1
|
Chen Y, Wang J, Zhang W, Guo X, Ren J, Zhang L, Gao A. Extracellular vesicles-derived long noncoding RNAs participated in benzene hematotoxicity by mediating apoptosis and autophagy. Toxicol Appl Pharmacol 2024; 491:117076. [PMID: 39214172 DOI: 10.1016/j.taap.2024.117076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Benzene is a common contaminant in the workplace and wider environment, which induces hematotoxicity. Our previous study has implicated that lncRNAs mediated apoptosis and autophagy induced by benzene. Nevertheless, the roles of extracellular vesicle(EVs)-derived lncRNAs in benzene toxicity are unknown. However, the role of EVs and EVs-derived lncRNAs in benzene-induced toxicity remains unclear. In this research, we explored the function of EVs and EVs-derived lncRNAs in cell-cell communication through benzene-induced apoptosis and autophagy. Our findings demonstrated that EVs derived from 1,4-BQ-treated cells treated cells and coculture with 1,4-BQ-treated cells enhanced apoptosis and autophagy via regulating the pathways of PI3K-AKT-mTOR and chaperone-mediated autophagy. Treating with GW4869 in 1,4-BQ-treated cells significantly inhibited EV secretion, which reduced apoptosis and autophagy. Furthermore, we identified a set of differentially expressed autophagy- and apoptosis-related lncRNAs using EVs-derived lncRNA sequencing. Among them, 8 candidate lncRNAs were upregulated in EVs derived from 1,4-BQ-treated cells, as determined by lncRNA sequencing and qRT-PCR. Importantly, these lncRNAs were also increased in the serum EVs of benzene-exposed workers. 1,4-BQ-treated cells released EVs that transfer differentially expressed lncRNAs, thereby inducing apoptosis and autophagy in the recipient cells. The above results support the hypothesis that EVs-derived lncRNAs participate in intercellular communication during benzene-induced hematotoxicity and function as potential biomarkers for risk assessment of benzene-exposed workers.
Collapse
Affiliation(s)
- Yujiao Chen
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Xu K, Ji S, Huang J, Yin L, Zhang J, Sun R, Pu Y. ZMAT3 participated in benzene-caused disruption in self-renewal and differentiation of hematopoietic stem cells via TNF-α/NF-κB pathway. Food Chem Toxicol 2024; 190:114838. [PMID: 38914192 DOI: 10.1016/j.fct.2024.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Benzene is a common environmental and occupational pollutant, benzene exposure causes damage to hematopoietic system. ZMAT3 is a zinc finger protein which has important biological functions. In this study, benzene-exposed mouse model and ZMAT3 overexpression and low expression hematopoietic stem cells (HSCs) models were constructed to explore the mechanism of ZMAT3 in benzene-induced hematopoietic toxicity. The results showed that benzene increased the expression of ZMAT3 in mouse bone marrow (BM) cells, HSCs and peripheral blood (PB) leukocyte, and the changes in HSCs were more sensitive than BM and PB cells. In addition, overexpression of ZMAT3 decreased the self-renewal ability of HSCs and reduced the HSCs differentiation into myeloid hematopoietic cells, while low expression has the opposite effect. Besides, over and low expression of ZMAT3 both increased the HSCs differentiation into lymphoid progenitor cells. Moreover, bioinformatics analysis suggested that ZMAT3 was associated with TNF-α signaling pathway, and the correlation was confirmed in mouse model. Meanwhile, the results indicated that ZMAT3 promoted TNF-α mRNA processing by binding to the ARE structural domain on TNF-α and interacting with hnRNP A2/B1 and hnRNP A1 proteins, ultimately activating the NF-κB signaling pathway. This study provides a new mechanism for the study of benzene toxicity.
Collapse
Affiliation(s)
- Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuangbin Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Moghadasi A, Yousefinejad S, Soleimani E. False positives and false negatives in benzene biological monitoring. ENVIRONMENTAL RESEARCH 2024; 243:117836. [PMID: 38065394 DOI: 10.1016/j.envres.2023.117836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 02/06/2024]
Abstract
Benzene is a commonly used industrial chemical that is a significant environmental pollutant. Occupational health specialists and industrial toxicologists are concerned with determining the exact amount of exposure to chemicals in the workplace. There are two main approaches to assess chemical exposure; air monitoring and biological monitoring. Air monitoring has limitations, which biological monitoring overcomes and could be used as a supplement to it. However, there are several factors that influence biological monitoring results. It would be possible to assess exposure more accurately if these factors were taken into account. This study aimed to review published papers for recognizing and discussing parameters that could affect benzene biological monitoring. Two types of effects can be distinguished: positive and negative effects. Factors causing positive effects will increase the metabolite concentration in urine more than expected. Furthermore, the parameters that decrease the urinary metabolite level were referred to as false negatives. From the papers, sixteen influential factors were extracted that might affect benzene biological monitoring results. Identified factors were clarified in terms of their nature and mechanism of action. It is also important to note that some factors influence the quantity and quality of the influence of other factors. As a result of this study, a decision-making protocol was developed for interpreting the final results of benzene biological monitoring.
Collapse
Affiliation(s)
- Abolfazl Moghadasi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Esmaeel Soleimani
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Mendes MPR, Paiva MJN, Costa-Amaral IC, Carvalho LVB, Figueiredo VO, Gonçalves ES, Larentis AL, André LC. Metabolomic Study of Urine from Workers Exposed to Low Concentrations of Benzene by UHPLC-ESI-QToF-MS Reveals Potential Biomarkers Associated with Oxidative Stress and Genotoxicity. Metabolites 2022; 12:metabo12100978. [PMID: 36295880 PMCID: PMC9611274 DOI: 10.3390/metabo12100978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Benzene is a human carcinogen whose exposure to concentrations below 1 ppm (3.19 mg·m-3) is associated with myelotoxic effects. The determination of biomarkers such as trans-trans muconic acid (AttM) and S-phenylmercapturic acid (SPMA) show exposure without reflecting the toxic effects of benzene. For this reason, in this study, the urinary metabolome of individuals exposed to low concentrations of benzene was investigated, with the aim of understanding the biological response to exposure to this xenobiotic and identifying metabolites correlated with the toxic effects induced by it. Ultra-efficient liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometer (UHPLC-ESI-Q-ToF-MS) was used to identify metabolites in the urine of environmentally (n = 28) and occupationally exposed (n = 32) to benzene (mean of 22.1 μg·m-3 and 31.8 μg·m-3, respectively). Non-targeted metabolomics analysis by PLS-DA revealed nine urinary metabolites discriminating between groups and statistically correlated with oxidative damage (MDA, thiol) and genetic material (chromosomal aberrations) induced by the hydrocarbon. The analysis of metabolic pathways revealed important alterations in lipid metabolism. These results point to the involvement of alterations in lipid metabolism in the mechanisms of cytotoxic and genotoxic action of benzene. Furthermore, this study proves the potential of metabolomics to provide relevant information to understand the biological response to exposure to xenobiotics and identify early effect biomarkers.
Collapse
Affiliation(s)
- Michele P. R. Mendes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Maria José N. Paiva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Isabele C. Costa-Amaral
- Center for the Study of Occupational Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil
| | - Leandro V. B. Carvalho
- Center for the Study of Occupational Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil
| | - Victor O. Figueiredo
- Center for the Study of Occupational Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil
| | - Eline S. Gonçalves
- Center for the Study of Occupational Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil
| | - Ariane L. Larentis
- Center for the Study of Occupational Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil
| | - Leiliane C. André
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-9238-3636
| |
Collapse
|
5
|
Cox LA, Ketelslegers HB, Lewis RJ. The shape of low-concentration dose-response functions for benzene: implications for human health risk assessment. Crit Rev Toxicol 2021; 51:95-116. [PMID: 33853483 DOI: 10.1080/10408444.2020.1860903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Are dose-response relationships for benzene and health effects such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) supra-linear, with disproportionately high risks at low concentrations, e.g. below 1 ppm? To investigate this hypothesis, we apply recent mode of action (MoA) and mechanistic information and modern data science techniques to quantify air benzene-urinary metabolite relationships in a previously studied data set for Tianjin, China factory workers. We find that physiologically based pharmacokinetics (PBPK) models and data for Tianjin workers show approximately linear production of benzene metabolites for air benzene (AB) concentrations below about 15 ppm, with modest sublinearity at low concentrations (e.g. below 5 ppm). Analysis of the Tianjin worker data using partial dependence plots reveals that production of metabolites increases disproportionately with increases in air benzene (AB) concentrations above 10 ppm, exhibiting steep sublinearity (J shape) before becoming saturated. As a consequence, estimated cumulative exposure is not an adequate basis for predicting risk. Risk assessments must consider the variability of exposure concentrations around estimated exposure concentrations to avoid over-estimating risks at low concentrations. The same average concentration for a specified duration is disproportionately risky if it has higher variance. Conversely, if chronic inflammation via activation of inflammasomes is a critical event for induction of MDS and other health effects, then sufficiently low concentrations of benzene are predicted not to cause increased risks of inflammasome-mediated diseases, no matter how long the duration of exposure. Thus, we find no evidence that the dose-response relationship is supra-linear at low doses; instead sublinear or zero excess risk at low concentrations is more consistent with the data. A combination of physiologically based pharmacokinetic (PBPK) modeling, Bayesian network (BN) analysis and inference, and partial dependence plots appears a promising and practical approach for applying current data science methods to advance benzene risk assessment.
Collapse
Affiliation(s)
- Louis A Cox
- Cox Associates LLC, Denver, CO, USA.,Department of Business Analytics, University of Colorado, Denver, CO, USA
| | - Hans B Ketelslegers
- Concawe Division, European Petroleum Refiners Association, Brussels, Belgium
| | - R Jeffrey Lewis
- Concawe Division, European Petroleum Refiners Association, Brussels, Belgium.,ExxonMobil Biomedical Sciences, Inc, Clinton, NJ, USA
| |
Collapse
|
6
|
Vorläufiger Leitwert für Benzol in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:361-367. [DOI: 10.1007/s00103-019-03089-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Chen Y, Zhang W, Guo X, Ren J, Gao A. lncRNAVNN3 mediated benzene-induced hematotoxicity through promoting autophagy and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109672. [PMID: 31541949 DOI: 10.1016/j.ecoenv.2019.109672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The potential toxicity of low-dose benzene exposure to human health has received attention, but the mechanisms of low-dose benzene-induced hematotoxicity remain largely unknown. The purpose of our study was to investigate the relationships between lncRNAVNN3 expression with benzene-induced autophagy and apoptosis in control and benzene-exposed workers. Seventy benzene-exposed workers and seventy non-benzene-exposed healthy workers were recruited. The expression of lncRNAVNN3, serum autophagy-associated and apoptosis-associated proteins were evaluated, and the relationship among them were also analysed. Furthermore, the mechanism of lncRNAVNN3 on autophagy and apoptosis induced by benzene metabolite (1, 4-benzoquinone, 1, 4-BQ) was investigated in vitro. The results showed that the expression of lncRNAVNN3 increased in benzene-exposed workers (p < 0.05). A positive correlation was found between lncRNAVNN3, serum autophagy-associated and apoptosis-associated proteins. In addition, we found that the knockdown of lncRNAVNN3 reduced phosphorylation of beclin1 and Bcl-2, which mediated 1, 4-benzoquinone-induced autophagy and apoptosis. Overall, lncRNAVNN3 mediated 1, 4-benzoquinone-induced autophagy and apoptosis though regulating phosphorylation of beclin1 and Bcl-2, suggesting that lncRNAVNN3 might be a novel early sensitive biomarker of benzene-induced hematotoxicity.
Collapse
Affiliation(s)
- Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
The crosstalk between autophagy and apoptosis was mediated by phosphorylation of Bcl-2 and beclin1 in benzene-induced hematotoxicity. Cell Death Dis 2019; 10:772. [PMID: 31601785 PMCID: PMC6787223 DOI: 10.1038/s41419-019-2004-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/07/2023]
Abstract
Increasing evidence suggested that benzene exposure resulted in different types of hematological cancer. Both autophagy and apoptosis were reported to play vital roles in benzene toxicity, but the relationship between autophagy and apoptosis remain unclear in benzene-induced hematotoxicity. In this study, the toxic effect of benzene on autophagy and apoptosis in benzene-exposed workers and in vitro were verified. Results showed that benzene metabolite (1, 4-benzoquinone, 1, 4-BQ) dose-dependently induced autophagy and apoptosis via enhancing phosphorylation of Bcl-2 and beclin1. Finally, we also found that the elevated ROS was in line with enhancing the phosphorylation of Bcl-2 and beclin1 which contributed to 1, 4-BQ-induced autophagy and apoptosis. Taken together, this study for the first time found that the effect of 1, 4-BQ on the crosstalk between autophagy and apoptosis were modulated by the ROS generation via enhancing phosphorylation of Bcl-2(Ser70) and phosphorylation of beclin1(Thr119), which offered a novel insight into underlying molecular mechanisms of benzene-induced hematotoxicity, and specifically how the crosstalk between autophagy and apoptosis was involved in benzene toxicity. This work provided novel evidence for the toxic effects and risk assessment of benzene.
Collapse
|
9
|
Fiebelkorn S, Meredith C. Estimation of the Leukemia Risk in Human Populations Exposed to Benzene from Tobacco Smoke Using Epidemiological Data. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2018; 38:1490-1501. [PMID: 29266361 DOI: 10.1111/risa.12956] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/29/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Several epidemiological studies have demonstrated an association between occupational benzene exposure and increased leukemia risk, in particular acute myeloid leukemia (AML). However, there is still uncertainty as to the risk to the general population from exposure to lower environmental levels of benzene. To estimate the excess risk of leukemia from low-dose benzene exposure, various methods for incorporating epidemiological data in quantitative risk assessment were utilized. Tobacco smoke was identified as one of the main potential sources of benzene exposure and was the focus of this exposure assessment, allowing further investigation of the role of benzene in smoking-induced leukemia. Potency estimates for benzene were generated from individual occupational studies and meta-analysis data, and an exposure assessment for two smoking subgroups (light and heavy smokers) carried out. Subsequently, various techniques, including life-table analysis, were then used to evaluate both the excess lifetime risk and the contribution of benzene to smoking-induced leukemia and AML. The excess lifetime risk for smokers was estimated at between two and six additional leukemia deaths in 10,000 and one to three additional AML deaths in 10,000. The contribution of benzene to smoking-induced leukemia was estimated at between 9% and 24% (Upper CL 14-31%). For AML this contribution was estimated as 11-30% (Upper CL 22-60%). From the assessments carried out here, it appears there is an increased risk of leukemia from low-level exposure to benzene and that benzene may contribute up to a third of smoking-induced leukemia. Comparable results from using methods with varying degrees of complexity were generated.
Collapse
Affiliation(s)
| | - Clive Meredith
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, UK
| |
Collapse
|
10
|
Boogaard PJ. The low-dose benzene debate needs a sharp blade. Chem Biol Interact 2017; 278:239-241. [PMID: 28655485 DOI: 10.1016/j.cbi.2017.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/12/2017] [Accepted: 06/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Peter J Boogaard
- Shell Health, Shell International bv, Wageningen University & Research, The Netherlands
| |
Collapse
|
11
|
Cox LA, Schnatter AR, Boogaard PJ, Banton M, Ketelslegers HB. Non-parametric estimation of low-concentration benzene metabolism. Chem Biol Interact 2017; 278:242-255. [DOI: 10.1016/j.cbi.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/14/2017] [Accepted: 08/10/2017] [Indexed: 11/25/2022]
|
12
|
McIntyre J, Johnson BA, Rappaport SM. Monte Carlo methods for nonparametric regression with heteroscedastic measurement error. Biometrics 2017; 74:498-505. [PMID: 28914966 DOI: 10.1111/biom.12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/01/2017] [Accepted: 07/01/2017] [Indexed: 12/01/2022]
Abstract
Nonparametric regression is a fundamental problem in statistics but challenging when the independent variable is measured with error. Among the first approaches was an extension of deconvoluting kernel density estimators for homescedastic measurement error. The main contribution of this article is to propose a new simulation-based nonparametric regression estimator for the heteroscedastic measurement error case. Similar to some earlier proposals, our estimator is built on principles underlying deconvoluting kernel density estimators. However, the proposed estimation procedure uses Monte Carlo methods for estimating nonlinear functions of a normal mean, which is different than any previous estimator. We show that the estimator has desirable operating characteristics in both large and small samples and apply the method to a study of benzene exposure in Chinese factory workers.
Collapse
Affiliation(s)
- Julie McIntyre
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, Alaska 99775, U.S.A
| | - Brent A Johnson
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, U.S.A
| | - Stephen M Rappaport
- Department of Environmental Health Sciences, University of California, Berkeley, California 94720, U.S.A
| |
Collapse
|
13
|
McNally K, Sams C, Loizou GD, Jones K. Evidence for non-linear metabolism at low benzene exposures? A reanalysis of data. Chem Biol Interact 2017; 278:256-268. [PMID: 28899792 DOI: 10.1016/j.cbi.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022]
Abstract
The presence of a high-affinity metabolic pathway for low level benzene exposures of less than one part per million (ppm) has been proposed although a pathway has not been identified. The variation of metabolite molar fractions with increasing air benzene concentrations was suggested as evidence of significantly more efficient benzene metabolism at concentrations <0.1 ppm The evidence for this pathway is predicated on a rich data set from a study of Chinese shoe workers exposed to a wide range of benzene concentrations (not just "low level"). In this work we undertake a further independent re-analysis of this data with a focus on the evidence for an increase in the rate of metabolism of benzene exposures of less than 1 ppm. The analysis dataset consisted of measurements of benzene and toluene from personal air samplers, and measurements of unmetabolised benzene and toluene and five metabolites (phenol hydroquinone, catechol, trans, trans-muconic acid and s-phenylmercapturic acid) from post-shift urine samples for 213 workers with an occupational exposure to benzene (and toluene) and 139 controls. Measurements from control subjects were used to estimate metabolite concentrations resulting from non-occupational sources, including environmental sources of benzene. Data from occupationally exposed subjects were used to estimate metabolite concentrations as a function of benzene exposure. Correction for background (environmental exposure) sources of metabolites was achieved through a comparison of geometric means in occupationally exposed and control populations. The molar fractions of the five metabolites as a function of benzene exposure were computed. A supra-linear relationship between metabolite concentrations and benzene exposure was observed over the range 0.1-10 ppm benzene, however over the range benzene exposures of between 0.1 and 1 ppm only a modest departure from linearity was observed. The molar fractions estimated in this work were near constant over the range 0.1-10 ppm. No evidence of high affinity metabolism at these low level exposures was observed. Our reanalysis brings in to question the appropriateness of the dataset for commenting on low dose exposures and the use of a purely statistical approach to the analysis.
Collapse
Affiliation(s)
- K McNally
- Health & Safety Laboratory, Harpur Hill, Buxton, SK17 9JN, UK
| | - C Sams
- Health & Safety Laboratory, Harpur Hill, Buxton, SK17 9JN, UK
| | - G D Loizou
- Health & Safety Laboratory, Harpur Hill, Buxton, SK17 9JN, UK
| | - K Jones
- Health & Safety Laboratory, Harpur Hill, Buxton, SK17 9JN, UK.
| |
Collapse
|
14
|
Gjesteland I, Hollund BE, Kirkeleit J, Daling P, Bråtveit M. Oil Spill Field Trial at Sea: Measurements of Benzene Exposure. Ann Work Expo Health 2017; 61:692-699. [PMID: 28595265 DOI: 10.1093/annweh/wxx036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives Characterize personal exposure to airborne hydrocarbons, particularly carcinogenic benzene, during spill of two different fresh crude oils at sea. Methods The study included 22 participants taking part in an «oil on water» field trial in the North Sea. Two types of fresh crude oils (light and heavy) were released six times over two consecutive days followed by different oil spill response methods. The participants were distributed on five boats; three open sampling boats (A, B, and C), one release ship (RS), and one oil recovery (OR) vessel. Assumed personal exposure was assessed a priori, assuming high exposure downwind and close to the oil slick (sampling boats), low exposure further downwind (100-200 m) and upwind from the oil slick (main deck of RS and OR vessel), and background exposure indoors (bridge of RS/OR vessel). Continuous measurements of total volatile organic compounds in isobutylene equivalents were performed with photoionization detectors placed in all five boats. Full-shift personal exposure to benzene, toluene, ethylbenzene, xylenes, naphthalene, and n-hexane was measured with passive thermal desorption tubes. Results Personal measurements of benzene, averaged over the respective sample duration, on Day 1 showed that participants in the sampling boats (A, B, and C) located downwind and close to the oil slick were highest exposed (0.14-0.59 ppm), followed by participants on the RS main deck (0.02-0.10 ppm) and on the bridge (0.004-0.03 ppm). On Day 2, participants in sampling boat A had high benzene exposure (0.87-1.52 ppm) compared to participants in sampling boat B (0.01-0.02 ppm), on the ships (0.06-0.10 ppm), and on the bridge (0.004-0.01 ppm). Overall, the participants in the sampling boats had the highest exposure to all of the compounds measured. The light crude oil yielded a five times higher concentration of total volatile organic compounds in air in the sampling boats (max 510 ppm) than the heavy crude oil (max 100 ppm) but rapidly declined to <20 ppm within 24 min after release of oil, indicating short periods of exposure. Conclusions The personal exposure to benzene downwind and close to the oil slick during spills of light crude oil was relatively high, with concentration levels approaching the occupational exposure limits for several participants. For bulk spill scenarios like in this study, cleanup should not be initiated the first 30-60 min to allow for evaporation, while appropriate personal protective equipment should be used in continuous spills when working downwind and close to the oil slick.
Collapse
Affiliation(s)
- Ingrid Gjesteland
- Department of Global Public Health and Primary Care, Occupational and Environmental Medicine, University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Bjørg Eli Hollund
- Department of Global Public Health and Primary Care, Occupational and Environmental Medicine, University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jorunn Kirkeleit
- Department of Global Public Health and Primary Care, Occupational and Environmental Medicine, University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Per Daling
- SINTEF Ocean, Department of Environmental Technology, 7010 Trondheim, Norway
| | - Magne Bråtveit
- Department of Global Public Health and Primary Care, Occupational and Environmental Medicine, University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway
| |
Collapse
|
15
|
Doherty BT, Kwok RK, Curry MD, Ekenga C, Chambers D, Sandler DP, Engel LS. Associations between blood BTEXS concentrations and hematologic parameters among adult residents of the U.S. Gulf States. ENVIRONMENTAL RESEARCH 2017; 156:579-587. [PMID: 28448810 PMCID: PMC5687063 DOI: 10.1016/j.envres.2017.03.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Studies of workers exposed to benzene at average air concentrations below one part per million suggest that benzene, a known hematotoxin, causes hematopoietic damage even at low exposure levels. However, evidence of such effects outside of occupational settings and for other volatile organic compounds (VOCs) is limited. OBJECTIVE To investigate associations between ambient exposures to five VOCs, including benzene, and hematologic parameters among adult residents of the U.S. Gulf Coast. MATERIALS AND METHODS Blood concentrations of selected VOCs were measured in a sample of adult participants in the Gulf Long-term Follow-up Study (GuLF STUDY) during 2012 and 2013. Complete blood counts with differentials were also performed on a subset of participants (n=406). We used these data together with detailed questionnaire data to estimate adjusted associations between blood BTEXS (benzene, toluene, ethylbenzene, o-xylene, m/p-xylene, and styrene) concentrations and hematologic parameters using generalized linear models. RESULTS We observed inverse associations between blood benzene concentrations and hemoglobin concentration and mean corpuscular hemoglobin concentration, and a positive association with red cell distribution width among tobacco smoke-unexposed participants (n=146). Among tobacco smoke-exposed participants (n=247), we observed positive associations between blood VOC concentrations and several hematologic parameters, including increased white blood cell and platelet counts, suggestive of hematopoietic stimulation typically associated with tobacco smoke exposure. Most associations were stronger for benzene than for the other VOCs. CONCLUSIONS Our results suggest that ambient exposure to BTEXS, particularly benzene, may be associated with hematologic effects, including decreased hemoglobin concentration, mean corpuscular hemoglobin concentration, and increased red cell distribution width.
Collapse
Affiliation(s)
- Brett T Doherty
- Department of Epidemiology, University of North Carolina at Chapel Hill,135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599, USA; National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Richard K Kwok
- National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Matthew D Curry
- Social and Scientific Systems, Inc., 1009 Slater Road, Suite #120, Durham, NC 27703, USA
| | - Christine Ekenga
- Brown School, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - David Chambers
- National Center for Environmental Health, Centers for Disease Control and Prevention,1600 Clifton Road, Atlanta, GA 30329, USA
| | - Dale P Sandler
- National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina at Chapel Hill,135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599, USA; National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
16
|
Harrington LB, Jha RK, Kern TL, Schmidt EN, Canales GM, Finney KB, Koppisch AT, Strauss CEM, Fox DT. Rapid Thermostabilization of Bacillus thuringiensis Serovar Konkukian 97-27 Dehydroshikimate Dehydratase through a Structure-Based Enzyme Design and Whole Cell Activity Assay. ACS Synth Biol 2017; 6:120-129. [PMID: 27548779 DOI: 10.1021/acssynbio.6b00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermostabilization of an enzyme with complete retention of catalytic efficiency was demonstrated on recombinant 3-dehydroshikimate dehydratase (DHSase or wtAsbF) from Bacillus thuringiensis serovar konkukian 97-27 (hereafter, B. thuringiensis 97-27). The wtAsbF is relatively unstable at 37 °C, in vitro (t1/237 = 15 min), in the absence of divalent metal. We adopted a structure-based design to identify stabilizing mutations and created a combinatorial library based upon predicted mutations at specific locations on the enzyme surface. A diversified asbF library (∼2000 variants) was expressed in E. coli harboring a green fluorescent protein (GFP) reporter system linked to the product of wtAsbF activity (3,4-dihydroxybenzoate, DHB). Mutations detrimental to DHSase function were rapidly eliminated using a high throughput fluorescence activated cell sorting (FACS) approach. After a single sorting round and heat screen at 50 °C, a triple AsbF mutant (Mut1), T61N, H135Y, and H257P, was isolated and characterized. The half-life of Mut1 at 37 °C was >10-fold higher than the wtAsbF (t1/237 = 169 min). Further, the second-order rate constants for both wtAsbF and Mut1 were approximately equal (9.9 × 105 M-1 s-1, 7.8 × 105 M-1 s-1, respectively), thus demonstrating protein thermostability did not come at the expense of enzyme thermophilicity. In addition, in vivo overexpression of Mut1 in E. coli resulted in a ∼60-fold increase in functional enzyme when compared to the wild-type enzyme under the identical expression conditions. Finally, overexpression of the thermostable AsbF resulted in an approximate 80-120% increase in DHB accumulation in the media relative to the wild-type enzyme.
Collapse
Affiliation(s)
- Lucas B. Harrington
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Ramesh K. Jha
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Theresa L. Kern
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Emily N. Schmidt
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Gustavo M. Canales
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Kellan B. Finney
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Andrew T. Koppisch
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Charlie E. M. Strauss
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - David T. Fox
- Chemistry
Division, Los Alamos National Laboratory, P.O. Box 1663, MS E554, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
17
|
Chen Y, Sun P, Bai W, Gao A. MiR-133a regarded as a potential biomarker for benzene toxicity through targeting Caspase-9 to inhibit apoptosis induced by benzene metabolite (1,4-Benzoquinone). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:883-891. [PMID: 27425441 DOI: 10.1016/j.scitotenv.2016.07.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Benzene is an environmental and industrial chemical which is widely utilized in various applications. Our previous study showed that miR-133a expression was down-regulated in chronic benzene poisoning workers, but the mechanism of miR-133a in benzene-induced hematotoxicity remains unclear. In this population-based study, benzene-exposed group recruited workers whose concentration of air benzene was 3.50±1.60mg/m(3), and control workers who were exposed to 0.06±0.01mg/m(3) air benzene. By comparison, Caspase-9 and Caspase-3 was up-regulated while miR-133a expression decreased in benzene-exposed workers. Pearson correlation analysis showed that miR-133a was reversely correlated with pro-apoptotic gene Caspase-9 in population-based study. Moreover, multiple linear regressions indicated that miR-133a was positively associated with blood cells count. To explore the underlying mechanism of miR-133a in benzene-induced hematotoxicity, AO/EB staining and TEM ultrastructural analysis were conducted to verify the activation of apoptosis in Human Leukemic U937 Cells induced by benzene metabolites (1,4-Benzoquinone, 1,4-BQ), while the mechanism of miR-133a in 1,4-BQ-induced apoptosis was performed using lentivirus vectors transfection. The results demonstrated that 1,4-BQ evidently induced mitochondria-mediated apoptosis and increased pro-apoptotic genes (Caspase-9 and Caspase-3) expression in a dose-dependent manner. The mechanistic study showed 1,4-BQ decreased miR-133a expression and miR-133a over-expression attenuated 1, 4-BQ-caused upregulation of Caspase-9, Caspase-3 and apoptosis. In conclusion, our research suggested that benzene induced hematotoxicity by decreasing miR-133a and caspase-dependent apoptosis which might contribute to the underlying mechanism of miR-133a in benzene-induced hematotoxicity.
Collapse
Affiliation(s)
- Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Pengling Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wenlin Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
18
|
Fenga C, Gangemi S, Costa C. Benzene exposure is associated with epigenetic changes (Review). Mol Med Rep 2016; 13:3401-5. [PMID: 26936331 DOI: 10.3892/mmr.2016.4955] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
Benzene is a volatile aromatic hydrocarbon solvent and is known as one of the predominant air pollutants in the environment. Chronic exposure to benzene is known to cause aplastic anemia and increased risk of acute myelogenous leukemia in humans. Although the mechanisms by which benzene causes toxicity remain to be fully elucidated, it is widely accepted that its metabolism is crucial to its toxicity, with involvement of one or more reactive metabolites. Novel approaches aimed at evaluating different mechanisms by which benzene can impact on human health by altering gene regulation have been developed. Among these novel approaches, epigenetics appears to be promising. The present review article summarizes the most important findings, reported from the literature, on epigenetic modifications correlated to benzene exposure. A computerized search in PubMed was performed in November 2014, using search terms, including 'benzene', 'epigenetic', 'histone modifications', 'DNA methylation' and 'microRNA'. Epidemiological and experimental studies have demonstrated the potential epigenetic effects of benzene exposure. Several of the epigenomic changes observed in response to environmental exposures may be mechanistically associated with susceptibility to diseases. However, further elucidation of the mechanisms by which benzene alters gene expression may improve prediction of the toxic potential of novel compounds introduced into the environment, and allow for more targeted and appropriate disease prevention strategies.
Collapse
Affiliation(s)
- Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| | - Silvia Gangemi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| | - Chiara Costa
- Department of Clinical and Experimental Medicine, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| |
Collapse
|
19
|
Fenga C, Gangemi S, Giambò F, Tsitsimpikou C, Golokhvast K, Tsatsakis A, Costa C. Low-dose occupational exposure to benzene and signal transduction pathways involved in the regulation of cellular response to oxidative stress. Life Sci 2016; 147:67-70. [DOI: 10.1016/j.lfs.2015.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 02/01/2023]
|
20
|
Costa C, Ozcagli E, Gangemi S, Schembri F, Giambò F, Androutsopoulos V, Tsatsakis A, Fenga C. Molecular biomarkers of oxidative stress and role of dietary factors in gasoline station attendants. Food Chem Toxicol 2016; 90:30-5. [PMID: 26827788 DOI: 10.1016/j.fct.2016.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/17/2016] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Exposure to benzene promotes oxidative stress through the production of ROS, which can damage biological structures with the formation of new metabolites which can be used as markers of oxidant/antioxidant imbalance. This study aims to assess modifications in circulating levels of advanced oxidation protein products (AOPP), advanced glycation end-products (AGE) and serum reactive oxygen metabolites (ROMs) in a group of gasoline station attendants exposed to low-dose benzene and to evaluate the influence of antioxidant food intake on these biomarkers of oxidative stress. The diet adopted by the population examined consisted of compounds belonging to the classes of terpenoids, stilbenes and flavonoids, notably resveratrol, lycopene and apigenin. Ninety one gasoline station attendants occupationally exposed to benzene and 63 unexposed male office workers were recruited for this study. Urinary trans, trans-muconic acid (t,t-MA) concentration, determined to assess individual exposure level, resulted significantly higher in exposed workers. In subjects exposed to benzene, we observed a significant increase (p < 0.001) in ROMs and AOPP levels, which were also negatively correlated with fruit and vegetables consumption. By contrast, AGE did not show a significant increase and consequently any relation with antioxidant food intake. Only ROMs, representing a global biomarker of oxidative status, resulted correlated to t,t-MA levels (p < 0.01), probably due to low-dose exposure. Increase of ROS induced by reactive benzene metabolites may promote specific biochemical pathways with a major production of AOPP, which seem to represent a more sensitive biochemical marker of oxidative stress in workers exposed to benzene compared to AGE. Furthermore, this is the first study demonstrating ROMs increment in subject exposed to benzene. These biomarkers may be useful for screening purposes in gasoline station workers and other subjects exposed to low-dose benzene. Moreover, a diet rich in fruits and vegetables demonstrated an inverse association with the levels of oxidative stress markers, suggesting a protective role of antioxidant food intake in workers exposed to oxidant agents.
Collapse
Affiliation(s)
- Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina. University Hospital "G. Martino", 98125 Messina, Italy.
| | - Eren Ozcagli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Turkey
| | - Silvia Gangemi
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section - University of Messina, University Hospital "G. Martino", 98125 Messina, Italy
| | - Federico Schembri
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section - University of Messina, University Hospital "G. Martino", 98125 Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section - University of Messina, University Hospital "G. Martino", 98125 Messina, Italy
| | - Vasilis Androutsopoulos
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section - University of Messina, University Hospital "G. Martino", 98125 Messina, Italy
| |
Collapse
|
21
|
Carbonari D, Chiarella P, Mansi A, Pigini D, Iavicoli S, Tranfo G. Biomarkers of susceptibility following benzene exposure: influence of genetic polymorphisms on benzene metabolism and health effects. Biomark Med 2016; 10:145-63. [PMID: 26764284 DOI: 10.2217/bmm.15.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Benzene is a ubiquitous occupational and environmental pollutant. Improved industrial hygiene allowed airborne concentrations close to the environmental context (1-1000 µg/m(3)). Conversely, new limits for benzene levels in urban air were set (5 µg/m(3)). The biomonitoring of exposure to such low benzene concentrations are performed measuring specific and sensitive biomarkers such as S-phenylmercapturic acid, trans, trans-muconic acid and urinary benzene: many studies referred high variability in the levels of these biomarkers, suggesting the involvement of polymorphic metabolic genes in the individual susceptibility to benzene toxicity. We reviewed the influence of metabolic polymorphisms on the biomarkers levels of benzene exposure and effect, in order to understand the real impact of benzene exposure on subjects with increased susceptibility.
Collapse
Affiliation(s)
- Damiano Carbonari
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Pieranna Chiarella
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Antonella Mansi
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Daniela Pigini
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Sergio Iavicoli
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Giovanna Tranfo
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| |
Collapse
|
22
|
Abstract
BACKGROUND The north-west coast of Spain was heavily contaminated by the Prestige oil spill, in 2002. Individuals who participated in the clean-up tasks showed increased chromosome damage two years after exposure. Long-term clinical implications of chromosome damage are still unknown. OBJECTIVE To realize a follow-up genotoxic study to detect whether the chromosome damage persisted six years after exposure to the oil. DESIGN Follow-up study. SETTING Fishermen cooperatives in coastal villages. PARTICIPANTS Local fishermen who were highly exposed (n = 52) and non-exposed (n = 23) to oil seven years after the spill. MEASUREMENTS Chromosome damage in circulating lymphocytes. RESULTS Chromosome damage in exposed individuals persists six years after oil exposure, with a similar incidence than those previously detected four years before. A surprising increase in chromosome damage in non-exposed individual was found six years after Prestige spill vs. those detected two years after the exposure. LIMITATIONS The sample size and the possibility of some kind of selection bias should be considered. Genotoxic results cannot be extrapolated to the approximately 300,000 individuals who participated occasionally in clean-up tasks. CONCLUSION The persistence of chromosome damage detected in exposed individuals six years after oil exposure seems to indicate that the cells of the bone marrow are affected. A surprising increase in chromosome damage in non-exposed individuals detected in the follow-up study suggests an indirect exposition of these individuals to some oil compounds or to other toxic agents during the last four years. More long-term studies are needed to confirm the presence of chromosome damage in exposed and non-exposed fishermen due to the association between increased chromosomal damage and increased risk of cancer. Understanding and detecting chromosome damage is important for detecting cancer in its early stages. The present work is the first follow-up cytogenetic study carried out in lymphocytes to determine genotoxic damage evolution between two and six years after oil exposure in same individuals.
Collapse
|
23
|
Yang J, Bai WL, Chen YJ, Gao A. 1,4-benzoquinone-induced STAT-3 hypomethylation in AHH-1 cells: Role of oxidative stress. Toxicol Rep 2015; 2:864-869. [PMID: 28962422 PMCID: PMC5598509 DOI: 10.1016/j.toxrep.2015.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/13/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Benzene, a known occupational and environmental contaminant, is associated with increased risk of leukemia. The objectives of this study were to elucidate the regulatory mechanism of the hypomethylated STAT3 involved in benzene toxicity in vitro. As 1,4-benzoquinone (1,4-BQ) is one of benzene’s major toxic metabolites, AHH-1 cells were treated by 1,4-BQ for 24 h with or without pretreatment of the antioxidant a-LA or the methyltransferase inhibitor, 5-aza-2′ deoxycytidine (5-aza). The cell viability was investigated using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. ROS was determined via 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) flow cytometric assays. The level of oxidative stress marker 8-OHdG was measured by enzyme-linked immunosorbent assay. Methylation-specific PCR was used to detect the methylation status of STAT3. Results indicated the significantly increasing expression of ROS and 8-OHdG which accompanied with STAT3 hypomethylation in 1,4-BQ-treated AHH-1 cells. α-LA suppressed the expression of both ROS and 8-OHdG, simultaneously reversed 1,4-BQ-induced STAT3 hypomethylation. However, although the methylation inhibitor, 5-aza reduced the expression level of ROS and 8-OHdG, but had no obvious inhibiting effect on STAT3 methylation level. Taken together, oxidative stress are involved 1,4-BQ-induced STAT3 methylation expression.
Collapse
Key Words
- 1,4-BQ, 1,4-benzoquinone
- 1,4-benzoquinone
- 5-aza, 5-aza-2′ deoxycytidine
- 8-OHdG, 8-hydroxy deoxyguanosine adduct
- DCFH-DA, 2,7-dichlorofluorescein diacetate
- DMSO, dimethylsulfoxide
- DNMT, DNA methyltransferase
- ELISA, enzyme-linked immunosorbent assay
- MSP, methylation-specific PCR
- Methylation
- Oxidative stress
- PBS, phosphate buffered saline
- ROS, reactive oxygen species
- STAT3
- α-LA, alpha lipoic acid
Collapse
Affiliation(s)
- Jing Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wen-lin Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yu-jiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Corresponding author at: Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China. Tel.: +86 10 83911509.
| |
Collapse
|
24
|
Barata-Silva C, Mitri S, Pavesi T, Saggioro E, Moreira JC. Benzeno: reflexos sobre a saúde pública, presença ambiental e indicadores biológicos utilizados para a determinação da exposição. ACTA ACUST UNITED AC 2014. [DOI: 10.1590/1414-462x201400040006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O uso indiscriminado de um número cada vez maior de substâncias químicas vem aumentando e a contaminação ambiental associada tem trazido sérias consequências para o sistema público de saúde devido à elevação de danos para a saúde humana. Uma das substâncias que desperta grande interesse devido à contaminação contemporânea é o benzeno, composto aromático classificado pela International Agency for Research on Cancer como reconhecidamente carcinogênico para humanos. O objetivo do presente estudo foi elaborar e discutir um panorama sobre a contaminação por benzeno, seu metabolismo, consequências para a saúde e sua determinação ambiental e biológica a partir de informações existentes na literatura científica. O levantamento de dados possibilitou o acesso a mais de 200 artigos científicos tanto de âmbito nacional quanto internacional, demonstrando a atualidade do tema e a necessidade de minimização da exposição humana a essa substância. A maioria preocupa-se em explorar o metabolismo e investigar indicadores de exposição, muitos já amplamente estudados e com sérias limitações. Contudo, um crescente número de pesquisadores estão empenhados em elucidar fatores relacionados à suscetibilidade e à interferência da exposição no material genético e proteico. Indicadores de exposição inovadores têm sido propostos com o objetivo de complementar as lacunas de informações anteriormente obtidas, contribuindo para o delineamento da estrutura da biologia de sistemas orgânicos frente à exposição ao benzeno.
Collapse
|
25
|
Price PS, Rey TD, Fontaine DD, Arnold SM. Letter to the editor in response to ‘Low-dose metabolism of benzene in humans: science and obfuscation’ Rappaport et al. (2013). Carcinogenesis 2013; 34:1692-6. [DOI: 10.1093/carcin/bgt101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Rappaport SM, Johnson BA, Bois FY, Kupper LL, Kim S, Thomas R. Ignoring and adding errors do not improve the science. Carcinogenesis 2013; 34:1689-91. [PMID: 23528242 DOI: 10.1093/carcin/bgt100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|