kang S, Jung YN, Choi HS. Cholecalciferol inhibits lipid accumulation by regulating early adipogenesis in cultured adipocytes and zebrafish. Biochem Biophys Res Commun 2015; 469:646-53. [PMID: 26703207 DOI: 10.1016/j.bbrc.2015.12.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023]
Abstract
Cholecalciferol (CCF) is a common dietary supplement as a precursor of active vitamin D. In the present study, the effect of CCF on lipid accumulation was investigated in adipocyte cells and zebrafish models. CCF effectively inhibited lipid accumulation in both experimental models; this effect was attributed to the CCF-mediated regulation of early adipogenic factors. CCF down-regulated the expressions of CCAAT-enhancer-binding protein-β (C/EBPβ), C/EBPδ, Krueppel-like factor (KLF) 4, and KLF5, while KLF2, a negative adipogenic regulator, was increased by CCF treatment. CCF inhibited cell cycle progression of adipocytes through down-regulation of cyclin A and cyclinD; p-Rb was suppressed by CCF, but p27 was up-regulated with CCF treatment. This CCF-mediated inhibition of cell cycle progression is highly correlated to the inhibitions of extracellular signal-regulated kinase (ERK), serine threonine-specific kinase (AKT), and mammalian target of rapamycin (mTOR). Furthermore, CCF-induced inactivation of acetyl-CoA carboxylase (ACC), a fatty acid synthetic enzyme, with the activation of AMP-activated protein kinase α (AMPKα) was also observed. Consistent with the observations in adipocytes, CCF effectively inhibited lipid accumulation with the down-regulation of adipogenic factors in zebrafish. The present study indicates that CCF showed anti-adipogenic effect in adipocytes and zebrafish, and its inhibitory effect was involved in the regulation of early adipogenic events including cell cycle arrest and activation of AMPKα signaling.
Collapse
Affiliation(s)
- Joo Hyoun Kim
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 139-774, South Korea
| | - Smee Kang
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 139-774, South Korea
| | - Yu Na Jung
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 139-774, South Korea
| | - Hyeon-Son Choi
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 139-774, South Korea.
| |
Collapse
|
27
|
Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance. Cancers (Basel) 2015; 7:2330-51. [PMID: 26633513 PMCID: PMC4695894 DOI: 10.3390/cancers7040894] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 12/18/2022] Open
Abstract
The canonical hedgehog (HH) pathway is a multicomponent signaling cascade (HH, protein patched homolog 1 (PTCH1), smoothened (SMO)) that plays a pivotal role during embryonic development through activation of downstream effector molecules, namely glioma-associated oncogene homolog 1 (GLI1), GLI2 and GLI3. Activation of GLIs must be tightly regulated as they modulate target genes which control tissue patterning, stem cell maintenance, and differentiation during development. However, dysregulation or mutations in HH signaling leads to genomic instability (GI) and various cancers, for example, germline mutation in PTCH1 lead to Gorlin syndrome, a condition where patients develop numerous basal cell carcinomas and rarely rhabdomyosarcoma (RMS). Activating mutations in SMO have also been recognized in sporadic cases of medulloblastoma and SMO is overexpressed in many other cancers. Recently, studies in several human cancers have shown that GLI1 expression is independent from HH ligand and canonical intracellular signaling through PTCH and SMO. In fact, this aberrantly regulated GLI1 has been linked to several non-canonical oncogenic growth signals such as Kirsten rat sarcoma viral oncogene homolog (KRAS), avian myelocytomatosis virus oncogene cellular homolog (C-MYC), transforming growth factor β (TGFβ), wingless-type MMTV integration site family (WNT) and β-catenin. Recent studies from our lab and other independent studies demonstrate that aberrantly expressed GLI1 influences the integrity of several DNA damage response and repair signals, and if altered, these networks can contribute to GI and impact tumor response to chemo- and radiation therapies. Furthermore, the ineffectiveness of SMO inhibitors in clinical studies argues for the development of GLI1-specific inhibitors in order to develop effective therapeutic modalities to treat these tumors. In this review, we focus on summarizing current understanding of the molecular, biochemical and cellular basis for aberrant GLI1 expression and discuss GLI1-mediated HH signaling on DNA damage responses, carcinogenesis and chemoresistance.
Collapse
|
28
|
Béraud C, Dormoy V, Danilin S, Lindner V, Béthry A, Hochane M, Coquard C, Barthelmebs M, Jacqmin D, Lang H, Massfelder T. Targeting FAK scaffold functions inhibits human renal cell carcinoma growth. Int J Cancer 2015; 137:1549-59. [PMID: 25809490 DOI: 10.1002/ijc.29522] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/06/2015] [Indexed: 11/07/2022]
Abstract
Human conventional renal cell carcinoma (CCC) remains resistant to current therapies. Focal Adhesion Kinase (FAK) is upregulated in many epithelial tumors and clearly implicated in nearly all facets of cancer. However, only few reports have assessed whether FAK may be associated with renal tumorigenesis. In this study, we investigated the potential role of FAK in the growth of human CCC using a panel of CCC cell lines expressing or not the von Hippel-Lindau (VHL) tumor suppressor gene as well as normal/tumoral renal tissue pairs. FAK was found constitutively expressed in human CCC both in culture cells and freshly harvested tumors obtained from patients. We showed that CCC cell growth was dramatically reduced in FAK-depleted cells or after FAK inhibition with various inhibitors and this effect was obtained through inhibition of cell proliferation and induction of cell apoptosis. Additionally, our results indicated that FAK knockdown decreased CCC cell migration and invasion. More importantly, depletion or pharmacological inhibition of FAK substantially inhibited tumor growth in vivo. Interestingly, investigations of the molecular mechanism revealed loss of FAK phosphorylation during renal tumorigenesis impacting multiple signaling pathways. Taken together, our findings reveal a previously uncharacterized role of FAK in CCC whereby FAK exerts oncogenic properties through a non canonical signaling pathway involving its scaffolding kinase-independent properties. Therefore, targeting the FAK scaffold may represent a promising approach for developing innovative and highly specific therapies in human CCC.
Collapse
Affiliation(s)
- Claire Béraud
- Inserm U1113, University of Strasbourg, Strasbourg, France
| | | | | | - Véronique Lindner
- Department of Pathology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Audrey Béthry
- Inserm U1113, University of Strasbourg, Strasbourg, France
| | - Mazène Hochane
- Inserm U1113, University of Strasbourg, Strasbourg, France
| | | | | | - Didier Jacqmin
- Department of Urology, Nouvel Hôpital Civil De Strasbourg, Strasbourg, France
| | - Hervé Lang
- Department of Urology, Nouvel Hôpital Civil De Strasbourg, Strasbourg, France
| | | |
Collapse
|
29
|
So JY, Suh N. Targeting cancer stem cells in solid tumors by vitamin D. J Steroid Biochem Mol Biol 2015; 148:79-85. [PMID: 25460302 PMCID: PMC4361233 DOI: 10.1016/j.jsbmb.2014.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are a small subset of cells that may be responsible for initiation, progression, and recurrence of tumors. Recent studies have demonstrated that CSCs are highly tumorigenic and resistant to conventional chemotherapies, making them a promising target for the development of preventive/therapeutic agents. A single or combination of various markers, such as CD44, EpCAM, CD49f, CD133, CXCR4, ALDH-1, and CD24, were utilized to isolate CSCs from various types of human cancers. Notch, Hedgehog, Wnt, and TGF-β signalingregulate self-renewal and differentiation of normal stem cells andare aberrantly activated in CSCs. In addition, many studies have demonstrated that these stem cell-associated signaling pathways are required for the maintenance of CSCs in different malignancies, including breast, colorectal, prostate, and pancreatic cancers. Accumulating evidence has shown inhibitory effects of vitamin D and its analogs on the cancer stem cell signaling pathways, suggesting vitamin D as a potential preventive/therapeutic agent against CSCs. In this review, we summarize recent findings about the roles of Notch, Hedgehog, Wnt, and TGF-β signaling in CSCs as well as the effects of vitamin D on these stem cell signaling pathways. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Jae Young So
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
30
|
Martinesi M, Ambrosini S, Treves C, Zuegel U, Steinmeyer A, Vito A, Milla M, Bonanomi AG, Stio M. Role of vitamin D derivatives in intestinal tissue of patients with inflammatory bowel diseases. J Crohns Colitis 2014; 8:1062-71. [PMID: 24630484 DOI: 10.1016/j.crohns.2014.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIM The adhesion molecule expression and matrix metalloproteinases (MMPs) are proposed to be major factors for intestinal injury mediated by T cells in (IBD) and are up-regulated in intestinal mucosa of IBD patients. To investigate the effect of vitamin D derivatives on adhesion molecules and MMPs in colonic biopsies of IBD patients. METHODS Biopsies from inflamed and non-inflamed tract of terminal ileum and colon and PBMC from the same IBD patients were cultured with or without vitamin D derivatives. MMP activity and adhesion molecule levels were determined. RESULTS 1,25(OH)2D3 and ZK 191784 significantly decrease ICAM-1 protein levels in the biopsies obtained only from the inflamed region of intestine of UC patients, while MAdCAM-1 levels decrease in the presence of 1,25(OH)2D3 in the non-inflamed region, and, in the presence of ZK, in the inflamed one. In CD patients 1,25(OH)2D3 and ZK decrease ICAM-1 and MAdCAM-1 in the biopsies obtained from the non-inflamed and inflamed regions, with the exception of ICAM-1 in the inflamed region in the presence of 1,25(OH)2D3. The expression of MMP-9, MMP-2, and MMP-3 decreases in the presence of vitamin D derivatives in UC and CD with the exception of 1,25(OH)2D3 that does not affect the levels of MMP-9 and MMP-2 in CD. Vitamin D derivatives always affect MMP-9, MMP-2 and ICAM-1 in PBMC of UC and CD patients. CONCLUSIONS Based on the increased expression of ICAM-1, MAdCAM-1 and MMP-2,-9,-3 in IBD, our study suggests that vitamin D derivatives may be effective in the management of these diseases.
Collapse
Affiliation(s)
- Maria Martinesi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Stefano Ambrosini
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Cristina Treves
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Ulrich Zuegel
- Clinical Sciences, Global Biomarker, Global Discovery, Bayer Healthcare, Bayer, 10178 Berlin, Germany
| | - Andreas Steinmeyer
- Medicinal Chemistry, Global Drug Discovery, Bayer Healthcare, Bayer, 10178 Berlin, Germany
| | - Annese Vito
- Division of Gastroenterology 2, Careggi Hospital, 50134 Florence, Italy
| | - Monica Milla
- Regional Referral Center for IBD, Careggi Hospital, 50134 Florence, Italy
| | - Andrea G Bonanomi
- Division of Gastroenterology 2, Careggi Hospital, 50134 Florence, Italy
| | - Maria Stio
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
31
|
Jäger W, Thomas C, Fazli L, Hurtado-Coll A, Li E, Janssen C, Gust KM, So AI, Hainz M, Schmidtmann I, Roos FC, Thüroff JW, Brenner W, Black PC. DHH is an independent prognosticator of oncologic outcome of clear cell renal cell carcinoma. J Urol 2014; 192:1842-8. [PMID: 25046620 DOI: 10.1016/j.juro.2014.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 12/13/2022]
Abstract
PURPOSE Aberrant HH signaling has proved important in the pathogenesis of several solid cancers. Limited in vitro analyses suggested an oncogenic role for HH in renal cell carcinoma. In this explorative study we sought to validate aberrant HH expression in patients with renal cell carcinoma. MATERIALS AND METHODS A tissue microarray was constructed from 140 radical nephrectomy specimens of patients with clear cell renal cell carcinoma. We performed immunohistochemistry for Ki67 and HH pathway biomarkers, including PTCH1, Smo, SHH, IHH, DHH, Gli1, Gli2 and Gli3. Staining intensity was measured by automated image processing and related to tumor stage and grade. The impact of biomarker expression on cancer specific survival was determined by univariate and multivariate Cox regression analysis. RESULTS Gli3, PTCH1, DHH and SHH demonstrated markedly higher expression in high than in low grade tumors. Tumor stage was not associated with marker expression. On univariate analysis DHH expression, and tumor grade and stage were associated with cancer specific survival. Multivariate analysis revealed that DHH, grade and stage were independent predictors of cancer specific survival. CONCLUSIONS To our knowledge we report for the first time that a biomarker of the HH pathway is associated with adverse pathological features and poor disease outcomes in patients with clear cell renal cell carcinoma. DHH may serve as an independent predictor of cancer specific survival in clear cell renal cell carcinoma cases. This supports further evaluation of HH signaling to validate the pathway as a target for novel therapy.
Collapse
Affiliation(s)
- Wolfgang Jäger
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Christian Thomas
- Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Ladan Fazli
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antonio Hurtado-Coll
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Estelle Li
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claudia Janssen
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Kilian M Gust
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alan I So
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Hainz
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | - Irene Schmidtmann
- Institute of Medical Biostatistics, Epidemiology and Informatics, Johannes Gutenberg University, Mainz, Germany
| | - Frederik C Roos
- Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Joachim W Thüroff
- Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Walburgis Brenner
- Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Peter C Black
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Trinh TN, McLaughlin EA, Gordon CP, McCluskey A. Hedgehog signalling pathway inhibitors as cancer suppressing agents. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00334e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
DeBerardinis AM, Lemieux S, Hadden MK. Analogues of the Inhoffen–Lythgoe diol with anti-proliferative activity. Bioorg Med Chem Lett 2013; 23:5367-70. [DOI: 10.1016/j.bmcl.2013.07.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 11/28/2022]
|
34
|
Moukayed M, Grant WB. Molecular link between vitamin D and cancer prevention. Nutrients 2013; 5:3993-4021. [PMID: 24084056 PMCID: PMC3820056 DOI: 10.3390/nu5103993] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 01/03/2023] Open
Abstract
The metabolite of vitamin D, 1α,25-dihydroxyvitamin D₃ (also known as calcitriol), is a biologically active molecule required to maintain the physiological functions of several target tissues in the human body from conception to adulthood. Its molecular mode of action ranges from immediate nongenomic responses to longer term mechanisms that exert persistent genomic effects. The genomic mechanisms of vitamin D action rely on cross talk between 1α,25-dihydroxyvitamin D₃ signaling pathways and that of other growth factors or hormones that collectively regulate cell proliferation, differentiation and cell survival. In vitro and in vivo studies demonstrate a role for vitamin D (calcitriol) in modulating cellular growth and development. Vitamin D (calcitriol) acts as an antiproliferative agent in many tissues and significantly slows malignant cellular growth. Moreover, epidemiological studies have suggested that ultraviolet-B exposure can help reduce cancer risk and prevalence, indicating a potential role for vitamin D as a feasible agent to prevent cancer incidence and recurrence. With the preventive potential of this biologically active agent, we suggest that countries where cancer is on the rise--yet where sunlight and, hence, vitamin D may be easily acquired--adopt awareness, education and implementation strategies to increase supplementation with vitamin D in all age groups as a preventive measure to reduce cancer risk and prevalence.
Collapse
Affiliation(s)
- Meis Moukayed
- School of Arts and Sciences, American University in Dubai, P. O. Box 28282, Dubai, UAE; E-Mail:
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, San Francisco, CA 94164-1603, USA
| |
Collapse
|
35
|
Merchant JL, Saqui-Salces M. Inhibition of Hedgehog signaling in the gastrointestinal tract: targeting the cancer microenvironment. Cancer Treat Rev 2013; 40:12-21. [PMID: 24007940 DOI: 10.1016/j.ctrv.2013.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 02/08/2023]
Abstract
This review summarizes emerging information regarding the Hedgehog (Hh) signaling pathway during neoplastic transformation in the gastrointestinal tract. Although there is a role for the well-established canonical pathway in which Hedgehog ligands interact with their receptor Patched, there is sufficient evidence that downstream components of the Hh pathway, e.g., Gli1, are hijacked by non-Hh signaling pathways to promote the conversion of the epithelium to dysplasia and carcinoma. We review the canonical pathway and involvement of primary cilia, and then focus on current evidence for Hh signaling in luminal bowel cancers as well as accessory organs, i.e., liver, pancreas and biliary ducts. We conclude that targeting the Hh pathway with small molecules, nutriceuticals and other mechanisms will likely require a combination of inhibitors that target Gli transcription factors in addition to canonical modulators such as Smoothened.
Collapse
Affiliation(s)
- Juanita L Merchant
- Departments of Internal Medicine and Molecular and Integrative Physiology, Division of Gastroenterology, University of Michigan, United States.
| | | |
Collapse
|