1
|
Hsiao YF, Huang SC, Cheng SB, Hsu CC, Huang YC. Glutathione and Selenium Supplementation Attenuates Liver Injury in Diethylnitrosamine-Induced Hepatocarcinogenic Mice by Enhancing Glutathione-Related Antioxidant Capacities. Int J Mol Sci 2024; 25:11339. [PMID: 39518894 PMCID: PMC11546938 DOI: 10.3390/ijms252111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Excess oxidative stress and inadequate antioxidant capacities are critical features in the development of hepatocellular carcinoma. This study aimed to determine whether supplementation with glutathione (GSH) and/or selenium (Se), as antioxidants, attenuates diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. C57BL/6J male mice were randomly assigned to control, DEN, DEN + GSH, DEN + Se, and DEN + GSH + Se groups for 20 weeks. Daily supplementation with GSH and/or Se commenced in the first experimental week and continued throughout the study. DEN was administered in weeks 2-9 and 16-19 of the experimental period. DEN administration induced significant pathological alterations of hepatic foci, evidenced by elevated levels of liver function, accompanied by high malondialdehyde (MDA) levels; low GSH levels; and glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Supplementation with GSH and Se significantly ameliorated liver pathological changes, reducing liver function and MDA levels while increasing GSH levels and GPx, GR, and GST activities. Notably, combined supplementation with GSH and Se more effectively increased the GSH/glutathione disulfide ratio and GPx activity than individual supplementation. Supplementation with GSH and Se attenuated liver injury in DEN-induced hepatocarcinogenic mice by enhancing GSH and its related antioxidant capacities, thereby mitigating oxidative damage.
Collapse
Affiliation(s)
- Yung-Fang Hsiao
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
| | - Shih-Chien Huang
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shao-Bin Cheng
- Organ Transplantation Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
| | - Yi-Chia Huang
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
2
|
Cain A, Krahn N. Overcoming Challenges with Biochemical Studies of Selenocysteine and Selenoproteins. Int J Mol Sci 2024; 25:10101. [PMID: 39337586 PMCID: PMC11431864 DOI: 10.3390/ijms251810101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Selenocysteine (Sec) is an essential amino acid that distinguishes itself from cysteine by a selenium atom in place of a sulfur atom. This single change imparts distinct chemical properties to Sec which are crucial for selenoprotein (Sec-containing protein) function. These properties include a lower pKa, enhanced nucleophilicity, and reversible oxidation. However, studying Sec incorporation in proteins is a complex process. While we find Sec in all domains of life, each domain has distinct translation mechanisms. These mechanisms are unique to canonical translation and are composed of Sec-specific enzymes and an mRNA hairpin to drive recoding of the UGA stop codon with Sec. In this review, we highlight the obstacles that arise when investigating Sec insertion, and the role that Sec has in proteins. We discuss the strategic methods implemented in this field to address these challenges. Though the Sec translation system is complex, a remarkable amount of information has been obtained and specialized tools have been developed. Continued studies in this area will provide a deeper understanding on the role of Sec in the context of proteins, and the necessity that we have for maintaining this complex translation machinery to make selenoproteins.
Collapse
Affiliation(s)
- Antavius Cain
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Le NT, Pham YTH, Le CTK, Le LT, Le TD, Dao HV, Ha TH, Kuchipudi SV, Luu HN. A U-shaped association between selenium intake and cancer risk. Sci Rep 2024; 14:21378. [PMID: 39271688 PMCID: PMC11399399 DOI: 10.1038/s41598-024-66553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/02/2024] [Indexed: 09/15/2024] Open
Abstract
While selenium is a cofactor of several antioxidant enzymes against cancer and is essential for human health, its excess intake may also be harmful. Though a safe intake of selenium has recently been recommended, it is not well understood in the Asian population. We aimed to determine the association between dietary intake of selenium and cancer risk in a case-control study of 3758 incident cancer cases (i.e., stomach, colon, rectum, lung cancers, and other sites) and 2929 control subjects in Vietnam. Daily intake of selenium was derived from a semiquantitative food frequency questionnaire. The unconditional logistic regression model was used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for the association between selenium intake and cancer risk. We observed a U-shaped association between selenium intake and cancer risk. A safe intake ranged from 110.8 to 124.4 µg/day (mean 117.8 µg/day). Compared to individuals with the safe intake of selenium, individuals with the lowest intake (i.e., 27.8-77.2 µg/day) were associated with an increased risk of cancer (OR = 3.78, 95% CI 2.89-4.95) and those with the highest intake (169.1-331.7 µg/day) also had an increased cancer risk (OR = 1.86, 95% CI 1.45-2.39). A U-shaped pattern of association between selenium intake and cancer risk was stronger among participants with body mass index (BMI) < 23 kg/m2 and never smokers than BMI ≥ 23 kg/m2 and ever smokers (P'sheterogeneity = 0.003 and 0.021, respectively) but found in both never and ever-drinkers of alcohol (Pheterogeneity = 0.001). A U-shaped association between selenium intake and cancer risk was seen in cancer sites of the stomach, colon, rectum, and lung cancers. In summary, we found a U-shaped association between selenium intake and cancer risk and a safe selenium intake (mean: 117.8 µg/day) in the Vietnamese population. Further mechanistic investigation is warranted to understand better a U-shaped association between selenium intake and cancer risk.
Collapse
Affiliation(s)
- Ngoan Tran Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
- Department of Occupational Health, Institute of Preventive Medicine and Public Health, Hanoi Medical University, 1 Ton That Tung, Hanoi, Vietnam.
| | - Yen Thi-Hai Pham
- The University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chung Thi-Kim Le
- Laboratory Center, School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Linh Thuy Le
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR, Paris, France
| | - Thanh-Do Le
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam
| | - Hang Viet Dao
- Department of Internal Medicine, Hanoi Medical University, Hanoi, Vietnam
| | - Toan H Ha
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suresh V Kuchipudi
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hung N Luu
- The University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Schweizer U, Fabiano M. Selenoproteins in brain development and function. Free Radic Biol Med 2022; 190:105-115. [PMID: 35961466 DOI: 10.1016/j.freeradbiomed.2022.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 01/18/2023]
Abstract
Expression of selenoproteins is widespread in neurons of the central nervous system. There is continuous evidence presented over decades that low levels of selenium or selenoproteins are linked to seizures and epilepsy indicating a failure of the inhibitory system. Many developmental processes in the brain depend on the thyroid hormone T3. T3 levels can be locally increased by the action of iodothyronine deiodinases on the prohormone T4. Since deiodinases are selenoproteins, it is expected that selenoprotein deficiency may affect development of the central nervous system. Studies in genetically modified mice or clinical observations of patients with rare diseases point to a role of selenoproteins in brain development and degeneration. In particular selenoprotein P is central to brain function by virtue of its selenium transport function into and within the brain. We summarize which selenoproteins are essential for the brain, which processes depend on selenoproteins, and what is known about genetic deficiencies of selenoproteins in humans. This review is not intended to cover the potential influence of selenium or selenoproteins on major neurodegenerative disorders in human.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115, Bonn, Germany.
| | - Marietta Fabiano
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115, Bonn, Germany
| |
Collapse
|
5
|
Fradejas-Villar N, Bohleber S, Zhao W, Reuter U, Kotter A, Helm M, Knoll R, McFarland R, Taylor RW, Mo Y, Miyauchi K, Sakaguchi Y, Suzuki T, Schweizer U. The Effect of tRNA [Ser]Sec Isopentenylation on Selenoprotein Expression. Int J Mol Sci 2021; 22:ijms222111454. [PMID: 34768885 PMCID: PMC8583801 DOI: 10.3390/ijms222111454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2′O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.
Collapse
Affiliation(s)
- Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Wenchao Zhao
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Uschi Reuter
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany; (A.K.); (M.H.)
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany; (A.K.); (M.H.)
| | - Rainer Knoll
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.M.); (R.W.T.)
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.M.); (R.W.T.)
| | - Yufeng Mo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
- Correspondence:
| |
Collapse
|
6
|
Baker JR, Umesh S, Jenab M, Schomburg L, Tjønneland A, Olsen A, Boutron-Ruault MC, Rothwell JA, Severi G, Katzke V, Johnson T, Schulze MB, Masala G, Agnoli C, Simeon V, Tumino R, Bueno-de-Mesquita HB, Gram IT, Skeie G, Bonet C, Rodriguez-Barranco M, Houerta JM, Gylling B, Van Guelpen B, Perez-Cornago A, Aglago E, Freisling H, Weiderpass E, Cross AJ, Heath AK, Hughes DJ, Fedirko V. Prediagnostic Blood Selenium Status and Mortality among Patients with Colorectal Cancer in Western European Populations. Biomedicines 2021; 9:1521. [PMID: 34829750 PMCID: PMC8614984 DOI: 10.3390/biomedicines9111521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
A higher selenium (Se) status has been shown to be associated with lower risk for colorectal cancer (CRC), but the importance of Se in survival after CRC diagnosis is not well studied. The associations of prediagnostic circulating Se status (as indicated by serum Se and selenoprotein P (SELENOP) measurements) with overall and CRC-specific mortality were estimated using multivariable Cox proportional hazards regression among 995 CRC cases (515 deaths, 396 from CRC) in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Se and SELENOP serum concentrations were measured on average 46 months before CRC diagnosis. Median follow-up time was 113 months. Participants with Se concentrations in the highest quintile (≥100 µg/L) had a multivariable-adjusted hazard ratio (HR) of 0.73 (95% CI: 0.52-1.02; Ptrend = 0.06) for CRC-specific mortality and 0.77 (95% CI: 0.57-1.03; Ptrend = 0.04) for overall mortality, compared with the lowest quintile (≤67.5 µg/L). Similarly, participants with SELENOP concentrations in the highest (≥5.07 mg/L) compared with the lowest quintile (≤3.53 mg/L) had HRs of 0.89 (95% CI: 0.64-1.24; Ptrend = 0.39) for CRC-specific mortality and 0.83 (95% CI: 0.62-1.11; Ptrend = 0.17) for overall mortality. Higher prediagnostic exposure to Se within an optimal concentration (100-150 µg/L) might be associated with improved survival among CRC patients, although our results were not statistically significant and additional studies are needed to confirm this potential association. Our findings may stimulate further research on selenium's role in survival among CRC patients especially among those residing in geographic regions with suboptimal Se availability.
Collapse
Affiliation(s)
- Jacqueline Roshelli Baker
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (J.R.B.); (S.U.)
| | - Sushma Umesh
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (J.R.B.); (S.U.)
| | - Mazda Jenab
- International Agency for Research on Cancer, 69372 Lyon, France; (M.J.); (E.A.); (H.F.); (E.W.)
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité—Universitätsmedizin Berlin, CVK, Südring 10, 13353 Berlin, Germany;
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Genes and Environment, Strandboulevarden 49, DK-2100 Copenhagen, Denmark; (A.T.); (A.O.)
| | - Anja Olsen
- Danish Cancer Society Research Center, Diet, Genes and Environment, Strandboulevarden 49, DK-2100 Copenhagen, Denmark; (A.T.); (A.O.)
| | - Marie-Christine Boutron-Ruault
- CESP (UMR1018), Faculté de Médecine, Université Paris-Saclay, Inserm, Gustave Roussy, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
| | - Joseph A. Rothwell
- CESP (UMR1018), Faculté de Médecine, Université Paris-Saclay, Inserm, Gustave Roussy, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
| | - Gianluca Severi
- CESP (UMR1018), Faculté de Médecine, Université Paris-Saclay, Inserm, Gustave Roussy, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, 50123 Florence, Italy
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (V.K.); (T.J.)
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (V.K.); (T.J.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Institute of Nutrition Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Giovanna Masala
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-ISPRO, 50141 Florence, Italy;
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy;
| | - Vittorio Simeon
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Università degli Studi della Campania ‘Luigi Vanvitelli’, 80121 Naples, Italy;
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), 97100 Ragusa, Italy;
| | - H. Bas Bueno-de-Mesquita
- Center for Nutrition and Health, National Institute for Public Health and the Environment, 3720 Bilthoven, The Netherlands;
| | - Inger Torhild Gram
- Department of Community Medicine, The Arctic University of Norway, N-9037 Tromsø, Norway; (I.T.G.); (G.S.)
| | - Guri Skeie
- Department of Community Medicine, The Arctic University of Norway, N-9037 Tromsø, Norway; (I.T.G.); (G.S.)
| | | | - Miguel Rodriguez-Barranco
- Escuela Andaluza de Salud Pública (EASP), Instituto de Investigación Biosanitaria ibs. Granada, 18014 Granada, Spain;
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
| | - José María Houerta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, 30008 Murcia, Spain
| | - Björn Gylling
- Department of Medical Biosciences, Umea University, 901 87 Umea, Sweden;
| | | | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK;
| | - Elom Aglago
- International Agency for Research on Cancer, 69372 Lyon, France; (M.J.); (E.A.); (H.F.); (E.W.)
| | - Heinz Freisling
- International Agency for Research on Cancer, 69372 Lyon, France; (M.J.); (E.A.); (H.F.); (E.W.)
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, 69372 Lyon, France; (M.J.); (E.A.); (H.F.); (E.W.)
| | - Amanda J. Cross
- School of Public Health, Imperial College London, London SW7 2AZ, UK; (A.J.C.); (A.K.H.)
| | - Alicia K. Heath
- School of Public Health, Imperial College London, London SW7 2AZ, UK; (A.J.C.); (A.K.H.)
| | - David J. Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (J.R.B.); (S.U.)
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Associations between Urinary and Dietary Selenium and Blood Metabolic Parameters in a Healthy Northern Italy Population. Antioxidants (Basel) 2021; 10:antiox10081193. [PMID: 34439441 PMCID: PMC8389012 DOI: 10.3390/antiox10081193] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Selenium is both an essential nutrient and a highly toxic element, depending on its dose and chemical forms. We aimed to quantify urinary selenium excretion and dietary selenium intake in 137 healthy non-smoking blood donors living in the northern Italian province of Reggio Emilia. We assessed selenium status by determining urinary selenium levels (mean 26.77 µg/L), and by estimating dietary selenium intake (mean 84.09 µg/day) using a validated semi-quantitative food frequency questionnaire. Fasting blood levels of glucose, lipids and thyroid-stimulating hormone were measured using automatized laboratory procedures. Dietary and urinary selenium were correlated (beta coefficient (β) = 0.19). Despite this, the association of the two indicators with health endpoints tended to diverge. Using linear regression analysis adjusted for age, sex, body mass index, cotinine levels and alcohol intake, we observed a positive association between urinary selenium and blood triglyceride (β = 0.14), LDL-cholesterol (β = 0.07) and glucose levels (β = 0.08), and an inverse one with HDL-cholesterol (β = −0.12). Concerning dietary selenium, a slightly positive association could be found with glycemic levels only (β = 0.02), while a negative one emerged for other endpoints. The two selenium indicators showed conflicting and statistically highly imprecise associations with circulating TSH levels. Our findings suggest that higher selenium exposure is adversely associated with blood glucose levels and lipid profile. This is the case even at selenium exposures not exceeding tolerable upper intake levels according to current guidelines.
Collapse
|
8
|
Schweizer U, Bohleber S, Zhao W, Fradejas-Villar N. The Neurobiology of Selenium: Looking Back and to the Future. Front Neurosci 2021; 15:652099. [PMID: 33732108 PMCID: PMC7959785 DOI: 10.3389/fnins.2021.652099] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Eighteen years ago, unexpected epileptic seizures in Selenop-knockout mice pointed to a potentially novel, possibly underestimated, and previously difficult to study role of selenium (Se) in the mammalian brain. This mouse model was the key to open the field of molecular mechanisms, i.e., to delineate the roles of selenium and individual selenoproteins in the brain, and answer specific questions like: how does Se enter the brain; which processes and which cell types are dependent on selenoproteins; and, what are the individual roles of selenoproteins in the brain? Many of these questions have been answered and much progress is being made to fill remaining gaps. Mouse and human genetics have together boosted the field tremendously, in addition to traditional biochemistry and cell biology. As always, new questions have become apparent or more pressing with solving older questions. We will briefly summarize what we know about selenoproteins in the human brain, glance over to the mouse as a useful model, and then discuss new questions and directions the field might take in the next 18 years.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wenchao Zhao
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
9
|
Gong Y, Dong F, Geng Y, Zhuang H, Ma Z, Zhou Z, Huang B, Sun Z, Hou B. Selenium concentration, dietary intake and risk of hepatocellular carcinoma - A systematic review with meta-analysis. NUTR HOSP 2019; 36:1430-1437. [PMID: 31718210 DOI: 10.20960/nh.02776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: this study was performed to investigate the association between selenium concentrations, dietary intake, and the risk of hepatocellular carcinoma (HCC). Methods: we identified eligible studies in PubMed and EMBASE databases, in addition to the reference lists of original studies and review articles on this topic, up to 1 Feb 2019. A summary of standardized mean differences (SMD) with 95% confidence intervals (CI) was calculated using a random-effects model. Heterogeneity between studies was assessed using Cochran Q and I2 statistics. Results: finally, a meta-analysis showed that dietary intake of selenium and tissue selenium concentration were not associated with HCC risk (dietary SMD = -0.11, 95% CI: -0.26 to 0.03; tissue SMD = -0.12, 95% CI: -0.56 to 0.33). However, samples from toenail, whole blood, and serum all showed an inverse association with HCC risk (toenail SMD = -0.53, 95% CI: -0.72 to -0.35; whole blood SMD = -2.21, 95% CI: -2.67 to -1.76; tissue SMD = -1.26, 95% CI: -1.71 to -0.81). Dose-response data from few studies showed that an extra increase in serum selenium was dramatically related with a lower risk of HCC (adjusted p-trend < 0.05). This study showed that selenium concentration in toenail, whole blood and serum was inversely associated with HCC risk. Conclusion: increased concentration in serum selenium was related to a lower risk of HCC. However, these results based on dietary intake and tissue samples, which included few studies, did not reach statistical significance.
Collapse
Affiliation(s)
- Yuanfeng Gong
- Department of General Surgery, Guangdong Provincial Peoples's Hospital, Guangdong Academy of Medical Sciences
| | - Fengying Dong
- the Forth Department of Geriatrics, General Hospital of Southern Theater Command, PLA
| | - Yan Geng
- Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University
| | | | - Zuyi Ma
- Shantou University Medical College
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial Peoples's Hospital, Guangdong Academy of Medical Sciences
| | - Bowen Huang
- Department of General Surgery, Guangdong Provincial Peoples's Hospital, Guangdong Academy of Medical Sciences
| | - Zhonghai Sun
- Department of General Surgery, Guangdong Provincial Peoples's Hospital, Guangdong Academy of Medical Sciences
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial Peoples's Hospital, Guangdong Academy of Medical Sciences
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Selenium, a trace element, is ubiquitous in the environment. The main source of human exposure is diet. Despite its nutritional benefits, it is one of the most toxic naturally occurring elements. Selenium deficiency and overexposure have been associated with adverse health effects. Its level of toxicity may depend on its chemical form, as inorganic and organic species have distinct biological properties. RECENT FINDINGS Nonexperimental and experimental studies have generated insufficient evidence for a role of selenium deficiency in human disease, with the exception of Keshan disease, a cardiomyopathy. Conversely, recent randomized trials have indicated that selenium overexposure is positively associated with type 2 diabetes and high-grade prostate cancer. In addition, a natural experiment has suggested an association between overexposure to inorganic hexavalent selenium and two neurodegenerative diseases, amyotrophic lateral sclerosis and Parkinson's disease. Risk assessments should be revised to incorporate the results of studies demonstrating toxic effects of selenium. Additional observational studies and secondary analyses of completed randomized trials are needed to address the uncertainties regarding the health risks of selenium exposure.
Collapse
|
11
|
Serrão VHB, Silva IR, da Silva MTA, Scortecci JF, de Freitas Fernandes A, Thiemann OH. The unique tRNASec and its role in selenocysteine biosynthesis. Amino Acids 2018; 50:1145-1167. [DOI: 10.1007/s00726-018-2595-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/26/2018] [Indexed: 12/26/2022]
|
12
|
Zhang Z, Bi M, Liu Q, Yang J, Xu S. Meta-analysis of the correlation between selenium and incidence of hepatocellular carcinoma. Oncotarget 2018; 7:77110-77116. [PMID: 27780927 PMCID: PMC5363572 DOI: 10.18632/oncotarget.12804] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/14/2016] [Indexed: 01/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common cancer type. There is a correlation between selenium (Se) deficiency and the incidence of HCC. To clarify the effects of Se level on the risk of HCC patients, a meta-analysis was performed. A total of 9 articles published between 1994 and 2016 worldwide were selected through searching PubMed, EMBASE, web of science, Cochrane Library, Springer Link, Chinese National Knowledge Infrastructure (CNKI), and Chinese Biology Medicine (CBM), and the information were analyzed using a meta-analysis method. Heterogeneity was assessed by using the I2 index. Publication bias was evaluated by Begg's Test analysis. Pooled analysis indicated that patients with HCC had lower Se levels than the healthy controls [standardized mean difference (SMD)= −1.08, 95% confidence intercal (CI) = (−0.136, −0.08), P < 0.001]. Further subgroup analysis showed this effect to be independent of the study design, race or sample collection. In conclusion, this meta-analysis suggested an inverse correlation between Se level and the risk of HCC in humans patients.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Mingyu Bi
- Harbin Railway Public Security Bureau Police Dog Base, Harbin 150056, P. R. China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
13
|
Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M, Brinkman M, Zeegers MPA, Horneber M, D'Amico R, Crespi CM. Selenium for preventing cancer. Cochrane Database Syst Rev 2018; 1:CD005195. [PMID: 29376219 PMCID: PMC6491296 DOI: 10.1002/14651858.cd005195.pub4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND This review is the third update of the Cochrane review "Selenium for preventing cancer". Selenium is a naturally occurring element with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancer. OBJECTIVES To gather and present evidence needed to address two research questions:1. What is the aetiological relationship between selenium exposure and cancer risk in humans?2. Describe the efficacy of selenium supplementation for cancer prevention in humans. SEARCH METHODS We updated electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), MEDLINE (Ovid, 2013 to January 2017, week 4), and Embase (2013 to 2017, week 6), as well as searches of clinical trial registries. SELECTION CRITERIA We included randomised controlled trials (RCTs) and longitudinal observational studies that enrolled adult participants. DATA COLLECTION AND ANALYSIS We performed random-effects (RE) meta-analyses when two or more RCTs were available for a specific outcome. We conducted RE meta-analyses when five or more observational studies were available for a specific outcome. We assessed risk of bias in RCTs and in observational studies using Cochrane's risk assessment tool and the Newcastle-Ottawa Scale, respectively. We considered in the primary analysis data pooled from RCTs with low risk of bias. We assessed the certainty of evidence by using the GRADE approach. MAIN RESULTS We included 83 studies in this updated review: two additional RCTs (10 in total) and a few additional trial reports for previously included studies. RCTs involved 27,232 participants allocated to either selenium supplements or placebo. For analyses of RCTs with low risk of bias, the summary risk ratio (RR) for any cancer incidence was 1.01 (95% confidence interval (CI) 0.93 to 1.10; 3 studies, 19,475 participants; high-certainty evidence). The RR for estimated cancer mortality was 1.02 (95% CI 0.80 to 1.30; 1 study, 17,444 participants). For the most frequently investigated site-specific cancers, investigators provided little evidence of any effect of selenium supplementation. Two RCTs with 19,009 participants indicated that colorectal cancer was unaffected by selenium administration (RR 0.99, 95% CI 0.69 to 1.43), as were non-melanoma skin cancer (RR 1.16, 95% CI 0.30 to 4.42; 2 studies, 2027 participants), lung cancer (RR 1.16, 95% CI 0.89 to 1.50; 2 studies, 19,009 participants), breast cancer (RR 2.04, 95% CI 0.44 to 9.55; 1 study, 802 participants), bladder cancer (RR 1.07, 95% CI 0.76 to 1.52; 2 studies, 19,009 participants), and prostate cancer (RR 1.01, 95% CI 0.90 to 1.14; 4 studies, 18,942 participants). Certainty of the evidence was high for all of these cancer sites, except for breast cancer, which was of moderate certainty owing to imprecision, and non-melanoma skin cancer, which we judged as moderate certainty owing to high heterogeneity. RCTs with low risk of bias suggested increased melanoma risk.Results for most outcomes were similar when we included all RCTs in the meta-analysis, regardless of risk of bias. Selenium supplementation did not reduce overall cancer incidence (RR 0.99, 95% CI 0.86 to 1.14; 5 studies, 21,860 participants) nor mortality (RR 0.81, 95% CI 0.49 to 1.32; 2 studies, 18,698 participants). Summary RRs for site-specific cancers showed limited changes compared with estimates from high-quality studies alone, except for liver cancer, for which results were reversed.In the largest trial, the Selenium and Vitamin E Cancer Trial, selenium supplementation increased risks of alopecia and dermatitis, and for participants with highest background selenium status, supplementation also increased risk of high-grade prostate cancer. RCTs showed a slightly increased risk of type 2 diabetes associated with supplementation. A hypothesis generated by the Nutritional Prevention of Cancer Trial - that individuals with low blood selenium levels could reduce their risk of cancer (particularly prostate cancer) by increasing selenium intake - has not been confirmed. As RCT participants have been overwhelmingly male (88%), we could not assess the potential influence of sex or gender.We included 15 additional observational cohort studies (70 in total; over 2,360,000 participants). We found that lower cancer incidence (summary odds ratio (OR) 0.72, 95% CI 0.55 to 0.93; 7 studies, 76,239 participants) and lower cancer mortality (OR 0.76, 95% CI 0.59 to 0.97; 7 studies, 183,863 participants) were associated with the highest category of selenium exposure compared with the lowest. Cancer incidence was lower in men (OR 0.72, 95% CI 0.46 to 1.14, 4 studies, 29,365 men) than in women (OR 0.90, 95% CI 0.45 to 1.77, 2 studies, 18,244 women). Data show a decrease in risk of site-specific cancers for stomach, colorectal, lung, breast, bladder, and prostate cancers. However, these studies have major weaknesses due to study design, exposure misclassification, and potential unmeasured confounding due to lifestyle or nutritional factors covarying with selenium exposure beyond those taken into account in multi-variable analyses. In addition, no evidence of a dose-response relation between selenium status and cancer risk emerged. Certainty of evidence was very low for each outcome. Some studies suggested that genetic factors might modify the relation between selenium and cancer risk - an issue that merits further investigation. AUTHORS' CONCLUSIONS Well-designed and well-conducted RCTs have shown no beneficial effect of selenium supplements in reducing cancer risk (high certainty of evidence). Some RCTs have raised concerns by reporting a higher incidence of high-grade prostate cancer and type 2 diabetes in participants with selenium supplementation. No clear evidence of an influence of baseline participant selenium status on outcomes has emerged in these studies.Observational longitudinal studies have shown an inverse association between selenium exposure and risk of some cancer types, but null and direct relations have also been reported, and no systematic pattern suggesting dose-response relations has emerged. These studies suffer from limitations inherent to the observational design, including exposure misclassification and unmeasured confounding.Overall, there is no evidence to suggest that increasing selenium intake through diet or supplementation prevents cancer in humans. However, more research is needed to assess whether selenium may modify the risk of cancer in individuals with a specific genetic background or nutritional status, and to investigate possible differential effects of various forms of selenium.
Collapse
Affiliation(s)
- Marco Vinceti
- Boston University School of Public HealthDepartment of Epidemiology715 Albany StreetBoston, MAUSA02118
- University of Modena and Reggio EmiliaResearch Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural SciencesVia Campi 287ModenaItaly41125
| | - Tommaso Filippini
- University of Modena and Reggio EmiliaResearch Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural SciencesVia Campi 287ModenaItaly41125
| | - Cinzia Del Giovane
- University of BernInstitute of Primary Health Care (BIHAM)Gesellschaftsstrasse 49BernSwitzerland3012
- University of Modena and Reggio EmiliaCochrane Italy, Department of Diagnostic, Clinical and Public Health MedicineVia del Pozzo, 71ModenaItaly41100
| | - Gabriele Dennert
- University of Applied Sciences DortmundSocial Medicine and Public Health with Focus on Gender and Diversity, Department of Applied Social SciencesEmil‐Figge‐Str. 44DortmundGermanyD‐44227
| | - Marcel Zwahlen
- University of BernInstitute of Social and Preventive Medicine (ISPM)Finkelhubelweg11BernSwitzerland3012
| | - Maree Brinkman
- Nutrition Biomed Research InstituteDepartment of Nutritional Epidemiology and Clinical StudiesArgyle Place SouthMelbourneVictoriaAustralia3053
- Chairgroup of Complex Genetics and Epidemiology, School for Nutrition and Translational Research in Metabolism, Care and Public Health Research InstituteUnit of Nutritional and Cancer EpidemiologyMaastricht UniversityMaastrichtNetherlands
| | | | - Markus Horneber
- Paracelsus Medical University, Klinikum NurembergDepartment of Internal Medicine, Division of Oncology and HematologyProf.‐Ernst‐Nathan‐Str. 1NurembergGermanyD‐90419
| | - Roberto D'Amico
- University of Modena and Reggio EmiliaCochrane Italy, Department of Diagnostic, Clinical and Public Health MedicineVia del Pozzo, 71ModenaItaly41100
| | - Catherine M Crespi
- University of California Los AngelesBiostatisticsFielding School of Public Health650 Charles Young Drive South, A2‐125 CHS, Box 956900Los AngelesCaliforniaUSA90095‐6900
| | | |
Collapse
|
14
|
Bo-Htay C, Palee S, Apaijai N, Chattipakorn SC, Chattipakorn N. Effects of d-galactose-induced ageing on the heart and its potential interventions. J Cell Mol Med 2018; 22:1392-1410. [PMID: 29363871 PMCID: PMC5824366 DOI: 10.1111/jcmm.13472] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/29/2017] [Indexed: 01/08/2023] Open
Abstract
Ageing is a strong independent risk factor for disability, morbidity and mortality. Post-mitotic cells including those in the heart are a particular risk to age-related deterioration. As the occurrence of heart disease is increasing rapidly with an ageing population, knowledge regarding the mechanisms of age-related cardiac susceptibility and possible therapeutic interventions needs to be acquired to prevent advancing levels of heart disease. To understand more about the ageing heart, numerous aged animal models are being used to explore the underlying mechanisms. Due to time-consuming for investigations involving naturally aged animals, mimetic ageing models are being utilized to assess the related effects of ageing on disease occurrence. d-galactose is one of the substances used to instigate ageing in various models, and techniques involving this have been widely used since 1991. However, the mechanism through which d-galactose induces ageing in the heart remains unclear. The aim of this review was to comprehensively summarize the current findings from in vitro and in vivo studies on the effects of d-galactose-induced ageing on the heart, and possible therapeutic interventions against ageing heart models. From this review, we hope to provide invaluable information for future studies and based on the findings from experiments involving animals, we can inform possible therapeutic strategies for the prevention of age-related heart diseases in clinical settings.
Collapse
Affiliation(s)
- Cherry Bo-Htay
- Cardiac Electrophysiology Research Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Cardiac Electrophysiology Unit, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Cardiac Electrophysiology Unit, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Cardiac Electrophysiology Unit, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Cardiac Electrophysiology Unit, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
15
|
Abstract
The relation between selenium and cancer has been one of the most hotly debated topics in human health over the last decades. Early observational studies reported an inverse relation between selenium exposure and cancer risk. Subsequently, randomized controlled trials showed that selenium supplementation does not reduce the risk of cancer and may even increase it for some types, including advanced prostate cancer and skin cancer. An increased risk of diabetes has also been reported. These findings have been consistent in the most methodologically sound trials, suggesting that the early observational studies were misleading. Other studies have investigated selenium compounds as adjuvant therapy for cancer. Though there is currently insufficient evidence regarding the utility and safety of selenium compounds for such treatments, this issue is worthy of further investigation. The study of selenium and cancer is complicated by the existence of a diverse array of organic and inorganic selenium compounds, each with distinct biological properties, and this must be taken into consideration in the interpretation of both observational and experimental human studies.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy; Boston University School of Public Health, Boston, MA, United States.
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Cilloni
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy
| | - Catherine M Crespi
- Jonsson Comprehensive Cancer Center, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Li X, Zhang Y, Yuan Y, Sun Y, Qin Y, Deng Z, Li H. Protective Effects of Selenium, Vitamin E, and Purple Carrot Anthocyanins on D-Galactose-Induced Oxidative Damage in Blood, Liver, Heart and Kidney Rats. Biol Trace Elem Res 2016; 173:433-42. [PMID: 27025718 DOI: 10.1007/s12011-016-0681-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/16/2016] [Indexed: 12/12/2022]
Abstract
The present study was performed to investigate the protective effects of selenium (Se), vitamin E (Vit E) and anthocyanins from purple carrots and their combination against the oxidative stress induced by D-galactose in rats. A total of 80 male rats were equally divided into 11 groups, one of which acted as control (I) just receiving intraperitoneal injections of physiological saline. The remaining ten groups (II-XI) were intraperitoneally injected with D-galactose at a dose of 400 mg kg(-1) body weight (BW) per day for 42 consecutive days. Rats in groups III-XI were treated with antioxidants via gavage per day as follows: group III: Se-methylselenocysteine (SeMSC), IV: Se as sodium selenite (Na2SeO3), V: Se-enriched yeast (SeY), VI: Vit E as α-tocopherol acetate, VII: anthocyanin from purple carrots (APC), VIII: APC + Vit E, IX: SeMSC + APC+ Vit E, X: Na2SeO3 + APC + Vit E, XI: SeY + Ant + Vit E. The results showed that the rats treated with antioxidants (III-XI) showed significant decreases in the levels of malondialdehyde (MDA) and carbonyl protein (PCO) compared with the D-galactose-treated group (II) in the heart, liver, kidneys, and blood. Moreover, there were significant increases in the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), glutathione (GSH) concentration, and total antioxidant capacity (T-AOC) in the heart, liver, kidneys, and blood of antioxidant-treated animals (III-XI) than those in control group (I). In addition, the combined treatments of two or three antioxidants showed greater antioxidant activities than those of individual treatments, suggesting the synergistic antioxidant effects of Se, Vit E, and APC. In conclusion, all the antioxidants exhibited protective effects against D-galactose-induced oxidative damage in rats, and these antioxidants showed a synergistic effect.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China
| | - Yunlong Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China
| | - Yuan Yuan
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China
| | - Yan Qin
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China
- Institute for Advanced Study, University of Nanchang, Nanchang, Jiangxi, 330031, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
17
|
Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc Natl Acad Sci U S A 2016; 113:E5562-71. [PMID: 27588899 DOI: 10.1073/pnas.1600204113] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Selenium, an essential micronutrient known for its cancer prevention properties, is incorporated into a class of selenocysteine-containing proteins (selenoproteins). Selenoprotein H (SepH) is a recently identified nucleolar oxidoreductase whose function is not well understood. Here we report that seph is an essential gene regulating organ development in zebrafish. Metabolite profiling by targeted LC-MS/MS demonstrated that SepH deficiency impairs redox balance by reducing the levels of ascorbate and methionine, while increasing methionine sulfoxide. Transcriptome analysis revealed that SepH deficiency induces an inflammatory response and activates the p53 pathway. Consequently, loss of seph renders larvae susceptible to oxidative stress and DNA damage. Finally, we demonstrate that seph interacts with p53 deficiency in adulthood to accelerate gastrointestinal tumor development. Overall, our findings establish that seph regulates redox homeostasis and suppresses DNA damage. We hypothesize that SepH deficiency may contribute to the increased cancer risk observed in cohorts with low selenium levels.
Collapse
|
18
|
Hughes DJ, Duarte-Salles T, Hybsier S, Trichopoulou A, Stepien M, Aleksandrova K, Overvad K, Tjønneland A, Olsen A, Affret A, Fagherazzi G, Boutron-Ruault MC, Katzke V, Kaaks R, Boeing H, Bamia C, Lagiou P, Peppa E, Palli D, Krogh V, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Peeters PH, Engeset D, Weiderpass E, Lasheras C, Agudo A, Sánchez MJ, Navarro C, Ardanaz E, Dorronsoro M, Hemmingsson O, Wareham NJ, Khaw KT, Bradbury KE, Cross AJ, Gunter M, Riboli E, Romieu I, Schomburg L, Jenab M. Prediagnostic selenium status and hepatobiliary cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr 2016; 104:406-14. [PMID: 27357089 PMCID: PMC6284791 DOI: 10.3945/ajcn.116.131672] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/29/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Selenium status is suboptimal in many Europeans and may be a risk factor for the development of various cancers, including those of the liver and biliary tract. OBJECTIVE We wished to examine whether selenium status in advance of cancer onset is associated with hepatobiliary cancers in the EPIC (European Prospective Investigation into Cancer and Nutrition) study. DESIGN We assessed prediagnostic selenium status by measuring serum concentrations of selenium and selenoprotein P (SePP; the major circulating selenium transfer protein) and examined the association with hepatocellular carcinoma (HCC; n = 121), gallbladder and biliary tract cancers (GBTCs; n = 100), and intrahepatic bile duct cancer (IHBC; n = 40) risk in a nested case-control design within the EPIC study. Selenium was measured by total reflection X-ray fluorescence, and SePP was determined by a colorimetric sandwich ELISA. Multivariable ORs and 95% CIs were calculated by using conditional logistic regression. RESULTS HCC and GBTC cases, but not IHBC cases, showed significantly lower circulating selenium and SePP concentrations than their matched controls. Higher circulating selenium was associated with a significantly lower HCC risk (OR per 20-μg/L increase: 0.41; 95% CI: 0.23, 0.72) but not with the risk of GBTC or IHBC. Similarly, higher SePP concentrations were associated with lowered HCC risk only in both the categorical and continuous analyses (HCC: P-trend ≤ 0.0001; OR per 1.5-mg/L increase: 0.37; 95% CI: 0.21, 0.63). CONCLUSION These findings from a large prospective cohort provide evidence that suboptimal selenium status in Europeans may be associated with an appreciably increased risk of HCC development.
Collapse
Affiliation(s)
- David J Hughes
- Department of Physiology and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland;
| | - Talita Duarte-Salles
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France; Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain
| | - Sandra Hybsier
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece; WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Magdalena Stepien
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Aurélie Affret
- Institut National de la Santé et de la Recherche Médicale (INSERM), CESP Center for Research in Epidemiology and Population Health, U1018, Villejuif, France; Université Paris Sud, UMRS 1018, Villejuif, France; Institute Gustave Roussy, Villejuif, France
| | - Guy Fagherazzi
- Institut National de la Santé et de la Recherche Médicale (INSERM), CESP Center for Research in Epidemiology and Population Health, U1018, Villejuif, France; Université Paris Sud, UMRS 1018, Villejuif, France; Institute Gustave Roussy, Villejuif, France
| | - Marie-Christine Boutron-Ruault
- Institut National de la Santé et de la Recherche Médicale (INSERM), CESP Center for Research in Epidemiology and Population Health, U1018, Villejuif, France; Université Paris Sud, UMRS 1018, Villejuif, France; Institute Gustave Roussy, Villejuif, France
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Christina Bamia
- Hellenic Health Foundation, Athens, Greece; WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Pagona Lagiou
- Hellenic Health Foundation, Athens, Greece; WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece; Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | | | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia Federico II, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic-M.P. Arezzo" Hospital, ASP Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital-University of Turin and Center for Cancer Prevention, Turin, Italy
| | - Hendrik Bastiaan Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands; MRC-PHE Centre for Environment and Health
| | - Dagrun Engeset
- The Norwegian Scientific Committee for Food Safety (VKM), Oslo, Norway
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, Tromsø, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | | | - Antonio Agudo
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Maria-José Sánchez
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs Granada, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carmen Navarro
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain
| | - Eva Ardanaz
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Miren Dorronsoro
- Public Health Direction and Biodonostia-Ciberesp, Basque Regional Health Department, San Sebastian, Spain
| | - Oskar Hemmingsson
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | | | - Kay-Tee Khaw
- Clinical Gerontology, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; and
| | - Kathryn E Bradbury
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Isabelle Romieu
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mazda Jenab
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| |
Collapse
|
19
|
Schweizer U, Fradejas‐Villar N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J 2016; 30:3669-3681. [DOI: 10.1096/fj.201600424] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/18/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und MolekularbiologieRheinische Friedrich‐Wilhelms‐Universitfät Bonn Bonn Germany
| | - Noelia Fradejas‐Villar
- Institut für Biochemie und MolekularbiologieRheinische Friedrich‐Wilhelms‐Universitfät Bonn Bonn Germany
| |
Collapse
|
20
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy. Cancers (Basel) 2015; 7:2262-76. [PMID: 26569310 PMCID: PMC4695889 DOI: 10.3390/cancers7040889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/14/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022] Open
Abstract
A common characteristic of many cancer cells is that they suffer from oxidative stress. They, therefore, require effective redox regulatory systems to combat the higher levels of reactive oxygen species that accompany accelerated growth compared to the normal cells of origin. An elevated dependence on these systems in cancers suggests that targeting these systems may provide an avenue for retarding the malignancy process. Herein, we examined the redox regulatory systems in human liver and lung cancers by comparing human lung adenocarcinoma and liver carcinoma to their respective surrounding normal tissues. Significant differences were found in the two major redox systems, the thioredoxin and glutathione systems. Thioredoxin reductase 1 levels were elevated in both malignancies, but thioredoxin was highly upregulated in lung tumor and only slightly upregulated in liver tumor, while peroxiredoxin 1 was highly elevated in lung tumor, but downregulated in liver tumor. There were also major differences within the glutathione system between the malignancies and their normal tissues. The data suggest a greater dependence of liver on either the thioredoxin or glutathione system to drive the malignancy, while lung cancer appeared to depend primarily on the thioredoxin system.
Collapse
|
22
|
Barrett CW, Reddy VK, Short SP, Motley AK, Lintel MK, Bradley AM, Freeman T, Vallance J, Ning W, Parang B, Poindexter SV, Fingleton B, Chen X, Washington MK, Wilson KT, Shroyer NF, Hill KE, Burk RF, Williams CS. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. J Clin Invest 2015; 125:2646-60. [PMID: 26053663 DOI: 10.1172/jci76099] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/30/2015] [Indexed: 12/19/2022] Open
Abstract
Patients with inflammatory bowel disease are at increased risk for colon cancer due to augmented oxidative stress. These patients also have compromised antioxidant defenses as the result of nutritional deficiencies. The micronutrient selenium is essential for selenoprotein production and is transported from the liver to target tissues via selenoprotein P (SEPP1). Target tissues also produce SEPP1, which is thought to possess an endogenous antioxidant function. Here, we have shown that mice with Sepp1 haploinsufficiency or mutations that disrupt either the selenium transport or the enzymatic domain of SEPP1 exhibit increased colitis-associated carcinogenesis as the result of increased genomic instability and promotion of a protumorigenic microenvironment. Reduced SEPP1 function markedly increased M2-polarized macrophages, indicating a role for SEPP1 in macrophage polarization and immune function. Furthermore, compared with partial loss, complete loss of SEPP1 substantially reduced tumor burden, in part due to increased apoptosis. Using intestinal organoid cultures, we found that, compared with those from WT animals, Sepp1-null cultures display increased stem cell characteristics that are coupled with increased ROS production, DNA damage, proliferation, decreased cell survival, and modulation of WNT signaling in response to H2O2-mediated oxidative stress. Together, these data demonstrate that SEPP1 influences inflammatory tumorigenesis by affecting genomic stability, the inflammatory microenvironment, and epithelial stem cell functions.
Collapse
|
23
|
Zhang Y, Zheng S, Zheng JS, Wong KH, Huang Z, Ngai SM, Zheng W, Wong YS, Chen T. Synergistic Induction of Apoptosis by Methylseleninic Acid and Cisplatin, The Role of ROS-ERK/AKT-p53 Pathway. Mol Pharm 2014; 11:1282-93. [DOI: 10.1021/mp400749f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yibo Zhang
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shanyuan Zheng
- School of Life Sciences and State Key Laboratory
of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jun-Sheng Zheng
- The Third Affiliated
Hospital, Sun-Yat-Sen University, Guangzhou, China
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhi Huang
- Department of Biology, Jinan University, Guangzhou 510632, China
| | - Sai-Ming Ngai
- School of Life Sciences and State Key Laboratory
of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenjie Zheng
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yum-Shing Wong
- School of Life Sciences and State Key Laboratory
of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tianfeng Chen
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
24
|
Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 2014; 39:112-20. [PMID: 24485058 PMCID: PMC3943681 DOI: 10.1016/j.tibs.2013.12.007] [Citation(s) in RCA: 430] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 01/08/2023]
Abstract
The many biological and biomedical effects of selenium are relatively unknown outside the selenium field. This fascinating element, initially described as a toxin, was subsequently shown to be essential for health and development. By the mid-1990s selenium emerged as one of the most promising cancer chemopreventive agents, but subsequent human clinical trials yielded contradictory results. However, basic research on selenium continued to move at a rapid pace, elucidating its many roles in health, development, and in cancer prevention and promotion. Dietary selenium acts principally through selenoproteins, most of which are oxidoreductases involved in diverse cellular functions.
Collapse
Affiliation(s)
- Dolph L Hatfield
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Petra A Tsuji
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|