1
|
Ghosh C, Hu J. Importance of targeting various cell signaling pathways in solid cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:101-155. [PMID: 38663958 DOI: 10.1016/bs.ircmb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.
Collapse
Affiliation(s)
- Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, CA, Unites States.
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, Unites States
| |
Collapse
|
2
|
Spoerri L, Beaumont KA, Anfosso A, Murphy RJ, Browning AP, Gunasingh G, Haass NK. Real-Time Cell Cycle Imaging in a 3D Cell Culture Model of Melanoma, Quantitative Analysis, Optical Clearing, and Mathematical Modeling. Methods Mol Biol 2024; 2764:291-310. [PMID: 38393602 DOI: 10.1007/978-1-0716-3674-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Aberrant cell cycle progression is a hallmark of solid tumors. Therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. In this chapter, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique, combined with mathematical modeling, allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.
Collapse
Affiliation(s)
- Loredana Spoerri
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kimberley A Beaumont
- The Centenary Institute, Sydney, NSW, Australia
- Uniquest, The University of Queensland, Brisbane, QLD, Australia
| | | | - Ryan J Murphy
- Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alexander P Browning
- Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gency Gunasingh
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nikolas K Haass
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia.
- The Centenary Institute, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
4
|
Valentini E, Di Martile M, Brignone M, Di Caprio M, Manni I, Chiappa M, Sergio I, Chiacchiarini M, Bazzichetto C, Conciatori F, D'Aguanno S, D'Angelo C, Ragno R, Russillo M, Colotti G, Marchesi F, Bellone ML, Dal Piaz F, Felli MP, Damia G, Del Bufalo D. Bcl-2 family inhibitors sensitize human cancer models to therapy. Cell Death Dis 2023; 14:441. [PMID: 37460459 DOI: 10.1038/s41419-023-05963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
BH3 mimetics, targeting the Bcl-2 family anti-apoptotic proteins, represent a promising therapeutic opportunity in cancers. ABT-199, the first specific Bcl-2 inhibitor, was approved by FDA for the treatment of several hematological malignancies. We have recently discovered IS21, a novel pan BH3 mimetic with preclinical antitumor activity in several tumor types. Here, we evaluated the efficacy of IS21 and other BH3 mimetics, both as single agents and combined with the currently used antineoplastic agents in T-cell acute lymphoblastic leukemia, ovarian cancer, and melanoma. IS21 was found to be active in T-cell acute lymphoblastic leukemia, melanoma, lung, pancreatic, and ovarian cancer cell lines. Bcl-xL and Mcl-1 protein levels predicted IS21 sensitivity in melanoma and ovarian cancer, respectively. Exploring IS21 mechanism of action, we found that IS21 activity depends on the presence of BAX and BAK proteins: complexes between Bcl-2 and Bcl-xL proteins and their main binding partners were reduced after IS21 treatment. In combination experiments, BH3 mimetics sensitized leukemia cells to chemotherapy, ovarian cancer cells and melanoma models to PARP and MAPK inhibitors, respectively. We showed that this enhancing effect was related to the potentiation of the apoptotic pathway, both in hematologic and solid tumors. In conclusion, our data suggest the use of inhibitors of anti-apoptotic proteins as a therapeutic strategy to enhance the efficacy of anticancer treatment.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Matteo Brignone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marica Di Caprio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Michela Chiappa
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Chiacchiarini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Bazzichetto
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Conciatori
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Michelangelo Russillo
- Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Francesco Marchesi
- Hematology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Bellone
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanna Damia
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
5
|
Koessinger AL, Cloix C, Koessinger D, Heiland DH, Bock FJ, Strathdee K, Kinch K, Martínez-Escardó L, Paul NR, Nixon C, Malviya G, Jackson MR, Campbell KJ, Stevenson K, Davis S, Elmasry Y, Ahmed A, O'Prey J, Ichim G, Schnell O, Stewart W, Blyth K, Ryan KM, Chalmers AJ, Norman JC, Tait SWG. Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell Death Differ 2022; 29:2089-2104. [PMID: 35473984 PMCID: PMC9525582 DOI: 10.1038/s41418-022-01001-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumour in adults. GBM typically has a poor prognosis, mainly due to a lack of effective treatment options leading to tumour persistence or recurrence. We investigated the therapeutic potential of targeting anti-apoptotic BCL-2 proteins in GBM. Levels of anti-apoptotic BCL-xL and MCL-1 were consistently increased in GBM compared with non-malignant cells and tissue. Moreover, we found that relative to their differentiated counterparts, patient-derived GBM stem-like cells also displayed higher expression of anti-apoptotic BCL-2 family members. High anti-apoptotic BCL-xL and MCL-1 expression correlated with heightened susceptibility of GBM to BCL-2 family protein-targeting BH3-mimetics. This is indicative of increased apoptotic priming. Indeed, GBM displayed an obligate requirement for MCL-1 expression in both tumour development and maintenance. Investigating this apoptotic sensitivity, we found that sequential inhibition of BCL-xL and MCL-1 led to robust anti-tumour responses in vivo, in the absence of overt toxicity. These data demonstrate that BCL-xL and MCL-1 pro-survival function is a fundamental prerequisite for GBM survival that can be therapeutically exploited by BH3-mimetics.
Collapse
Affiliation(s)
- Anna L Koessinger
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Catherine Cloix
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Dominik Koessinger
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Florian J Bock
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Karen Strathdee
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kevin Kinch
- Department of Neuropathology, Queen Elizabeth University Hospital and Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Laura Martínez-Escardó
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nikki R Paul
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Mark R Jackson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Katrina Stevenson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Sandeep Davis
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Yassmin Elmasry
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Asma Ahmed
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jim O'Prey
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Gabriel Ichim
- Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France
| | - Oliver Schnell
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital and Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Anthony J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jim C Norman
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
6
|
Thompson EL, Hu JJ, Niedernhofer LJ. The Role of Senescent Cells in Acquired Drug Resistance and Secondary Cancer in BRAFi-Treated Melanoma. Cancers (Basel) 2021; 13:2241. [PMID: 34066966 PMCID: PMC8125319 DOI: 10.3390/cancers13092241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
BRAF is the most common gene mutated in malignant melanoma, and predominately it is a missense mutation of codon 600 in the kinase domain. This oncogenic BRAF missense mutation results in constitutive activation of the mitogen-activate protein kinase (MAPK) pro-survival pathway. Several BRAF inhibitors (BRAFi) have been developed to specifically inhibit BRAFV600 mutations that improve melanoma survival, but resistance and secondary cancer often occur. Causal mechanisms of BRAFi-induced secondary cancer and resistance have been identified through upregulation of MAPK and alternate pro-survival pathways. In addition, overriding of cellular senescence is observed throughout the progression of disease from benign nevi to malignant melanoma. In this review, we discuss melanoma BRAF mutations, the genetic mechanism of BRAFi resistance, and the evidence supporting the role of senescent cells in melanoma disease progression, drug resistance and secondary cancer. We further highlight the potential benefit of targeting senescent cells with senotherapeutics as adjuvant therapy in combating melanoma.
Collapse
Affiliation(s)
- Elizabeth L. Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiayi J. Hu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Béal J, Pantolini L, Noël V, Barillot E, Calzone L. Personalized logical models to investigate cancer response to BRAF treatments in melanomas and colorectal cancers. PLoS Comput Biol 2021; 17:e1007900. [PMID: 33507915 PMCID: PMC7872233 DOI: 10.1371/journal.pcbi.1007900] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
The study of response to cancer treatments has benefited greatly from the contribution of different omics data but their interpretation is sometimes difficult. Some mathematical models based on prior biological knowledge of signaling pathways facilitate this interpretation but often require fitting of their parameters using perturbation data. We propose a more qualitative mechanistic approach, based on logical formalism and on the sole mapping and interpretation of omics data, and able to recover differences in sensitivity to gene inhibition without model training. This approach is showcased by the study of BRAF inhibition in patients with melanomas and colorectal cancers who experience significant differences in sensitivity despite similar omics profiles. We first gather information from literature and build a logical model summarizing the regulatory network of the mitogen-activated protein kinase (MAPK) pathway surrounding BRAF, with factors involved in the BRAF inhibition resistance mechanisms. The relevance of this model is verified by automatically assessing that it qualitatively reproduces response or resistance behaviors identified in the literature. Data from over 100 melanoma and colorectal cancer cell lines are then used to validate the model's ability to explain differences in sensitivity. This generic model is transformed into personalized cell line-specific logical models by integrating the omics information of the cell lines as constraints of the model. The use of mutations alone allows personalized models to correlate significantly with experimental sensitivities to BRAF inhibition, both from drug and CRISPR targeting, and even better with the joint use of mutations and RNA, supporting multi-omics mechanistic models. A comparison of these untrained models with learning approaches highlights similarities in interpretation and complementarity depending on the size of the datasets. This parsimonious pipeline, which can easily be extended to other biological questions, makes it possible to explore the mechanistic causes of the response to treatment, on an individualized basis.
Collapse
Affiliation(s)
- Jonas Béal
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Lorenzo Pantolini
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Vincent Noël
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| |
Collapse
|
8
|
BCL2L10 Is Overexpressed in Melanoma Downstream of STAT3 and Promotes Cisplatin and ABT-737 Resistance. Cancers (Basel) 2020; 13:cancers13010078. [PMID: 33396645 PMCID: PMC7795116 DOI: 10.3390/cancers13010078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary BCL2L10 is the sixth and less studied protein from the group of Bcl-2 anti-apoptotic proteins. These proteins are important therapeutic targets since they convey resistance to anticancer regimens. We describe here for the first time the role of BCL2L10 in melanoma. We found that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. This increased expression is due to the activity of the transcription factor STAT3 that positively regulate BCL2L10 transcription. We describe that Bcl2l10 is a pro-survival factor in melanoma, being able to protect cells from the cytotoxic effect of different drugs, including cisplatin, dacarbazine, and ABT-737. BCL2L10 also inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma. Abstract The anti-apoptotic proteins from the Bcl-2 family are important therapeutic targets since they convey resistance to anticancer regimens. Despite the suspected functional redundancy among the six proteins of this subfamily, both basic studies and therapeutic approaches have focused mainly on BCL2, Bcl-xL, and MCL1. The role of BCL2L10, another member of this group, has been poorly studied in cancer and never has been in melanoma. We describe here that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. We established that BCL2L10 expression is driven by STAT3-mediated transcription, and by using reporter assays, site-directed mutagenesis, and ChIP analysis, we identified the functional STAT3 responsive elements in the BCL2L10 promoter. BCL2L10 is a pro-survival factor in melanoma since its expression reduced the cytotoxic effects of cisplatin, dacarbazine, and ABT-737 (a BCL2, Bcl-xL, and Bcl-w inhibitor). Meanwhile, both genetic and pharmacological inhibition of BCL2L10 sensitized melanoma cells to cisplatin and ABT-737. Finally, BCL2L10 inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma.
Collapse
|
9
|
Hartman ML, Gajos-Michniewicz A, Talaj JA, Mielczarek-Lewandowska A, Czyz M. BH3 mimetics potentiate pro-apoptotic activity of encorafenib in BRAF V600E melanoma cells. Cancer Lett 2020; 499:122-136. [PMID: 33259900 DOI: 10.1016/j.canlet.2020.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022]
Abstract
BRAFV600- and MEK1/2-targeting therapies rarely produce durable response in melanoma patients. We investigated five BRAFV600E melanoma cell lines derived from drug-naïve tumor specimens to assess cell death response to encorafenib (Braftovi), a recently FDA-approved BRAFV600 inhibitor. Drug-naïve cell lines (i) did not harbor damaging alterations in genes encoding core apoptotic machinery, but they differed in (ii) mitochondrial priming as demonstrated by whole-cell BH3 profiling, and (iii) levels of selected anti-apoptotic proteins. Encorafenib modulated the balance between apoptosis-regulating proteins as it upregulated BIM and BMF, and attenuated NOXA, but did not affect the levels of pro-survival proteins except for MCL-1 and BCL-XL in selected cell lines. Induction of apoptosis could be predicted using Dynamic BH3 profiling. The extent of apoptosis was dependent on both (i) cell-intrinsic proximity to the apoptotic threshold (initial mitochondrial priming) and (ii) the abundance of encorafenib-induced BIM (iBIM; drug-induced change in priming). While co-inhibition of MCL-1 and BCL-XL/BCL-2 was indispensable for apoptosis in drug-naïve cells, encorafenib altered cell dependence to MCL-1, and reliance on BCL-XL/BCL-2 was additionally found in cell lines that were highly primed to apoptosis by encorafenib. This translated into robust apoptosis when encorafenib was combined with selective BH3 mimetics. Our study provides a mechanistic insight into the role of proteins from the BCL-2 family in melanoma cell response to targeted therapy, and presents preclinical evidence that (i) MCL-1 is a druggable target to potentiate encorafenib activity, whereas (ii) pharmacological inhibition of BCL-XL/BCL-2 might be relevant but only for a narrow group of encorafenib-treated patients.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| | - Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Julita A Talaj
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | | | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| |
Collapse
|
10
|
Mukherjee N, Skees J, Todd KJ, West DA, Lambert KA, Robinson WA, Amato CM, Couts KL, Van Gulick R, MacBeth M, Nassar K, Tan AC, Zhai Z, Fujita M, Bagby SM, Dart CR, Lambert JR, Norris DA, Shellman YG. MCL1 inhibitors S63845/MIK665 plus Navitoclax synergistically kill difficult-to-treat melanoma cells. Cell Death Dis 2020; 11:443. [PMID: 32513939 PMCID: PMC7280535 DOI: 10.1038/s41419-020-2646-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Current treatment for patients with metastatic melanoma include molecular-targeted therapies and immune checkpoint inhibitors. However, a subset of melanomas are difficult-to-treat. These melanomas include those without the genetic markers for targeted therapy, non-responsive to immunotherapy, and those who have relapsed or exhausted their therapeutic options. Therefore, it is necessary to understand and explore other biological processes that may provide new therapeutic approaches. One of most appealing is targeting the apoptotic/anti-apoptotic system that is effective against leukemia. We used genetic knockdown and pharmacologic approaches of BH3 mimetics to target anti-apoptotic BCL2 family members and identified MCL1 and BCLXL as crucial pro-survival members in melanoma. We then examined the effects of combining BH3 mimetics to target MCL1 and BCLXL in vitro and in vivo. These include clinical-trial-ready compounds such as ABT-263 (Navitoclax) and S63845/S64315 (MIK655). We used cell lines derived from patients with difficult-to-treat melanomas. In vitro, the combined inhibition of MCL1 and BCLXL resulted in significantly effective cell killing compared to single-agent treatment (p < 0.05) in multiple assays, including sphere assays. The combination-induced cell death was independent of BIM, and NOXA. Recapitulated in our mouse xenograft model, the combination inhibited tumor growth, reduced sphere-forming capacity (p < 0.01 and 0.05, respectively), and had tolerable toxicity (p > 0.40). Taken together, this study suggests that dual targeting of MCL1 and BCLXL should be considered as a treatment option for difficult-to-treat melanoma patients.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Jenette Skees
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Kaleb J Todd
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Drake A West
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Karoline A Lambert
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - William A Robinson
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Carol M Amato
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Kasey L Couts
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Robert Van Gulick
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Morgan MacBeth
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Kelsey Nassar
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Aik-Choon Tan
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, US
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Stacey M Bagby
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Chiara R Dart
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - James R Lambert
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8104, Aurora, CO, 80045, US
| | - David A Norris
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
- Department of Veterans Affairs Medical Center, Dermatology Section, Denver, CO, 80220, US
| | - Yiqun G Shellman
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US.
- University of Colorado Anschutz Medical Campus, Gates Center for Regenerative Medicine, Aurora, CO, 80045, US.
| |
Collapse
|
11
|
Kim YJ, Tsang T, Anderson GR, Posimo JM, Brady DC. Inhibition of BCL2 Family Members Increases the Efficacy of Copper Chelation in BRAF V600E-Driven Melanoma. Cancer Res 2020; 80:1387-1400. [PMID: 32005716 PMCID: PMC7127963 DOI: 10.1158/0008-5472.can-19-1784] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
The principal unmet need in BRAFV600E-positive melanoma is lack of an adequate therapeutic strategy capable of overcoming resistance to clinically approved targeted therapies against oncogenic BRAF and/or the downstream MEK1/2 kinases. We previously discovered that copper (Cu) is required for MEK1 and MEK2 activity through a direct Cu-MEK1/2 interaction. Repurposing the clinical Cu chelator tetrathiomolybdate (TTM) is supported by efficacy in BRAFV600E-driven melanoma models, due in part to inhibition of MEK1/2 kinase activity. However, the antineoplastic activity of Cu chelators is cytostatic. Here, we performed high-throughput small-molecule screens to identify bioactive compounds that synergize with TTM in BRAFV600E-driven melanoma cells. Genetic perturbation or pharmacologic inhibition of specific members of the BCL2 family of antiapoptotic proteins (BCL-W, BCL-XL, and MCL1) selectively reduced cell viability when combined with a Cu chelator and induced CASPASE-dependent cell death. Further, in BRAFV600E-positive melanoma cells evolved to be resistant to BRAF and/or MEK1/2 inhibitors, combined treatment with TTM and the clinically evaluated BCL2 inhibitor, ABT-263, restored tumor growth suppression and induced apoptosis. These findings further support Cu chelation as a therapeutic strategy to target oncogene-dependent tumor cell growth and survival by enhancing Cu chelator efficacy with chemical inducers of apoptosis, especially in the context of refractory or relapsed BRAFV600E-driven melanoma. SIGNIFICANCE: This study unveils a novel collateral drug sensitivity elicited by combining copper chelators and BH3 mimetics for treatment of BRAFV600E mutation-positive melanoma.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tiffany Tsang
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gray R Anderson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Jessica M Posimo
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Overcoming Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutated Tumours. JOURNAL OF ONCOLOGY 2020; 2020:1079827. [PMID: 32411231 PMCID: PMC7199609 DOI: 10.1155/2020/1079827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Overactivation of the mitogen-activated protein kinase (MAPK) pathway is an important driver of many human cancers. First line, FDA-approved therapies targeting MAPK signalling, which include BRAF and MEK inhibitors, have variable success across cancers, and a significant number of patients quickly develop resistance. In recent years, a number of preclinical studies have reported alternative methods of overcoming resistance, which include promoting apoptosis, modulating autophagy, and targeting mitochondrial metabolism. This review summarizes mechanisms of resistance to approved MAPK-targeted therapies in BRAF-mutated cancers and discusses novel preclinical approaches to overcoming resistance.
Collapse
|
13
|
Montero J, Gstalder C, Kim DJ, Sadowicz D, Miles W, Manos M, Cidado JR, Paul Secrist J, Tron AE, Flaherty K, Stephen Hodi F, Yoon CH, Letai A, Fisher DE, Haq R. Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies. Nat Commun 2019; 10:5157. [PMID: 31727958 PMCID: PMC6856172 DOI: 10.1038/s41467-019-12477-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Most targeted cancer therapies fail to achieve complete tumor regressions or attain durable remissions. To understand why these treatments fail to induce robust cytotoxic responses despite appropriately targeting oncogenic drivers, here we systematically interrogated the dependence of cancer cells on the BCL-2 family of apoptotic proteins after drug treatment. We observe that multiple targeted therapies, including BRAF or EGFR inhibitors, rapidly deplete the pro-apoptotic factor NOXA, thus creating a dependence on the anti-apoptotic protein MCL-1. This adaptation requires a pathway leading to destabilization of the NOXA mRNA transcript. We find that interruption of this mechanism of anti-apoptotic adaptive resistance dramatically increases cytotoxic responses in cell lines and a murine melanoma model. These results identify NOXA mRNA destabilization/MCL-1 adaptation as a non-genomic mechanism that limits apoptotic responses, suggesting that sequencing of MCL-1 inhibitors with targeted therapies could overcome such widespread and clinically important resistance. MAPK-targeted therapies fail to achieve complete remission. Here, the authors show that anti-apoptosis resistance is acquired in these targeted therapies through the mRNA destabilization of NOXA which leads to dependence on MCL-1, and that sequential combination of MCL-1 inhibition with targeted therapies overcomes this resistance.
Collapse
Affiliation(s)
- Joan Montero
- Division of Hematologic Neoplasia/Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Institute for Bioengineering of Catalonia, C/Baldiri Reixac 15-21, Ed. Hèlix 3ª planta · 08028, Barcelona, Spain
| | - Cécile Gstalder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Daniel J Kim
- Department of Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA
| | - Dorota Sadowicz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Wayne Miles
- Department of Molecular Genetics, The Ohio State University, 820 Biomedical Research Tower 460 West 12th Avenue, Columbus, 43210, OH, USA
| | - Michael Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Justin R Cidado
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA
| | - J Paul Secrist
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA.,LifeMine Therapeutics, 100 Acorn Park Drive, 6th Floor Cambridge, Cambridge, MA, 02140, USA
| | - Adriana E Tron
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA
| | - Keith Flaherty
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Charles H Yoon
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, 02115, USA
| | - Anthony Letai
- Division of Hematologic Neoplasia/Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - David E Fisher
- Department of Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA. .,Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA.
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA. .,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.
| |
Collapse
|
14
|
Lee EF, Harris TJ, Tran S, Evangelista M, Arulananda S, John T, Ramnac C, Hobbs C, Zhu H, Gunasingh G, Segal D, Behren A, Cebon J, Dobrovic A, Mariadason JM, Strasser A, Rohrbeck L, Haass NK, Herold MJ, Fairlie WD. BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis 2019; 10:342. [PMID: 31019203 PMCID: PMC6482196 DOI: 10.1038/s41419-019-1568-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/28/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
Malignant melanoma is one of the most difficult cancers to treat due to its resistance to chemotherapy. Despite recent successes with BRAF inhibitors and immune checkpoint inhibitors, many patients do not respond or become resistant to these drugs. Hence, alternative treatments are still required. Due to the importance of the BCL-2-regulated apoptosis pathway in cancer development and drug resistance, it is of interest to establish which proteins are most important for melanoma cell survival, though the outcomes of previous studies have been conflicting. To conclusively address this question, we tested a panel of established and early passage patient-derived cell lines against several BH3-mimetic drugs designed to target individual or subsets of pro-survival BCL-2 proteins, alone and in combination, in both 2D and 3D cell cultures. None of the drugs demonstrated significant activity as single agents, though combinations targeting MCL-1 plus BCL-XL, and to a lesser extent BCL-2, showed considerable synergistic killing activity that was elicited via both BAX and BAK. Genetic deletion of BFL-1 in cell lines that express it at relatively high levels only had minor impact on BH3-mimetic drug sensitivity, suggesting it is not a critical pro-survival protein in melanoma. Combinations of MCL-1 inhibitors with BRAF inhibitors also caused only minimal additional melanoma cell killing over each drug alone, whilst combinations with the proteasome inhibitor bortezomib was more effective in multiple cell lines. Our data show for the first time that therapies targeting specific combinations of BCL-2 pro-survival proteins, namely MCL-1 plus BCL-XL and MCL-1 plus BCL-2, could have significant benefit for the treatment of melanoma.
Collapse
Affiliation(s)
- Erinna F Lee
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia. .,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Tiffany J Harris
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marco Evangelista
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - Surein Arulananda
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Thomas John
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Celeste Ramnac
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Chloe Hobbs
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Haoran Zhu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Gency Gunasingh
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - David Segal
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alexander Dobrovic
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Leona Rohrbeck
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Karolinska Institute, Stockholm, Sweden
| | - Nikolas K Haass
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - W Douglas Fairlie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia. .,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
15
|
Garandeau D, Noujarède J, Leclerc J, Imbert C, Garcia V, Bats ML, Rambow F, Gilhodes J, Filleron T, Meyer N, Brayer S, Arcucci S, Tartare-Deckert S, Ségui B, Marine JC, Levade T, Bertolotto C, Andrieu-Abadie N. Targeting the Sphingosine 1-Phosphate Axis Exerts Potent Antitumor Activity in BRAFi-Resistant Melanomas. Mol Cancer Ther 2018; 18:289-300. [PMID: 30482853 DOI: 10.1158/1535-7163.mct-17-1141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/04/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
BRAF inhibitors (BRAFi) are used to treat patients with melanoma harboring the V600E mutation. However, resistance to BRAFi is inevitable. Here, we identified sphingosine 1-phosphate (S1P) receptors as regulators of BRAFV600E-mutant melanoma cell-autonomous resistance to BRAFi. Moreover, our results reveal a distinct sphingolipid profile, that is, a tendency for increased very long-chain ceramide species, in the plasma of patients with melanoma who achieve a response to BRAFi therapy as compared with patients with progressive disease. Treatment with BRAFi resulted in a strong decrease in S1PR1/3 expression in sensitive but not in resistant cells. Genetic and pharmacologic interventions, that increase ceramide/S1P ratio, downregulated S1PR expression and blocked BRAFi-resistant melanoma cell growth. This effect was associated with a decreased expression of MITF and Bcl-2. Moreover, the BH3 mimetic ABT-737 improved the antitumor activity of approaches targeting S1P-metabolizing enzymes in BRAFi-resistant melanoma cells. Collectively, our findings indicate that targeting the S1P/S1PR axis could provide effective therapeutic options for patients with melanoma who relapse after BRAFi therapy.
Collapse
Affiliation(s)
- David Garandeau
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Justine Noujarède
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Justine Leclerc
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Caroline Imbert
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Virginie Garcia
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marie-Lise Bats
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | - Julia Gilhodes
- Bureau des essais cliniques, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Thomas Filleron
- Bureau des essais cliniques, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Nicolas Meyer
- Service de Dermatologie-Oncologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Stéphanie Brayer
- Service de Dermatologie-Oncologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Silvia Arcucci
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Sophie Tartare-Deckert
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Bruno Ségui
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | - Thierry Levade
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Laboratoire de Biochimie Métabolique, CHU Toulouse, France
| | - Corine Bertolotto
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Nathalie Andrieu-Abadie
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| |
Collapse
|
16
|
BH3 mimetics induce apoptosis independent of DRP-1 in melanoma. Cell Death Dis 2018; 9:907. [PMID: 30185782 PMCID: PMC6125485 DOI: 10.1038/s41419-018-0932-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/11/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
Despite the recent advancement in treating melanoma, options are still limited for patients without BRAF mutations or in relapse from current treatments. BH3 mimetics against members of the BCL-2 family have gained excitement with the recent success in hematological malignancies. However, single drug BH3 mimetic therapy in melanoma has limited effectiveness due to escape by the anti-apoptotic protein MCL-1 and/or survival of melanoma-initiating cells (MICs). We tested the efficacy of the BH3 mimetic combination of A-1210477 (an MCL-1 inhibitor) and ABT-263 (a BCL-2/BCL-XL/BCL-W inhibitor) in killing melanoma, especially MICs. We also sought to better define Dynamin-Related Protein 1 (DRP-1)'s role in melanoma; DRP-1 is known to interact with members of the BCL-2 family and is a possible therapeutic target for melanoma treatment. We used multiple assays (cell viability, apoptosis, bright field, immunoblot, and sphere formation), as well as the CRISPR/Cas9 genome-editing techniques. For clinical relevance, we employed patient samples of different mutation status, including some relapsed from current treatments such as anti-PD-1 immunotherapy. We found the BH3 mimetic combination kill both the MICs and non-MICs (bulk of melanoma) in all cell lines and patient samples irrespective of the mutation status or relapsed state (p < 0.05). Unexpectedly, the major pro-apoptotic proteins, NOXA and BIM, are not necessary for the combination-induced cell death. Furthermore, the combination impedes the activation of DRP-1, and inhibition of DRP-1 further enhances apoptosis (p < 0.05). DRP-1 effects in melanoma differ from those seen in other cancer cells. These results provide new insights into BCL-2 family's regulation of the apoptotic pathway in melanoma, and suggest that inhibiting the major anti-apoptotic proteins is sufficient to induce cell death even without involvement from major pro-apoptotic proteins. Importantly, our study also indicates that DRP-1 inhibition is a promising adjuvant for BH3 mimetics in melanoma treatment.
Collapse
|
17
|
Mukherjee N, Almeida A, Partyka KA, Lu Y, Schwan JV, Lambert K, Rogers M, Robinson WA, Robinson SE, Applegate AJ, Amato CM, Luo Y, Fujita M, Norris DA, Shellman YG. Combining a GSI and BCL-2 inhibitor to overcome melanoma's resistance to current treatments. Oncotarget 2018; 7:84594-84607. [PMID: 27829238 PMCID: PMC5356684 DOI: 10.18632/oncotarget.13141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Major limitations of current melanoma treatments are for instances of relapse and the lack of therapeutic options for BRAF wild-type patients who do not respond to immunotherapy. Many studies therefore focus on killing resistant subpopulations, such as Melanoma Initiating Cells (MICs) to prevent relapse. Here we examined whether combining a GSI (γ-Secretase Inhibitor) with ABT-737 (a small molecule BCL-2/BCL-XL/BCL-W inhibitor) can kill both the non-MICs (bulk of melanoma) and MICs. To address the limitations of melanoma therapies, we included multiple tumor samples of patients relapsed from current treatments, with a diverse genetic background (with or without the common BRAF, NRAS or NF1 mutations) in these studies. Excitingly, the combination treatment reduced cell viability and induced apoptosis of the non-MICs; disrupted primary spheres, decreased the ALDH+ cells, and inhibited the self-renewability of the MICs in multiple melanoma cell lines and relapsed patient samples. Using a low-cell-number mouse xenograft model, we demonstrated that the combination significantly reduced the tumor initiating ability of MIC-enriched cultures from relapsed patient samples. Mechanistic studies also indicate that cell death is NOXA-dependent. In summary, this combination may be a promising strategy to address treatment relapse and for triple wild-type patients who do not respond to immunotherapy.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Adam Almeida
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Katie A Partyka
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Yan Lu
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Josianna V Schwan
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Karoline Lambert
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Madison Rogers
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - William A Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Steven E Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Allison J Applegate
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Carol M Amato
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Yuchun Luo
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Mayumi Fujita
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - David A Norris
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA.,Department of Veterans Affairs Medical Center, Dermatology Section, Denver, CO 80220, USA
| | - Yiqun G Shellman
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Budden T, van der Westhuizen A, Bowden NA. Sequential decitabine and carboplatin treatment increases the DNA repair protein XPC, increases apoptosis and decreases proliferation in melanoma. BMC Cancer 2018; 18:100. [PMID: 29373959 PMCID: PMC5787239 DOI: 10.1186/s12885-018-4010-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melanoma has two key features, an over-representation of UV-induced mutations and resistance to DNA damaging chemotherapy agents. Both of these features may result from dysfunction of the nucleotide excision repair pathway, in particular the DNA damage detection branch, global genome repair (GGR). The key GGR component XPC does not respond to DNA damage in melanoma, the cause of this lack of response has not been investigated. In this study, we investigated the role of methylation in reduced XPC in melanoma. METHODS To reduce methylation and induce DNA-damage, melanoma cell lines were treated with decitabine and carboplatin, individually and sequentially. Global DNA methylation levels, XPC mRNA and protein expression and methylation of the XPC promoter were examined. Apoptosis, cell proliferation and senescence were also quantified. XPC siRNA was used to determine that the responses seen were reliant on XPC induction. RESULTS Treatment with high-dose decitabine resulted in global demethylation, including the the shores of the XPC CpG island and significantly increased XPC mRNA expression. Lower, clinically relevant dose of decitabine also resulted in global demethylation including the CpG island shores and induced XPC in 50% of cell lines. Decitabine followed by DNA-damaging carboplatin treatment led to significantly higher XPC expression in 75% of melanoma cell lines tested. Combined sequential treatment also resulted in a greater apoptotic response in 75% of cell lines compared to carboplatin alone, and significantly slowed cell proliferation, with some melanoma cell lines going into senescence. Inhibiting the increased XPC using siRNA had a small but significant negative effect, indicating that XPC plays a partial role in the response to sequential decitabine and carboplatin. CONCLUSIONS Demethylation using decitabine increased XPC and apoptosis after sequential carboplatin. These results confirm that sequential decitabine and carboplatin requires further investigation as a combination treatment for melanoma.
Collapse
Affiliation(s)
- Timothy Budden
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, Newcastle, NSW, Australia
| | | | - Nikola A Bowden
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
19
|
Gallagher SJ, Gunatilake D, Beaumont KA, Sharp DM, Tiffen JC, Heinemann A, Weninger W, Haass NK, Wilmott JS, Madore J, Ferguson PM, Rizos H, Hersey P. HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. Int J Cancer 2017; 142:1926-1937. [PMID: 29210065 DOI: 10.1002/ijc.31199] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/14/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
Mutations in BRAF activate oncogenic MAPK signalling in almost half of cutaneous melanomas. Inhibitors of BRAF (BRAFi) and its target MEK are widely used to treat melanoma patients with BRAF mutations but unfortunately acquired resistance occurs in the majority of patients. Resistance results from mutations or non-genomic changes that either reactivate MAPK signalling or activate other pathways that provide alternate survival and growth signalling. Here, we show the histone deacetylase inhibitor (HDACi) panobinostat overcomes BRAFi resistance in melanoma, but this is dependent on the resistant cells showing a partial response to BRAFi treatment. Using patient- and in vivo-derived melanoma cell lines with acquired BRAFi resistance, we show that combined treatment with the BRAFi encorafenib and HDACi panobinostat in 2D and 3D culture systems synergistically induced caspase-dependent apoptotic cell death. Key changes induced by HDAC inhibition included decreased PI3K pathway activity associated with a reduction in the protein level of a number of receptor tyrosine kinases, and cell line dependent upregulation of pro-apoptotic BIM or NOXA together with reduced expression of anti-apoptotic proteins. Independent of these changes, panobinostat reduced c-Myc and pre-treatment of cells with siRNA against c-Myc reduced BRAFi/HDACi drug-induced cell death. These results suggest that a combination of HDAC and MAPK inhibitors may play a role in treatment of melanoma where the resistance mechanisms are due to activation of MAPK-independent pathways.
Collapse
Affiliation(s)
- Stuart J Gallagher
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Dilini Gunatilake
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | | | - Danae M Sharp
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia
| | - Jessamy C Tiffen
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Anja Heinemann
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia
| | - Wolfgang Weninger
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia
| | - Nikolas K Haass
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia.,Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Jason Madore
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Helen Rizos
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter Hersey
- The Centenary Institute, University of Sydney, Newtown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Cook SJ, Stuart K, Gilley R, Sale MJ. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J 2017; 284:4177-4195. [PMID: 28548464 PMCID: PMC6193418 DOI: 10.1111/febs.14122] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
The ERK1/2 signalling pathway is best known for its role in connecting activated growth factor receptors to changes in gene expression due to activated ERK1/2 entering the nucleus and phosphorylating transcription factors. However, active ERK1/2 also translocate to a variety of other organelles including the endoplasmic reticulum, endosomes, golgi and mitochondria to access specific substrates and influence cell physiology. In this article, we review two aspects of ERK1/2 signalling at the mitochondria that are involved in regulating cell fate decisions. First, we describe the prominent role of ERK1/2 in controlling the BCL2-regulated, cell-intrinsic apoptotic pathway. In most cases ERK1/2 signalling promotes cell survival by activating prosurvival BCL2 proteins (BCL2, BCL-xL and MCL1) and repressing prodeath proteins (BAD, BIM, BMF and PUMA). This prosurvival signalling is co-opted by oncogenes to confer cancer cell-specific survival advantages and we describe how this information has been used to develop new drug combinations. However, ERK1/2 can also drive the expression of the prodeath protein NOXA to control 'autophagy or apoptosis' decisions during nutrient starvation. We also describe recent studies demonstrating a link between ERK1/2 signalling, DRP1 and the mitochondrial fission machinery and how this may influence metabolic reprogramming during tumorigenesis and stem cell reprogramming. With advances in subcellular proteomics it is likely that new roles for ERK1/2, and new substrates, remain to be discovered at the mitochondria and other organelles.
Collapse
Affiliation(s)
- Simon J. Cook
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | - Kate Stuart
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | | | | |
Collapse
|
21
|
Najem A, Krayem M, Salès F, Hussein N, Badran B, Robert C, Awada A, Journe F, Ghanem GE. P53 and MITF/Bcl-2 identified as key pathways in the acquired resistance of NRAS-mutant melanoma to MEK inhibition. Eur J Cancer 2017; 83:154-165. [PMID: 28738256 DOI: 10.1016/j.ejca.2017.06.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023]
Abstract
Activating mutations in Neuroblastoma RAS viral oncogene homolog (NRAS) are found in 15-30% of melanomas and are associated with a poor prognosis. Although MAP kinase kinase (MEK) inhibitors used as single agents showed a limited clinical benefit in patients with NRAS-mutant melanoma due to their rather cytostatic effect and high toxicity, their combination with other inhibitors of pathways known to cooperate with MEK inhibition may maximise their antitumour activity. Similarly, in a context where p53 is largely inactivated in melanoma, hyperexpression of Microphthalmia associated transcription factor (MITF) and its downstream anti-apoptotic targets may be the cause of the restraint cytotoxic effects of MEK inhibitors. Indeed, drug combinations targeting both mutant BRAF and MITF or one of its important targets Bcl-2 were effective in mutant BRAF melanoma but had no effect on acquired resistance. Therefore, we aimed to further investigate the downstream MITF targets that can explain this anti-apoptotic effect and to evaluate in parallel the effect of p53 reactivation on the promotion of apoptosis under MEK inhibition in a panel of Q61NRAS-mutant melanoma cells. First, we showed that MEK inhibition (pimasertib) led to a significant inhibition of cell proliferation but with a limited effect on apoptosis that could be explained by the systematic MITF upregulation. Mimicking the MITF effect via cyclic adenosine monophosphate activation conferred resistance to MEK inhibition and upregulated Bcl-2 expression. In addition, acquired resistance to MEK inhibition was associated with a strong activation of the anti-apoptotic signalling MITF/Bcl-2. More importantly, selective Bcl-2 inhibition by ABT-199 or Bcl-2 knockout using CRISPR/Cas9 system annihilated the acquired resistance and restored the sensitivity of NRAS-mutant melanoma cells to MEK inhibition. Strikingly and similarly, direct p53 reactivation (PRIMA-1Met, APR-246) also broke resistance and synergised with MEK inhibition to induce massive apoptosis in NRAS-mutant melanoma cells with wild-type or mutant p53. Hence, our data identify MITF/Bcl-2 as a key mechanism underlying resistance of NRAS-mutant melanoma cells to apoptosis by MEK inhibitors and paves the way for a promising drug combination that could prevent or reverse anti-MEK resistance in this group of patients.
Collapse
Affiliation(s)
- Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - François Salès
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Department of Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Nader Hussein
- Department of Biochemistry, Lebanese University, Beirut, Lebanon
| | - Bassam Badran
- Department of Biochemistry, Lebanese University, Beirut, Lebanon
| | | | - Ahmad Awada
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Service d'Anatomie Humaine et d'Oncologie Expérimentale, Université de Mons, Mons, Belgium
| | - Ghanem E Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
22
|
Mahmoud F, Shields B, Makhoul I, Avaritt N, Wong HK, Hutchins LF, Shalin S, Tackett AJ. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther 2017; 18:451-469. [PMID: 28513269 DOI: 10.1080/15384047.2017.1323596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacologic inhibition of the cytotoxic T lymphocyte antigen 4 (CTLA4) and the programmed death receptor-1 (PD1) has resulted in unprecedented durable responses in metastatic melanoma. However, resistance to immunotherapy remains a major challenge. Effective immune surveillance against melanoma requires 4 essential steps: activation of the T lymphocytes, homing of the activated T lymphocytes to the melanoma microenvironment, identification and episode of melanoma cells by activated T lymphocytes, and the sensitivity of melanoma cells to apoptosis. At each of these steps, there are multiple factors that may interfere with the immune surveillance machinery, thus allowing melanoma cells to escape immune attack and develop resistance to immunotherapy. We provide a comprehensive review of the complex immune surveillance mechanisms at play in melanoma, and a detailed discussion of how these mechanisms may allow for the development of intrinsic or acquired resistance to immunotherapeutic modalities, and potential avenues for overcoming this resistance.
Collapse
Affiliation(s)
- Fade Mahmoud
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Bradley Shields
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Issam Makhoul
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Nathan Avaritt
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Henry K Wong
- c Department of Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Laura F Hutchins
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Sara Shalin
- d Departments of Pathology and Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Alan J Tackett
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| |
Collapse
|
23
|
Haass NK, Gabrielli B. Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities. Exp Dermatol 2017; 26:649-655. [PMID: 28109167 DOI: 10.1111/exd.13303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches.
Collapse
Affiliation(s)
- Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia.,The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| | - Brian Gabrielli
- Mater Medical Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
24
|
Abstract
Aberrant cell cycle progression is a hallmark of solid tumors; therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. Here, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.
Collapse
|
25
|
Multimodal tumor suppression by miR-302 cluster in melanoma and colon cancer. Int J Biochem Cell Biol 2016; 81:121-132. [PMID: 27840154 DOI: 10.1016/j.biocel.2016.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022]
Abstract
The miR-302 family is one of the main groups of microRNAs, which are highly expressed in embryonic stem cells (ESCs). Previous reports have indicated that miR-302 can reduce the proliferation rate of some cancer cells while compromising on their oncogenic potential at the same time without having the same effect on normal somatic cells. In this study we aimed to further investigate the role of the miR-302 cluster in multiple cancer signaling pathways using A-375 melanoma and HT-29 colorectal cancer cells. Our results indicate that the miR-302 cluster has the potential to modulate oncogenic properties of cancer cells through inhibition of proliferation, angiogenesis and invasion, and through reversal of the epithelial-to-mesenchymal transition (EMT) in these cells. We showed for the first time that overexpression of miR-302 cluster sensitized A-375 and HT-29 cells to hypoxia and also to the selective BRAF inhibitor vemurafenib. MiR-302 is a pleiotropically acting miRNA family which may have significant implications in controlling cancer progression and invasion. It acts through a reprogramming process, which has a global effect on a multitude of cellular pathways and events. We propose that reprogramming of cancer cells by epigenetic factors, especially miRNAs might provide an efficient tool for controlling cancer and especially for those with more invasive nature.
Collapse
|
26
|
Fofaria NM, Frederick DT, Sullivan RJ, Flaherty KT, Srivastava SK. Overexpression of Mcl-1 confers resistance to BRAFV600E inhibitors alone and in combination with MEK1/2 inhibitors in melanoma. Oncotarget 2016; 6:40535-56. [PMID: 26497853 PMCID: PMC4747351 DOI: 10.18632/oncotarget.5755] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/20/2015] [Indexed: 01/13/2023] Open
Abstract
Melanoma harboring BRAF mutations frequently develop resistance to BRAF inhibitors, limiting the impact of treatment. Here, we establish a mechanism of resistance and subsequently identified a suitable drug combination to overcome the resistance. Single treatment of BRAF mutant melanoma cell lines with vemurafenib or dabrafenib (BRAF inhibitors) alone or in combination with trametinib (MEK1/2 inhibitor) resulted in overexpression of Mcl-1. Overexpression of Mcl-1 in A375 and SK-MEL-28 by transfection completely blocked BRAF and MEK1/2 inhibitor-mediated inhibition of cell survival and apoptosis. Melanoma cells resistant to BRAF inhibitors showed massive expression of Mcl-1 as compared to respective sensitive cell lines. Silencing of Mcl-1 using siRNA completely sensitized resistant melanoma cells to growth suppression and induction of apoptosis by BRAF inhibitors. In vivo, vemurafenib resistant A375 xenografts implanted in athymic nude mice showed substantial tumor growth inhibition when treated with a combination of vemurafenib and Mcl-1 inhibitor or siRNA. Immunohistochemistry and western blot analyses demonstrated enhanced expression of Mcl-1 and activation of ERK1/2 in vemurafenib-resistant tumors whereas level of Mcl-1 or p-ERK1/2 was diminished in the tumors of mice treated with either of the combination. Biopsied tumors from the patients treated with or resistant to BRAF inhibitors revealed overexpression of Mcl-1. These results suggest that the combination of BRAF inhibitors with Mcl-1 inhibitor may have therapeutic advantage to melanoma patients with acquired resistance to BRAF inhibitors alone or in combination with MEK1/2 inhibitors.
Collapse
Affiliation(s)
- Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Dennie T Frederick
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Ryan J Sullivan
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Keith T Flaherty
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
27
|
Hepatocyte growth factor renders BRAF mutant human melanoma cell lines resistant to PLX4032 by downregulating the pro-apoptotic BH3-only proteins PUMA and BIM. Cell Death Differ 2016; 23:2054-2062. [PMID: 27689874 DOI: 10.1038/cdd.2016.96] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
A large proportion of melanomas harbour the activating BRAFV600E mutation that renders these cells dependent on MAPK signalling for their survival. Although the highly specific and clinically approved BRAFV600E kinase inhibitor, PLX4032, induces apoptosis of melanoma cells bearing this mutation, the underlying molecular mechanisms are not fully understood. Here, we reveal that PLX4032-induced apoptosis depends on the induction of the pro-apoptotic BH3-only protein PUMA with a minor contribution of its relative BIM. Apoptosis could be significantly augmented when PLX4032 was combined with an inhibitor of the pro-survival protein BCL-XL, whereas neutralization of the pro-survival family member BCL-2 caused no additional cell death. Although the initial response to PLX4032 in melanoma patients is very potent, resistance to the drug eventually develops and relapse occurs. Several factors can cause melanoma cells to develop resistance to PLX4032; one of them is the activation of the receptor tyrosine kinase cMET on melanoma cells by its ligand, hepatocyte growth factor (HGF), provided by the tumour microenvironment or the cancer cells themselves. We found that HGF mediates resistance of cMET-expressing BRAF mutant melanoma cells to PLX4032-induced apoptosis through downregulation of PUMA and BIM rather than by increasing the expression of pro-survival BCL-2-like proteins. These results suggest that resistance to PLX4032 may be overcome by specifically increasing the levels of PUMA and BIM in melanoma cells through alternative signalling cascades or by blocking pro-survival BCL-2 family members with suitable BH3 mimetic compounds.
Collapse
|
28
|
Beaumont KA, Hill DS, Daignault SM, Lui GYL, Sharp DM, Gabrielli B, Weninger W, Haass NK. Cell Cycle Phase-Specific Drug Resistance as an Escape Mechanism of Melanoma Cells. J Invest Dermatol 2016; 136:1479-1489. [PMID: 26970356 DOI: 10.1016/j.jid.2016.02.805] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/06/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment is characterized by cancer cell subpopulations with heterogeneous cell cycle profiles. For example, hypoxic tumor zones contain clusters of cancer cells that arrest in G1 phase. It is conceivable that neoplastic cells exhibit differential drug sensitivity based on their residence in specific cell cycle phases. In this study, we used two-dimensional and organotypic melanoma culture models in combination with fluorescent cell cycle indicators to investigate the effects of cell cycle phases on clinically used drugs. We demonstrate that G1-arrested melanoma cells, irrespective of the underlying cause mediating G1 arrest, are resistant to apoptosis induced by the proteasome inhibitor bortezomib or the alkylating agent temozolomide. In contrast, G1-arrested cells were more sensitive to mitogen-activated protein kinase pathway inhibitor-induced cell death. Of clinical relevance, pretreatment of melanoma cells with a mitogen-activated protein kinase pathway inhibitor, which induced G1 arrest, resulted in resistance to temozolomide or bortezomib. On the other hand, pretreatment with temozolomide, which induced G2 arrest, did not result in resistance to mitogen-activated protein kinase pathway inhibitors. In summary, we established a model to study the effects of the cell cycle on drug sensitivity. Cell cycle phase-specific drug resistance is an escape mechanism of melanoma cells that has implications on the choice and timing of drug combination therapies.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - David S Hill
- The Centenary Institute, Newtown, NSW, Australia; Dermatological Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sheena M Daignault
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Goldie Y L Lui
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Danae M Sharp
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Brian Gabrielli
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW, Australia; Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolas K Haass
- The Centenary Institute, Newtown, NSW, Australia; The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
29
|
Baig S, Seevasant I, Mohamad J, Mukheem A, Huri HZ, Kamarul T. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand? Cell Death Dis 2016; 7:e2058. [PMID: 26775709 PMCID: PMC4816162 DOI: 10.1038/cddis.2015.275] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/17/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022]
Abstract
Underneath the intricacy of every cancer lies mysterious events that impel the tumour cell and its posterity into abnormal growth and tissue invasion. Oncogenic mutations disturb the regulatory circuits responsible for the governance of versatile cellular functions, permitting tumour cells to endure deregulated proliferation, resist to proapoptotic insults, invade and erode normal tissues and above all escape apoptosis. This disruption of apoptosis has been highly implicated in various malignancies and has been exploited as an anticancer strategy. Owing to the fact that apoptosis causes minimal inflammation and damage to the tissue, apoptotic cell death-based therapy has been the centre of attraction for the development of anticancer drugs. Increased understanding of the molecular pathways underlying apoptosis has enabled scientists to establish unique approaches targeting apoptosis pathways in cancer therapeutics. In this review, we reconnoitre the two major pathways (intrinsic and extrinsic) targeted cancer therapeutics, steering toward chief modulators of these pathways, such as B-cell lymphoma 2 protein family members (pro- and antiapoptotic), inhibitor of apoptosis proteins, and the foremost thespian of extrinsic pathway regulator, tumour necrosis factor-related apoptosis-inducing agent. Together, we also will have a look from clinical perspective to address the agents (drugs) and therapeutic strategies adopted to target these specific proteins/pathways that have entered clinical trials.
Collapse
Affiliation(s)
- S Baig
- Department of Orthopaedic Surgery, Tissue Engineering Group, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaysia, Kuala Lumpur 50603, Malaysia
- Department of Orthopaedic Surgery, University of Malaya, Tissue Engineering Group, Faculty of Medicine, Kuala Lumpur 50603, Malaysia. Tel: +60 3 7967 7022; Fax: +60 3 7949 4642; E-mail: (SB) or Tel: +60 3 7949 2061; Fax: +60 3 7949 4642; E-mail: (TK)
| | - I Seevasant
- Department of Orthopaedic Surgery, Tissue Engineering Group, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - J Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaysia, Kuala Lumpur 50603, Malaysia
| | - A Mukheem
- Department of Orthopaedic Surgery, Tissue Engineering Group, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - H Z Huri
- Clinical Investigation Centre, University of Malaya Medical Centre, Kuala Lumpur 50603, Malaysia
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - T Kamarul
- Department of Orthopaedic Surgery, Tissue Engineering Group, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Clinical Investigation Centre, University of Malaya Medical Centre, Kuala Lumpur 50603, Malaysia
- Department of Orthopaedic Surgery, University of Malaya, Tissue Engineering Group, Faculty of Medicine, Kuala Lumpur 50603, Malaysia. Tel: +60 3 7967 7022; Fax: +60 3 7949 4642; E-mail: (SB) or Tel: +60 3 7949 2061; Fax: +60 3 7949 4642; E-mail: (TK)
| |
Collapse
|
30
|
Liu J, Gu J, Feng Z, Yang Y, Zhu N, Lu W, Qi F. Both HDAC5 and HDAC6 are required for the proliferation and metastasis of melanoma cells. J Transl Med 2016; 14:7. [PMID: 26747087 PMCID: PMC4706654 DOI: 10.1186/s12967-015-0753-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022] Open
Abstract
Background Histone deacetylase (HDAC) inhibitors are widely used in clinical investigation as novel drug targets. For example, panobinostat and vorinostat have been used to treat patients with melanoma. However, HDAC inhibitors are small-molecule compounds without a specific target, and their mechanism of action is unclear. Therefore, it is necessary to investigate which HDACs are required for the proliferation and metastasis of melanoma cells. Methods We used overexpression and knocking down lentivirus to clarify the influence of HDAC5 and HDAC6 in melanoma development. Also, we introduced stable HDAC5 or HDAC6 knockdown cells into null mice and found that the knockdown cells were unable to form solid tumors. Finally, we tested HDAC5 and HDAC6 expression and sub-location in clinical melanoma tissues and tumor adjacent tissues. Results In this study, and found that HDAC5 and HDAC6 were highly expressed in melanoma cells but exhibited low expression levels in normal skin cells. Furthermore, we knocked down HDAC5 or HDAC6 in A375 cells and demonstrated that both HDAC5 and HDAC6 contributed to the proliferation and metastasis of melanoma cells. Conclusions This study demonstrated both HDAC5 and HDAC6 were required for melanoma cell proliferation and metastasis through different signaling pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0753-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Zihao Feng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yanhong Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China.
| | - Ningwen Zhu
- Huashan Hospital, Fudan University, 12 Middle Urumqi Rd, Shanghai, 200040, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai, 201203, China.
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
31
|
Mukherjee N, Schwan JV, Fujita M, Norris DA, Shellman YG. Alternative Treatments For Melanoma: Targeting BCL-2 Family Members to De-Bulk and Kill Cancer Stem Cells. J Invest Dermatol 2015; 135:2155-2161. [PMID: 25947358 PMCID: PMC4537369 DOI: 10.1038/jid.2015.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
For the first time new treatments in melanoma have produced significant responses in advanced diseases, but 30-90% of melanoma patients do not respond or eventually relapse after the initial response to the current treatments. The resistance of these melanomas is likely due to tumor heterogeneity, which may be explained by models such as the stochastic, hierarchical, and phenotype-switching models. This review will discuss the recent advancements in targeting BCL-2 family members for cancer treatments, and how this approach can be applied as an alternative option to combat melanoma, and overcome melanoma relapse or resistance in current treatment regimens.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Josianna V Schwan
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mayumi Fujita
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Veterans Affairs Medical Center, Dermatology Section, Denver, Colorado, USA
| | - David A Norris
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Veterans Affairs Medical Center, Dermatology Section, Denver, Colorado, USA
| | - Yiqun G Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
32
|
Abstract
Drug resistance in melanoma is commonly attributed to ineffective apoptotic pathways. Targeting apoptosis regulators is thus considered a promising approach to sensitizing melanoma to therapy. In the previous issue of Experimental Dermatology, Plötz and Eberle discuss the role that apoptosis plays in melanoma progression and drug resistance and the utility of apoptosis-inducing BH3-mimetics as targeted therapy. There are a number of compounds in clinical development and the field seems close to translating recent findings into benefits for patients with melanoma. Thus, this viewpoint is timely and achieves a valuable summary of the current state of apoptosis-inducing therapy of melanoma.
Collapse
Affiliation(s)
- Nikolas K Haass
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Qld, Australia; The Centenary Institute, Newtown, NSW, Australia; Discipline of Dermatology, University of Sydney, Camperdown, NSW, Australia
| | | |
Collapse
|
33
|
Liu Y, Xie M, Song T, Sheng H, Yu X, Zhang Z. A novel BH3 mimetic efficiently induces apoptosis in melanoma cells through direct binding to anti-apoptotic Bcl-2 family proteins, including phosphorylated Mcl-1. Pigment Cell Melanoma Res 2014; 28:161-70. [DOI: 10.1111/pcmr.12325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Yubo Liu
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| | - Mingzhou Xie
- School of Life Science and Technology; Dalian University of Technology; Dalian China
| | - Ting Song
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| | - Hongkun Sheng
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| | - Xiaoyan Yu
- School of Life Science and Technology; Dalian University of Technology; Dalian China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| |
Collapse
|
34
|
Hill DS, Lovat PE, Haass NK. Induction of endoplasmic reticulum stress as a strategy for melanoma therapy: is there a future? Melanoma Manag 2014; 1:127-137. [PMID: 30190818 DOI: 10.2217/mmt.14.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Melanoma cells employ several survival strategies, including induction of the unfolded protein response, which mediates resistance to endoplasmic reticulum (ER) stress-induced apoptosis. Activation of oncogenes specifically suppresses ER stress-induced apoptosis, while upregulation of ER chaperone proteins and antiapoptotic BCL-2 family members increases the protein folding capacity of the cell and the threshold for the induction of ER stress-induced apoptosis, respectively. Modulation of unfolded protein response signaling, inhibition of the protein folding machinery and/or active induction of ER stress may thus represent potential strategies for the therapeutic management of melanoma. To this aim, the present article focuses on the current understanding of how melanoma cells avoid or overcome ER stress-induced apoptosis, as well as therapeutic strategies through which to harness ER stress for therapeutic benefit.
Collapse
Affiliation(s)
- David S Hill
- The Centenary Institute, Newtown, New South Wales, Australia.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,The Centenary Institute, Newtown, New South Wales, Australia.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Penny E Lovat
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nikolas K Haass
- The Centenary Institute, Newtown, New South Wales, Australia.,Discipline of Dermatology, University of Sydney, Camperdown, New South Wales, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia.,The Centenary Institute, Newtown, New South Wales, Australia.,Discipline of Dermatology, University of Sydney, Camperdown, New South Wales, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| |
Collapse
|
35
|
Clitocine induces apoptosis and enhances the lethality of ABT-737 in human colon cancer cells by disrupting the interaction of Mcl-1 and Bak. Cancer Lett 2014; 355:253-63. [DOI: 10.1016/j.canlet.2014.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 12/18/2022]
|
36
|
Tay KH, Liu X, Chi M, Jin L, Jiang CC, Guo ST, Verrills NM, Tseng HY, Zhang XD. Involvement of vacuolar H(+)-ATPase in killing of human melanoma cells by the sphingosine kinase analogue FTY720. Pigment Cell Melanoma Res 2014; 28:171-83. [PMID: 25358761 DOI: 10.1111/pcmr.12326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
Abstract
Targeting the sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) signalling axis is emerging as a promising strategy in the treatment of cancer. However, the effect of such an approach on survival of human melanoma cells remains less understood. Here, we show that the sphingosine analogue FTY720 that functionally antagonises S1PRs kills human melanoma cells through a mechanism involving the vacuolar H(+) -ATPase activity. Moreover, we demonstrate that FTY720-triggered cell death is characterized by features of necrosis and is not dependent on receptor-interacting protein kinase 1 or lysosome cathepsins, nor was it associated with the activation of protein phosphatase 2A. Instead, it is mediated by increased production of reactive oxygen species and is antagonized by activation of autophagy. Collectively, these results suggest that FTY720 and its analogues are promising candidates for further development as new therapeutic agents in the treatment of melanoma.
Collapse
Affiliation(s)
- Kwang Hong Tay
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hersey P, Kakavand H, Wilmott J, van der Westhuizen A, Gallagher S, Gowrishankar K, Scolyer R. How anti-PD1 treatments are changing the management of melanoma. Melanoma Manag 2014; 1:165-172. [PMID: 30190821 PMCID: PMC6094707 DOI: 10.2217/mmt.14.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The introduction of immunotherapy based on the blockade of the PD1/PD-L1 checkpoints has been associated with high response rates and durable remissions of disease in patients with metastatic melanoma, to the extent that it is now considered the standard of care for a wide range of patients, irrespective of their BRAF or NRAS mutation status. In addition, more frequent follow-up of patients who are at high risk of recurrence after surgical treatment appears to be justified, as does neoadjuvant treatments in order to render patients treatable by surgery. The limitations of this treatment include failure of some patients to respond, a low rate of complete responses and relapses of the disease during treatment. New initiatives in order to overcome these limitations include the identification of biomarkers for the selection responders and evaluations of treatment combinations that will increase responses and their durability. The latter includes combinations with antibodies against other checkpoints on T cells and cotreatments with inhibitors of resistance pathways in melanoma.
Collapse
Affiliation(s)
- Peter Hersey
- Kolling Institute, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Melanoma Institute of Australia, Rocklands Road, North Sydney, NSW, Australia
| | - Hojabr Kakavand
- Melanoma Institute of Australia, Rocklands Road, North Sydney, NSW, Australia
- Department of Anatomical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - James Wilmott
- Melanoma Institute of Australia, Rocklands Road, North Sydney, NSW, Australia
- Department of Anatomical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Stuart Gallagher
- Kolling Institute, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | | - Richard Scolyer
- Melanoma Institute of Australia, Rocklands Road, North Sydney, NSW, Australia
- Department of Anatomical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
38
|
Ascierto PA, Grimaldi AM, Anderson AC, Bifulco C, Cochran A, Garbe C, Eggermont AM, Faries M, Ferrone S, Gershenwald JE, Gajewski TF, Halaban R, Hodi FS, Kefford R, Kirkwood JM, Larkin J, Leachman S, Maio M, Marais R, Masucci G, Melero I, Palmieri G, Puzanov I, Ribas A, Saenger Y, Schilling B, Seliger B, Stroncek D, Sullivan R, Testori A, Wang E, Ciliberto G, Mozzillo N, Marincola FM, Thurin M. Future perspectives in melanoma research: meeting report from the "Melanoma Bridge", Napoli, December 5th-8th 2013. J Transl Med 2014; 12:277. [PMID: 25348889 PMCID: PMC4232645 DOI: 10.1186/s12967-014-0277-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 12/28/2022] Open
Abstract
The fourth "Melanoma Bridge Meeting" took place in Naples, December 5 to 8th, 2013. The four topics discussed at this meeting were: Diagnosis and New Procedures, Molecular Advances and Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers.
Collapse
Affiliation(s)
- Paolo A Ascierto
- />Istituto Nazionale Tumori, Fondazione “G. Pascale”, Napoli, Italy
| | | | | | - Carlo Bifulco
- />Translational Molecular Pathology, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR USA
| | - Alistair Cochran
- />Departments of Pathology and Laboratory Medicine and Surgery, David Geffen School of Medicine at University of California Los Angeles (UCLA), John Wayne Cancer Institute, Santa Monica, CA USA
| | - Claus Garbe
- />Center for Dermato Oncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | | | - Mark Faries
- />Donald L. Morton Melanoma Research Program, John Wayne Cancer Institute, Santa Monica, CA USA
| | - Soldano Ferrone
- />Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Jeffrey E Gershenwald
- />Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Thomas F Gajewski
- />Departments of Medicine and of Pathology, Immunology and Cancer Program, The University of Chicago Medicine, Chicago, IL USA
| | - Ruth Halaban
- />Department of Dermatology, Yale University School of Medicine, New Haven, CT USA
| | - F Stephen Hodi
- />Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Richard Kefford
- />Westmead Institute for Cancer Research, Westmead Millennium Institute and Melanoma Institute Australia, University of Sydney, Sydney, NSW Australia
| | - John M Kirkwood
- />Division of Hematology/Oncology, Departments of Medicine, Dermatology, and Translational Science, University of Pittsburgh School of Medicine and Melanoma Program of the Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - James Larkin
- />Royal Marsden NHS Foundation Trust, London, UK
| | - Sancy Leachman
- />Department of Dermatology, Oregon Health Sciences University, Portland, OR USA
| | - Michele Maio
- />Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Richard Marais
- />Molecular Oncology Group, The Paterson Institute for Cancer Research, Wilmslow Road, Manchester, M20 4BX UK
| | - Giuseppe Masucci
- />Department of Oncology-Pathology, The Karolinska Hospital, Stockholm, Sweden
| | - Ignacio Melero
- />Centro de Investigación Médica Aplicada, Clinica Universidad de Navarra, Pamplona, Navarra Spain
| | - Giuseppe Palmieri
- />Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Igor Puzanov
- />Vanderbilt University Medical Center, Nashville, TN USA
| | - Antoni Ribas
- />Tumor Immunology Program, Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA USA
| | - Yvonne Saenger
- />Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Bastian Schilling
- />Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- />German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Barbara Seliger
- />Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Halle, Germany
| | - David Stroncek
- />Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD USA
| | - Ryan Sullivan
- />Center for Melanoma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA USA
| | | | - Ena Wang
- />Division Chief of Translational Medicine, Sidra Medical and Research Centre, Doha, Qatar
| | | | - Nicola Mozzillo
- />Istituto Nazionale Tumori, Fondazione “G. Pascale”, Napoli, Italy
| | | | - Magdalena Thurin
- />Cancer Diagnosis Program, National Cancer Institute, NIH, Bethesda, MD USA
| |
Collapse
|
39
|
Frederick DT, Salas Fragomeni RA, Schalck A, Ferreiro-Neira I, Hoff T, Cooper ZA, Haq R, Panka DJ, Kwong LN, Davies MA, Cusack JC, Flaherty KT, Fisher DE, Mier JW, Wargo JA, Sullivan RJ. Clinical profiling of BCL-2 family members in the setting of BRAF inhibition offers a rationale for targeting de novo resistance using BH3 mimetics. PLoS One 2014; 9:e101286. [PMID: 24983357 PMCID: PMC4077767 DOI: 10.1371/journal.pone.0101286] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
While response rates to BRAF inhibitiors (BRAFi) are high, disease progression emerges quickly. One strategy to delay the onset of resistance is to target anti-apoptotic proteins such as BCL-2, known to be associated with a poor prognosis. We analyzed BCL-2 family member expression levels of 34 samples from 17 patients collected before and 10 to 14 days after treatment initiation with either vemurafenib or dabrafenib/trametinib combination. The observed changes in mRNA and protein levels with BRAFi treatment led us to hypothesize that combining BRAFi with a BCL-2 inhibitor (the BH3-mimetic navitoclax) would improve outcome. We tested this hypothesis in cell lines and in mice. Pretreatment mRNA levels of BCL-2 negatively correlated with maximal tumor regression. Early increases in mRNA levels were seen in BIM, BCL-XL, BID and BCL2-W, as were decreases in MCL-1 and BCL2A. No significant changes were observed with BCL-2. Using reverse phase protein array (RPPA), significant increases in protein levels were found in BIM and BID. No changes in mRNA or protein correlated with response. Concurrent BRAF (PLX4720) and BCL2 (navitoclax) inhibition synergistically reduced viability in BRAF mutant cell lines and correlated with down-modulation of MCL-1 and BIM induction after PLX4720 treatment. In xenograft models, navitoclax enhanced the efficacy of PLX4720. The combination of a selective BRAF inhibitor with a BH3-mimetic promises to be an important therapeutic strategy capable of enhancing the clinical efficacy of BRAF inhibition in many patients that might otherwise succumb quickly to de novo resistance. Trial registrations: ClinicalTrials.gov NCT01006980; ClinicalTrials.gov NCT01107418; ClinicalTrials.gov NCT01264380; ClinicalTrials.gov NCT01248936; ClinicalTrials.gov NCT00949702; ClinicalTrials.gov NCT01072175.
Collapse
Affiliation(s)
- Dennie T. Frederick
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Roberto A. Salas Fragomeni
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aislyn Schalck
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - Isabel Ferreiro-Neira
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Taylor Hoff
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Zachary A. Cooper
- Department of Surgical Oncology and Genomic Medicine, University of Texas, M.D.Anderson Cancer Center, Houston, Texas, United States of America
| | - Rizwan Haq
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - David J. Panka
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Lawrence N. Kwong
- Department of Surgical Oncology and Genomic Medicine, University of Texas, M.D.Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael A. Davies
- Department of Surgical Oncology and Genomic Medicine, University of Texas, M.D.Anderson Cancer Center, Houston, Texas, United States of America
| | - James C. Cusack
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Keith T. Flaherty
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - David E. Fisher
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - James W. Mier
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Jennifer A. Wargo
- Department of Surgical Oncology and Genomic Medicine, University of Texas, M.D.Anderson Cancer Center, Houston, Texas, United States of America
| | - Ryan J. Sullivan
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Grazia G, Penna I, Perotti V, Anichini A, Tassi E. Towards combinatorial targeted therapy in melanoma: from pre-clinical evidence to clinical application (review). Int J Oncol 2014; 45:929-49. [PMID: 24920406 PMCID: PMC4121406 DOI: 10.3892/ijo.2014.2491] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/30/2014] [Indexed: 12/15/2022] Open
Abstract
Over the last few years, clinical trials with BRAF and mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitors have shown significant clinical activity in melanoma, but only a fraction of patients respond to these therapies, and development of resistance is frequent. This has prompted a large set of preclinical studies looking at several new combinatorial approaches of pathway- or target-specific inhibitors. At least five main drug association strategies have been verified in vitro and in preclinical models. The most promising include: i) vertical targeting of either MEK or phosphoinositide-3 kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways, or their combined blockade; ii) association of receptor tyrosine kinases (RTKs) inhibitors with other pro-apoptotic strategies; iii) engagement of death receptors in combination with MEK-, mTOR/PI3K-, histone deacetylase (HDAC)-inhibitors, or with anti-apoptotic molecules modulators; iv) strategies aimed at blocking anti-apoptotic proteins belonging to B-cell lymphoma (Bcl-2) or inhibitors of apoptosis (IAP) families associated with MEK/BRAF/p38 inhibition; v) co-inhibition of other molecules important for survival [proteasome, HDAC and Signal transducers and activators of transcription (Stat)3] and the major pathways activated in melanoma; vi) simultaneous targeting of multiple anti-apoptotic molecules. Here we review the anti-melanoma efficacy and mechanism of action of the above-mentioned combinatorial strategies, together with the potential clinical application of the most promising studies that may eventually lead to therapeutic benefit.
Collapse
Affiliation(s)
- Giulia Grazia
- Human Tumors Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Ilaria Penna
- Human Tumors Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Valentina Perotti
- Human Tumors Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elena Tassi
- Human Tumors Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
41
|
Plötz M, Eberle J. BH3-only proteins - possible proapoptotic triggers for melanoma therapy. Exp Dermatol 2014; 23:375-8. [DOI: 10.1111/exd.12399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Plötz
- Department of Dermatology, Venerology and Allergology; HTCC - Skin Cancer Center; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology; HTCC - Skin Cancer Center; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
42
|
Shtivelman E, Davies MA, Hwu P, Yang J, Lotem M, Oren M, Flaherty KT, Fisher DE. Pathways and therapeutic targets in melanoma. Oncotarget 2014; 5:1701-52. [PMID: 24743024 PMCID: PMC4039128 DOI: 10.18632/oncotarget.1892] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 02/07/2023] Open
Abstract
This review aims to summarize the current knowledge of molecular pathways and their clinical relevance in melanoma. Metastatic melanoma was a grim diagnosis, but in recent years tremendous advances have been made in treatments. Chemotherapy provided little benefit in these patients, but development of targeted and new immune approaches made radical changes in prognosis. This would not have happened without remarkable advances in understanding the biology of disease and tremendous progress in the genomic (and other "omics") scale analyses of tumors. The big problems facing the field are no longer focused exclusively on the development of new treatment modalities, though this is a very busy area of clinical research. The focus shifted now to understanding and overcoming resistance to targeted therapies, and understanding the underlying causes of the heterogeneous responses to immune therapy.
Collapse
Affiliation(s)
| | | | - Patrick Hwu
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Yang
- National Cancer Institute, NIH, Washington DC, USA
| | - Michal Lotem
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Moshe Oren
- The Weizmann Institute of Science, Rehovot, Israel
| | | | - David E. Fisher
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
43
|
Mohana-Kumaran N, Hill DS, Allen JD, Haass NK. Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy. Pigment Cell Melanoma Res 2014; 27:525-39. [PMID: 24655414 DOI: 10.1111/pcmr.12242] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/17/2014] [Indexed: 01/02/2023]
Abstract
Melanoma drug resistance is often attributed to abrogation of the intrinsic apoptosis pathway. Targeting regulators of apoptosis is thus considered a promising approach to sensitizing melanomas to treatment. The development of small-molecule inhibitors that mimic natural antagonists of either antiapoptotic members of the BCL-2 family or the inhibitor of apoptosis proteins (IAPs), known as BH3- or SMAC-mimetics, respectively, are helping us to understand the mechanisms behind apoptotic resistance. Studies using BH3-mimetics indicate that the antiapoptotic BCL-2 protein MCL-1 and its antagonist NOXA are particularly important regulators of BCL-2 family signaling, while SMAC-mimetic studies show that both XIAP and the cIAPs must be targeted to effectively induce apoptosis of cancer cells. Although most solid tumors, including melanoma, are insensitive to these mimetic drugs as single agents, combinations with other therapeutics have yielded promising results, and tests combining them with BRAF-inhibitors, which have already revolutionized melanoma treatment, are a clear priority.
Collapse
Affiliation(s)
- Nethia Mohana-Kumaran
- The Centenary Institute, Newtown, NSW, Australia; School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | |
Collapse
|
44
|
Chi M, Ye Y, Zhang XD, Chen J. Insulin induces drug resistance in melanoma through activation of the PI3K/Akt pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:255-62. [PMID: 24600206 PMCID: PMC3933667 DOI: 10.2147/dddt.s53568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Introduction There is currently no curative treatment for melanoma once the disease spreads beyond the original site. Although activation of the PI3K/Akt pathway resulting from genetic mutations and epigenetic deregulation of its major regulators is known to cause resistance of melanoma to therapeutic agents, including the conventional chemotherapeutic drug dacarbazine and the Food and Drug Administration-approved mutant BRAF inhibitors vemurafenib and dabrafenib, the role of extracellular stimuli of the pathway, such as insulin, in drug resistance of melanoma remains less understood. Objective To investigate the effect of insulin on the response of melanoma cells to dacarbazine, and in particular, the effect of insulin on the response of melanoma cells carrying the BRAFV600E mutation to mutant BRAF inhibitors. An additional aim was to define the role of the PI3K/Akt pathway in the insulin-triggered drug resistance. Methods The effect of insulin on cytotoxicity induced by dacarbazine or the mutant BRAF inhibitor PLX4720 was tested by pre-incubation of melanoma cells with insulin. Cytotoxicity was determined by the MTS assay. The role of the PI3K/Akt pathway in the insulin-triggered drug resistance was examined using the PI3K inhibitor LY294002 and the PI3K and mammalian target of rapamycin dual inhibitor BEZ-235. Activation of the PI3K/Akt pathway was monitored by Western blot analysis of phosphorylated levels of Akt. Results Recombinant insulin attenuated dacarbazine-induced cytotoxicity in both wild-type BRAF and BRAFV600E melanoma cells, whereas it also reduced killing of BRAFV600E melanoma cells by PLX4720. Nevertheless, the protective effect of insulin was abolished by the PI3K and mTOR dual inhibitor BEZ-235 or the PI3K inhibitor LY294002. Conclusion Insulin attenuates the therapeutic efficacy of dacarbazine and PLX4720 in melanoma cells, which is mediated by activation of the PI3K/Akt pathway and can be overcome by PI3K inhibitors.
Collapse
Affiliation(s)
- Mengna Chi
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Yan Ye
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Xu Dong Zhang
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia ; Faculty of Science, Medicine and Health, The University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
45
|
Abstract
Due to their central role in the regulation of apoptosis, the antiapoptotic BCL2-proteins are highly promising targets for the development of novel anticancer treatments. To this end, several strategies have been developed to inhibit BCL2, BCL-XL, BCL-w, and MCL1. While early clinical trials in haematological malignancies demonstrated exciting single-agent activity of BCL2-inhibitors, the response in solid tumours was limited, indicating that, in solid tumours, different strategies have to be developed in order to successfully treat patients with BCL2-inhibitors. In this review, the function of the different antiapoptotic BCL2-proteins and their role in solid tumours will be discussed. In addition, a comprehensive analysis of current small molecules targeting these antiapoptotic BCL2-proteins (e.g., ABT-737, ABT-263, ABT-199, TW-37, sabutoclax, obatoclax, and MIM1) will be provided including a discussion of the results of any clinical trials. This analysis will summarise the potential of BCL2-inhibitors for the treatment of solid tumours and will unravel novel approaches to utilise these inhibitors in clinical applications.
Collapse
|
46
|
Beaumont KA, Mohana-Kumaran N, Haass NK. Modeling Melanoma In Vitro and In Vivo. Healthcare (Basel) 2013; 2:27-46. [PMID: 27429258 PMCID: PMC4934492 DOI: 10.3390/healthcare2010027] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 01/02/2023] Open
Abstract
The behavior of melanoma cells has traditionally been studied in vitro in two-dimensional cell culture with cells adhering to plastic dishes. However, in order to mimic the three-dimensional architecture of a melanoma, as well as its interactions with the tumor microenvironment, there has been the need for more physiologically relevant models. This has been achieved by designing 3D in vitro models of melanoma, such as melanoma spheroids embedded in extracellular matrix or organotypic skin reconstructs. In vivo melanoma models have typically relied on the growth of tumor xenografts in immunocompromised mice. Several genetically engineered mouse models have now been developed which allow the generation of spontaneous melanoma. Melanoma models have also been established in other species such as zebrafish, which are more conducive to imaging and high throughput studies. We will discuss these models as well as novel techniques that are relevant to the study of the molecular mechanisms underlying melanoma progression.
Collapse
Affiliation(s)
- Kimberley A. Beaumont
- The Centenary Institute, Newtown, New South Wales 2042, Australia; E-Mails: (K.A.B.); (N.M.-K.)
| | - Nethia Mohana-Kumaran
- The Centenary Institute, Newtown, New South Wales 2042, Australia; E-Mails: (K.A.B.); (N.M.-K.)
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia
| | - Nikolas K. Haass
- The Centenary Institute, Newtown, New South Wales 2042, Australia; E-Mails: (K.A.B.); (N.M.-K.)
- Discipline of Dermatology, University of Sydney, New South Wales 2006, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3443-7087; Fax: +61-7-3443-6966
| |
Collapse
|
47
|
RAF inhibition overcomes resistance to TRAIL-induced apoptosis in melanoma cells. J Invest Dermatol 2013; 134:430-440. [PMID: 23955071 DOI: 10.1038/jid.2013.347] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/14/2013] [Accepted: 05/26/2013] [Indexed: 12/29/2022]
Abstract
Mutated BRAF represents a critical oncogene in melanoma, and selective inhibitors have been approved for melanoma therapy. However, the molecular consequences of RAF inhibition in melanoma cells remained largely elusive. Here, we investigated the effects of the pan-RAF inhibitor L-779,450, which inhibited cell proliferation both in BRAF-mutated and wild-type melanoma cell lines. It furthermore enhanced apoptosis in combination with the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and overcame TRAIL resistance in melanoma cells. Enhanced apoptosis coincided with activation of mitochondrial pathways, seen by loss of mitochondrial membrane potential and release of cytochrome c, Smac (second mitochondria-derived activator of caspases), and apoptosis-inducing factor (AIF). Subsequently, caspase-9 and -3 were activated. Apoptosis induction by L-779,450/TRAIL was prevented by Bcl-2 overexpression and was dependent on Bax. Thus, activation of Bax by L-779,450 alone was demonstrated by Bax conformational changes, whereas Bak was not activated. Furthermore, the BH3-only protein Bim was upregulated in response to L-779,450. The significant roles of Smac, Bax, and Bim in this setting were proven by small interfering RNA (siRNA)-mediated knockdown experiments. L-779,450 also resulted in morphological changes indicating autophagy confirmed by the autophagy marker light chain 3-II (LC3-II). The pro-apoptotic effects of L-779,450 may explain the antitumor effects of RAF inhibition and may be considered when evaluating RAF inhibitors for melanoma therapy.
Collapse
|
48
|
Sale MJ, Cook SJ. That which does not kill me makes me stronger; combining ERK1/2 pathway inhibitors and BH3 mimetics to kill tumour cells and prevent acquired resistance. Br J Pharmacol 2013; 169:1708-22. [PMID: 23647573 PMCID: PMC3753831 DOI: 10.1111/bph.12220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/10/2013] [Accepted: 04/25/2013] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Oncogenic mutations in RAS or BRAF can drive the inappropriate activation of the ERK1/2. In many cases, tumour cells adapt to become addicted to this deregulated ERK1/2 signalling for their proliferation, providing a therapeutic window for tumour-selective growth inhibition. As a result, inhibition of ERK1/2 signalling by BRAF or MEK1/2 inhibitors is an attractive therapeutic strategy. Indeed, the first BRAF inhibitor, vemurafenib, has now been approved for clinical use, while clinical evaluation of MEK1/2 inhibitors is at an advanced stage. Despite this progress, it is apparent that tumour cells adapt quickly to these new targeted agents so that tumours with acquired resistance can emerge within 6-9 months of primary treatment. One of the major reasons for this is that tumour cells typically respond to BRAF or MEK1/2 inhibitors by undergoing a G1 cell cycle arrest rather than dying. Indeed, although inhibition of ERK1/2 invariably increases the expression of pro-apoptotic BCL2 family proteins, tumour cells undergo minimal apoptosis. This cytostatic response may simply provide the cell with the opportunity to adapt and acquire resistance. Here we discuss recent studies that demonstrate that combination of BRAF or MEK1/2 inhibitors with inhibitors of pro-survival BCL2 proteins is synthetic lethal for ERK1/2-addicted tumour cells. This combination effectively transforms the cytostatic response of BRAF and MEK1/2 inhibitors into a striking apoptotic cell death response. This not only augments the primary efficacy of BRAF and MEK1/2 inhibitors but delays the onset of acquired resistance to these agents, validating their combination in the clinic. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- Matthew J Sale
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
| | | |
Collapse
|
49
|
Cotargeting histone deacetylases and oncogenic BRAF synergistically kills human melanoma cells by necrosis independently of RIPK1 and RIPK3. Cell Death Dis 2013; 4:e655. [PMID: 23744355 PMCID: PMC3702278 DOI: 10.1038/cddis.2013.192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Past studies have shown that histone deacetylase (HDAC) and mutant BRAF (v-Raf murine sarcoma viral oncogene homolog B1) inhibitors synergistically kill melanoma cells with activating mutations in BRAF. However, the mechanism(s) involved remains less understood. Here, we report that combinations of HDAC and BRAF inhibitors kill BRAFV600E melanoma cells by induction of necrosis. Cotreatment with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) or panobinostat (LBH589) and the BRAF inhibitor PLX4720 activated the caspase cascade, but caspases appeared dispensable for killing, in that inhibition of caspases did not invariably block induction of cell death. The majority of dying cells acquired propidium iodide positivity instantly when they became positive for Annexin V, suggesting induction of necrosis. This was supported by caspase-independent release of high-mobility group protein B1, and further consolidated by rupture of the plasma membrane and loss of nuclear and cytoplasmic contents, as manifested by transmission electron microscopic analysis. Of note, neither the necrosis inhibitor necrostatin-1 nor the small interference RNA (siRNA) knockdown of receptor-interacting protein kinase 3 (RIPK3) inhibited cell death, suggesting that RIPK1 and RIPK3 do not contribute to induction of necrosis by combinations of HDAC and BRAF inhibitors in BRAFV600E melanoma cells. Significantly, SAHA and the clinically available BRAF inhibitor vemurafenib cooperatively inhibited BRAFV600E melanoma xenograft growth in a mouse model even when caspase-3 was inhibited. Taken together, these results indicate that cotreatment with HDAC and BRAF inhibitors can bypass canonical cell death pathways to kill melanoma cells, which may be of therapeutic advantage in the treatment of melanoma.
Collapse
|