1
|
Ma Q, Lu X, Tian W, Chen Y, He X. Astragaloside Ⅳ mediates the effect and mechanism of KPNB1 on biological behavior and tumor growth in prostate cancer. Heliyon 2024; 10:e33904. [PMID: 39027542 PMCID: PMC11255569 DOI: 10.1016/j.heliyon.2024.e33904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Background and purpose Prostate cancer is an comparatively prevalent clinical malignant tumor in men, impacting the lives of millions of men globally. This study measured the expression of Karyopherin Subunit Beta 1 (KPNB1) in prostate cancer cells, and made an effort to investigate how astragaloside IV affects the biological behavior, tumor growth, and mechanism of action of prostate cancer through KPNB1. Methods Human prostate cancer and normal cells were obtained and KPNB1 expression levels in the two cells were determined using qPCR and WB. Prostate cancer cells were grouped according to the addition of astragaloside IV, KPNB1 inhibitor (importazole) alone and in combination. KPNB1, NF-κB, and cycle-related proteins were detected to be expressed at different levels in each group's cells by WB. MTT to assess the viability of the cells. To identify the cell cycle, use flow cytometry, and sphere formation experiment to observe sphere formation ability. Nude mice were purchased and subcutaneously inoculated with prostate cancer cells to establish a prostate cancer model, and grouped by tail vein injection of astragaloside IV and importazole. Tumor size was measured. KPNB1 and NF-κB expression in tumor tissues were detected by WB. The expression of proteins relevant to the cycle is observed by immunohistochemical methods. TUNEL was used to detect apoptosis of tissue cells. Results KPNB1 expression was upregulated in prostate cancer cells (P < 0.05). KPNB1, NF-κB, and cycle-related protein levels were decreased by astragaloside IV and importazole both separately and together. Decreased viability of the cells and a higher percentage of cell cycle arrest in the G0 phase, apoptosis was increased, and sphere formation was decreased (P < 0.05). In vitro implantation experiments found that the application of astragaloside IV and importazole resulted in tumor growth inhibition, decreased KPNBI, NF-κB, and cyclin expression in tumor tissues, and promoted apoptosis in tumor tissues (P < 0.05). Conclusion Prostate cancer cells' expression of KPNB1 is downregulated by astragaloside IV, which also prevents the cells from proliferating. It offers a conceptual framework for the use of astragaloside IV in the management of prostate cancer.
Collapse
Affiliation(s)
- Quan Ma
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiaojun Lu
- Department of Urology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200000, China
| | - Wei Tian
- Department of Urology, Shaoxing Central Hospital, Shaoxing, 312000, Zhejiang, China
| | - Yongliang Chen
- Department of Urology, Shaoxing Central Hospital, Shaoxing, 312000, Zhejiang, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| |
Collapse
|
2
|
Khakwani MMAK, Ji XY, Khattak S, Sun YC, Yao K, Zhang L. Targeting colorectal cancer at the level of nuclear pore complex. J Adv Res 2024:S2090-1232(24)00245-5. [PMID: 38876192 DOI: 10.1016/j.jare.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are the architectures entrenched in nuclear envelop of a cell that regulate the nucleo-cytoplasmic transportation of materials, such as proteins and RNAs for proper functioning of a cell. The appropriate localization of proteins and RNAs within the cell is essential for its normal functionality. For such a complex transportation of materials across the NPC, around 60 proteins are involved comprising nucleoporins, karyopherins and RAN system proteins that play a vital role in NPC's structure formation, cargo translocation across NPC, and cargoes' rapid directed transportation respectively. In various cancers, the structure and function of NPC is often exaggerated, following altered expressions of its nucleoporins and karyopherins, affecting other proteins of associated signaling pathways. Some inhibitors of karyopherins at present, have potential to regulate the altered level/expression of these karyopherin molecules. AIM OF REVIEW This review summarizes the data from 1990 to 2023, mainly focusing on recent studies that illustrate the structure and function of NPC, the relationship and mechanisms of nucleoporins and karyopherins with colorectal cancer, as well as therapeutic values, in order to understand the pathology and underlying basis of colorectal cancer associated with NPC. This is the first review to our knowledge elucidating the detailed updated studies targeting colorectal cancer at NPC. The review also aims to target certain karyopherins, Nups and their possible inhibitors and activators molecules as a therapeutic strategy. KEY SCIENTIFIC CONCEPTS OF REVIEW NPC structure provides understanding, how nucleoporins and karyopherins as key molecules are responsible for appropriate nucleocytoplasmic transportation. Many studies provide evidences, describing the role of disrupted nucleoporins and karyopherins not only in CRC but also in other non-hematological and hematological malignancies. At present, some inhibitors of karyopherins have therapeutic potential for CRC, however development of more potent inhibitors may provide more effective therapeutic strategies for CRC in near future.
Collapse
Affiliation(s)
- Muhammad Mahtab Aslam Khan Khakwani
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Department of Oncology, Huaxian County Hospital, Huaxian, Henan Province 456400, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan 450064, China
| | - Saadullah Khattak
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Ying-Chuan Sun
- Department of Internal Oncology (Section I), Xuchang Municipal Central Hospital, Xuchang, Henan 430000, China
| | - Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China.
| | - Lei Zhang
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
4
|
Shi Q, Lin M, Cheng X, Zhang Z, Deng S, Lang K, Yang Z, Sun X. KPNB1-mediated nuclear import in cancer. Eur J Pharmacol 2023; 955:175925. [PMID: 37473981 DOI: 10.1016/j.ejphar.2023.175925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Dysregulation of nucleocytoplasmic shuttling impairs cellular homeostasis and promotes cancer development. KPNB1 is a member of karyopherin β family, mediating the transportation of proteins from the cytoplasm to the nucleus. In a variety of cancers, the expression of KPNB1 is upregulated to facilitate tumor growth and progression. Both downregulation of KPNB1 level and inhibition of KPNB1 activity prevent the entry of cancer-related transcription factors into the nucleus, subsequently suppressing the proliferation and metastasis of cancer cells. Currently, five KPNB1 inhibitors have been reported and exhibited good efficacy against cancer. This paper provides an overview of the role and mechanism of KPNB1 in different cancers and KPNB1-targeted anticancer compounds which hold promise for the future.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Mengxia Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiang Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ziyuan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shufen Deng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ke Lang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Zhikun Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
5
|
Kelenis DP, Rodarte KE, Kollipara RK, Pozo K, Choudhuri SP, Spainhower KB, Wait SJ, Stastny V, Oliver TG, Johnson JE. Inhibition of Karyopherin β1-Mediated Nuclear Import Disrupts Oncogenic Lineage-Defining Transcription Factor Activity in Small Cell Lung Cancer. Cancer Res 2022; 82:3058-3073. [PMID: 35748745 PMCID: PMC9444950 DOI: 10.1158/0008-5472.can-21-3713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Genomic studies support the classification of small cell lung cancer (SCLC) into subtypes based on the expression of lineage-defining transcription factors ASCL1 and NEUROD1, which together are expressed in ∼86% of SCLC. ASCL1 and NEUROD1 activate SCLC oncogene expression, drive distinct transcriptional programs, and maintain the in vitro growth and oncogenic properties of ASCL1 or NEUROD1-expressing SCLC. ASCL1 is also required for tumor formation in SCLC mouse models. A strategy to inhibit the activity of these oncogenic drivers may therefore provide both a targeted therapy for the predominant SCLC subtypes and a tool to investigate the underlying lineage plasticity of established SCLC tumors. However, there are no known agents that inhibit ASCL1 or NEUROD1 function. In this study, we identify a novel strategy to pharmacologically target ASCL1 and NEUROD1 activity in SCLC by exploiting the nuclear localization required for the function of these transcription factors. Karyopherin β1 (KPNB1) was identified as a nuclear import receptor for both ASCL1 and NEUROD1 in SCLC, and inhibition of KPNB1 led to impaired ASCL1 and NEUROD1 nuclear accumulation and transcriptional activity. Pharmacologic targeting of KPNB1 preferentially disrupted the growth of ASCL1+ and NEUROD1+ SCLC cells in vitro and suppressed ASCL1+ tumor growth in vivo, an effect mediated by a combination of impaired ASCL1 downstream target expression, cell-cycle activity, and proteostasis. These findings broaden the support for targeting nuclear transport as an anticancer therapeutic strategy and have implications for targeting lineage-transcription factors in tumors beyond SCLC. SIGNIFICANCE The identification of KPNB1 as a nuclear import receptor for lineage-defining transcription factors in SCLC reveals a viable therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Demetra P. Kelenis
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathia E. Rodarte
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rahul K. Kollipara
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karine Pozo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Kyle B. Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarah J. Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Victor Stastny
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trudy G. Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jane E. Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Jiang L, Li D, Wang C, Liao J, Liu J, Wei Q, Wang Y. Decreased Expression of Karyopherin-α 1 is Related to the Malignant Degree of Cervical Cancer and is Critical for the Proliferation of Hela Cells. Pathol Oncol Res 2022; 28:1610518. [PMID: 35991835 PMCID: PMC9385962 DOI: 10.3389/pore.2022.1610518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022]
Abstract
Karyopherin α (KPNA) proteins are involved in nucleocytoplasmic trafficking and are critical for protein subcellular localization. Recent studies have suggested that KPNA proteins are abnormally expressed in various solid tumors. The objective of this study was to investigate the expression of KPNA1 and KPNA2 in cervical cancer tissue with different histologic grades and cell lines, as well as the effects of the KPNA1 expression level on Hela cell proliferation. We collected the medical data of 106 patients with cervical cancer and investigated the protein expression of KPNA1 and KPNA2 by immunohistochemistry and western blot. The results revealed a significantly lower expression of KPNA1 in cervical cancer compared to normal tissue. Conversely, stronger staining intensity for KPNA2 was observed in cervical tumor samples. The expression levels of KPNA1 and KPNA2 were significantly associated with the tumor histologic grade. The weakest KPNA1 expression and strongest staining for KPNA2 were observed in grade III tumor tissue. The expression levels of KPNA1 were lower in Hela and C33A cells compared with normal human cervical epithelial cells; however, the expression of KPNA2 exhibited an opposite trend. The up-regulation of KPNA1 significantly suppressed the proliferation of Hela cells and relevant proteins expression, as well as promoted transportation of IRF3 into nucleus. Our results suggest the downregulation of KPNA1 expression is related to the malignant degree of cervical cancer and is closely associated with the proliferation of cervical cancer cells.
Collapse
Affiliation(s)
- Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dan Li
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chao Wang
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jianghuan Liu
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Qingzhu Wei, ; Yiyang Wang,
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Qingzhu Wei, ; Yiyang Wang,
| |
Collapse
|
7
|
Ou L, Wang X, Cheng S, Zhang M, Cui R, Hu C, Liu S, Tang Q, Peng Y, Chai R, Xie S, Wang S, Huang W, Wang X. Verdinexor, a Selective Inhibitor of Nuclear Exportin 1, Inhibits the Proliferation and Migration of Esophageal Cancer via XPO1/c-Myc/FOSL1 Axis. Int J Biol Sci 2022; 18:276-291. [PMID: 34975332 PMCID: PMC8692140 DOI: 10.7150/ijbs.66612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
Esophageal carcinoma (EC) ranks sixth among cancers in mortality worldwide and effective drugs to reduce EC incidence and mortality are lacking. To explore potential anti-esophageal cancer drugs, we conducted drug screening and discovered that verdinexor, a selective inhibitor of nuclear exportin 1 (XPO1/CRM1), has anti-esophageal cancer effects both in vivo and in vitro. However, the mechanism and role of verdinexor in esophageal cancer remain unknown. In the present study, we observed that verdinexor inhibited the proliferation and migration of EC cells in vitro and suppressed tumor growth in vivo. Additionally, we found that verdinexor induced cleavage of PARP and downregulated XPO1, c-Myc, and FOSL1 expression. RNA-sequence analysis and protein-protein interaction (PPI) analysis revealed that verdinexor regulated the XPO1/c-Myc/FOSL1 axis. The results of immunoprecipitation and proximity ligation assays confirmed that verdinexor disrupted the interaction between XPO1 and c-Myc. Overexpression of c-Myc rescued the inhibition of cell proliferation and cell migration caused by verdinexor. Overexpressed FOSL1 restored the inhibited migration by verdinexor. Taken together, verdinexor inhibited cell proliferation and migration of esophageal cancer via XPO1/c-Myc/FOSL1 axis. Our findings provide a new option for the development of anti-esophageal cancer drugs.
Collapse
Affiliation(s)
- Ling Ou
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Xinyou Wang
- The First District of Gastrointestinal Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shumin Cheng
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Min Zhang
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Ruiqin Cui
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Chunxia Hu
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Shiyi Liu
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Qian Tang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmacy, Jinan University, Guangzhou 510630, Guangdong, China
| | - Yuying Peng
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmacy, Jinan University, Guangzhou 510630, Guangdong, China
| | - Ruihuan Chai
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Wei Huang
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmacy, Jinan University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
8
|
Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 - from biology to targeted therapy. Nat Rev Clin Oncol 2021; 18:152-169. [PMID: 33173198 DOI: 10.1038/s41571-020-00442-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Exportin 1 (XPO1), also known as chromosome region maintenance protein 1, plays a crucial role in maintaining cellular homeostasis via the regulated export of a range of cargoes, including proteins and several classes of RNAs, from the nucleus to the cytoplasm. Dysregulation of this protein plays a pivotal role in the development of various solid and haematological malignancies. Furthermore, XPO1 is associated with resistance to several standard-of-care therapies, including chemotherapies and targeted therapies, making it an attractive target of novel cancer therapies. Over the years, a number of selective inhibitors of nuclear export have been developed. However, only selinexor has been clinically validated. The novel mechanism of action of XPO1 inhibitors implies a different toxicity profile to that of other agents and has proved challenging in certain settings. Nonetheless, data from clinical trials have led to the approval of the XPO1 inhibitor selinexor (plus dexamethasone) as a fifth-line therapy for patients with multiple myeloma and as a monotherapy for patients with relapsed and/or refractory diffuse large B cell lymphoma. In this Review, we summarize the progress and challenges in the development of nuclear export inhibitors and discuss the potential of emerging combination therapies and biomarkers of response.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Dexamethasone/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/pathology
- Humans
- Hydrazines/therapeutic use
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Molecular Targeted Therapy
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Triazoles/therapeutic use
- Exportin 1 Protein
Collapse
Affiliation(s)
- Asfar S Azmi
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mohammed H Uddin
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
9
|
Chi RPA, van der Watt P, Wei W, Birrer MJ, Leaner VD. Inhibition of Kpnβ1 mediated nuclear import enhances cisplatin chemosensitivity in cervical cancer. BMC Cancer 2021; 21:106. [PMID: 33530952 PMCID: PMC7852134 DOI: 10.1186/s12885-021-07819-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Background Inhibition of nuclear import via Karyopherin beta 1 (Kpnβ1) shows potential as an anti-cancer approach. This study investigated the use of nuclear import inhibitor, INI-43, in combination with cisplatin. Methods Cervical cancer cells were pre-treated with INI-43 before treatment with cisplatin, and MTT cell viability and apoptosis assays performed. Activity and localisation of p53 and NFκB was determined after co-treatment of cells. Results Pre-treatment of cervical cancer cells with INI-43 at sublethal concentrations enhanced cisplatin sensitivity, evident through decreased cell viability and enhanced apoptosis. Kpnβ1 knock-down cells similarly displayed increased sensitivity to cisplatin. Combination index determination using the Chou-Talalay method revealed that INI-43 and cisplatin engaged in synergistic interactions. p53 was found to be involved in the cell death response to combination treatment as its inhibition abolished the enhanced cell death observed. INI-43 pre-treatment resulted in moderately stabilized p53 and induced p53 reporter activity, which translated to increased p21 and decreased Mcl-1 upon cisplatin combination treatment. Furthermore, cisplatin treatment led to nuclear import of NFκB, which was diminished upon pre-treatment with INI-43. NFκB reporter activity and expression of NFκB transcriptional targets, cyclin D1, c-Myc and XIAP, showed decreased levels after combination treatment compared to single cisplatin treatment and this associated with enhanced DNA damage. Conclusions Taken together, this study shows that INI-43 pre-treatment significantly enhances cisplatin sensitivity in cervical cancer cells, mediated through stabilization of p53 and decreased nuclear import of NFκB. Hence this study suggests the possible synergistic use of nuclear import inhibition and cisplatin to treat cervical cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07819-3.
Collapse
Affiliation(s)
- Ru-Pin Alicia Chi
- Division of Medical Biochemistry & Structural Biology, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Pauline van der Watt
- Division of Medical Biochemistry & Structural Biology, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Wei Wei
- Pfizer, Andover, MA, 01810, USA
| | - Michael J Birrer
- University of Arkansas Medical Sciences, D Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA
| | - Virna D Leaner
- Division of Medical Biochemistry & Structural Biology, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
10
|
Ishikawa C, Senba M, Mori N. Importin β1 regulates cell growth and survival during adult T cell leukemia/lymphoma therapy. Invest New Drugs 2020; 39:317-329. [PMID: 32959166 DOI: 10.1007/s10637-020-01007-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
There is no cure for adult T cell leukemia/lymphoma (ATLL) associated with human T cell leukemia virus type 1 (HTLV-1), and novel targeted strategies are needed. NF-κB and AP-1 are crucial for ATLL, and both are transported to the nucleus by an importin (IPO)α/β heterodimeric complex to activate target genes. In this study, we aimed to elucidate the function of IPOβ1 in ATLL. The expression of IPOβ1 was analyzed by western blotting and RT-PCR. Cell growth, viability, cell cycle, apoptosis and intracellular signaling cascades were examined by the water-soluble tetrazolium-8 assay, flow cytometry and western blotting. Xenograft tumors in severe combined immune deficient mice were used to evaluate the growth of ATLL cells in vivo. IPOβ1 was upregulated in HTLV-1-infected T cell lines. Further, IPOβ1 knockdown or the IPOβ1 inhibitor importazole and the IPOα/β1 inhibitor ivermectin reduced HTLV-1-infected T cell proliferation. However, the effect of inhibitors on uninfected T cells was less pronounced. Further, in HTLV-1-infected T cell lines, inhibitors suppressed NF-κB and AP-1 nuclear transport and DNA binding, induced apoptosis and poly (ADP-ribose) polymerase cleavage, and activated caspase-3, caspase-8 and caspase-9. Inhibitors also mediated G1 cell cycle arrest. Moreover, the expression of NF-κB- and AP-1-target proteins involved in cell cycle and apoptosis was reduced. In vivo, the IPOα/β1 inhibitor ivermectin decreased ATLL tumor burden without side effects. IPOβ1 mediated NF-κB and AP-1 translocation into ATLL cell nuclei, thereby regulating cell growth and survival, which provides new insights for targeted ATLL therapies. Thus, ivermectin, an anti-strongyloidiasis medication, could be a potent anti-ATLL agent.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.,Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| |
Collapse
|
11
|
Zhou Y, Liu F, Xu Q, Yang B, Li X, Jiang S, Hu L, Zhang X, Zhu L, Li Q, Zhu X, Shao H, Dai M, Shen Y, Ni B, Wang S, Zhang Z, Teng Y. Inhibiting Importin 4-mediated nuclear import of CEBPD enhances chemosensitivity by repression of PRKDC-driven DNA damage repair in cervical cancer. Oncogene 2020; 39:5633-5648. [PMID: 32661323 PMCID: PMC7441007 DOI: 10.1038/s41388-020-1384-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) remains highest in the mortality of female reproductive system cancers, while cisplatin (CDDP) resistance is the one of main reasons for the lethality. Preceding evidence has supported that karyopherins are associated with chemoresistance. In this study, we simultaneously compared CDDP-incomplete responders with CDDP-complete responders of CC patients and CDDP‐insensitive CC cell lines with CDDP‐sensitive group. We finally identified that DNA-PKcs (PRKDC) was related to CDDP sensitivity after overlapping in CC sample tissues and CC cell lines. Further functional assay revealed that targeting PRKDC by shRNA and NU7026 (specific PRKDC inhibitor) could enhance CDDP sensitivity in vitro and in vivo, which was mediated by impairing DNA damage repair pathway in CC. Mechanistically, we found that PRKDC was transcriptionally upregulated by CCAAT/enhancer-binding protein delta (CEBPD), while intriguingly, CDDP treatment strengthened the transcriptional activity of CEBPD to PRKDC. We further disclosed that Importin 4 (IPO4) augmented the nuclear translocation of CEBPD through nuclear localization signals (NLS) to activate PRKDC-mediated DNA damage repair in response to CDDP. Moreover, we demonstrated that IPO4 and CEBPD knockdown improved CDDP-induced cytotoxicity in vitro and in vivo. Together, we shed the novel insight into the role of IPO4 in chemosensitivity and provide a clinical translational potential to enhance CC chemosensitivity since the IPO4-CEBPD-PRKDC axis is actionable via NU7026 (PRKDC inhibitor) or targeting IPO4 in combination with CDDP.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China.,Department of Gynecology and Obstetrics, Shanghai Eighth People's Hospital, Affiliated to Jiangsu University, Shanghai, 200233, PR China
| | - Fei Liu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China.,Global Clinical Medical Affairs (GCMA), Shanghai Henlius Biotech, Inc. 7/F, Innov Tower, Zone A, No.1801 HongMei Rd. Xuhui District, Shanghai, 200233, PR China
| | - Qinyang Xu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Bikang Yang
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Xiao Li
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Shuheng Jiang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lipeng Hu
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xueli Zhang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lili Zhu
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qing Li
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaolu Zhu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Hongfang Shao
- Center of Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Yifei Shen
- Department of Orthopedics, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai, 200120, PR China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, PR China
| | - Shuai Wang
- Jacobi medical center, bronx, New York, NY, 10461, USA
| | - Zhigang Zhang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Yincheng Teng
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China. .,Department of Gynecology and Obstetrics, Shanghai Eighth People's Hospital, Affiliated to Jiangsu University, Shanghai, 200233, PR China.
| |
Collapse
|
12
|
Kojima Y, Nishina T, Nakano H, Okumura K, Takeda K. Inhibition of Importin β1 Augments the Anticancer Effect of Agonistic Anti-Death Receptor 5 Antibody in TRAIL-resistant Tumor Cells. Mol Cancer Ther 2020; 19:1123-1133. [PMID: 32156787 DOI: 10.1158/1535-7163.mct-19-0597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 11/16/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) and an agonistic antibody against the death-inducing TRAIL receptor 5, DR5, are thought to selectively induce tumor cell death and therefore, have gained attention as potential therapeutics currently under investigation in several clinical trials. However, some tumor cells are resistant to TRAIL/DR5-induced cell death, even though they express DR5. Previously, we reported that DR5 is transported into the nucleus by importin β1, and knockdown of importin β1 upregulates cell surface expression of DR5 resulting in increased TRAIL sensitivity in vitro Here, we examined the impact of importin β1 knockdown on agonistic anti-human DR5 (hDR5) antibody therapy. Drug-inducible importin β1 knockdown sensitizes HeLa cells to TRAIL-induced cell death in vitro, and exerts an antitumor effect when combined with agonistic anti-hDR5 antibody administration in vivo Therapeutic importin β1 knockdown, administered via the atelocollagen delivery system, as well as treatment with the importin β inhibitor, importazole, induced regression and/or eradication of two human TRAIL-resistant tumor cells when combined with agonistic anti-hDR5 antibody treatment. Thus, these findings suggest that the inhibition of importin β1 would be useful to improve the therapeutic effects of agonistic anti-hDR5 antibody against TRAIL-resistant cancers.
Collapse
Affiliation(s)
- Yuko Kojima
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Takashi Nishina
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Biofunctional Microbiota, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Cell Biology, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Zhang W, Lu Y, Li X, Zhang J, Lin W, Zhang W, Zheng L, Li X. IPO5 promotes the proliferation and tumourigenicity of colorectal cancer cells by mediating RASAL2 nuclear transportation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:296. [PMID: 31288861 PMCID: PMC6617704 DOI: 10.1186/s13046-019-1290-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Background Karyopherin nuclear transport receptors play important roles in tumour development and drug resistance and have been reported as potential biomarkers and therapeutic targets for tumour treatment. However, IPO5, one of the karyopherin nuclear transport receptor family members, remains largely uncharacterized in tumour progression. Methods The TCGA data, quantitative reverse transcription-PCR (qRT-PCR), western blotting, and IHC analyses were used to detect IPO5 expression in CRC tissues. A series of in vivo and in vitro experiments was utilized to demonstrate the function of IPO5 in CRC tissues. Mass spectrometry (MS), CO-IP technology, subcellular fractionation, and immunofluorescence were utilized to investigate the possible mechanisms of CRC. Results IPO5 was highly expressed and positively correlated with the clinicopathological characteristics of colorectal cancer tissues. Functional experiments indicated that IPO5 could promote the development of CRC. Mechanistically, we screened RASAL2, one cargo of IPO5, and further confirmed that IPO5 bound to the NLS sequence of RASAL2, mediating RASAL2 nuclear translocation and inducing RAS signal activation, thereby promoting the progression of CRC. Conclusions Together, our results indicate that IPO5 is overexpressed in colorectal cancer cells. By transporting RASAL2, IPO5 may play a crucial role in CRC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1290-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yanxia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaomin Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jianming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weihao Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
14
|
Guo X, Wang Z, Zhang J, Xu Q, Hou G, Yang Y, Dong C, Liu G, Liang C, Liu L, Zhou W, Liu H. Upregulated KPNA2 promotes hepatocellular carcinoma progression and indicates prognostic significance across human cancer types. Acta Biochim Biophys Sin (Shanghai) 2019; 51:285-292. [PMID: 30883648 DOI: 10.1093/abbs/gmz003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive cancers worldwide. Identification of the molecular mechanisms underlying the development and progression of HCC is particularly important. Here, we demonstrated the expression pattern, clinical significance, and function of Karyopherin α2 (KPNA2) in HCC. The expression of KPNA2 was upregulated in tumor tissue and negatively associated with the survival time, and a significant correlation between KPNA2 expression and aggressive clinical characteristics was established. Both in vitro and in vivo experiments demonstrated that knockdown of KPNA2 reduced migration and proliferation capacities of HCC cells, while over-expression of KPNA2 increased these malignant characteristics. The analysis of the Cancer Genome Atlas cohorts also reveals that high-KPNA2 expression is associated with poor outcome in multiple cancer types. In addition, gene sets enrichment analysis exhibited cell cycle and DNA replication as the top altered pathways in the high-KPNA2 expression group in HCC and other two cancer types. Overall, this study identified KPNA2 as a potential diagnostic and prognostic biomarker in HCC and other neoplasms, probably by regulating cell cycle and DNA replication.
Collapse
Affiliation(s)
- Xinggang Guo
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhiheng Wang
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jianing Zhang
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qingguo Xu
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guojun Hou
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chuanpeng Dong
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Gang Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chenhua Liang
- Division of Scientific Research, Second Military Medical University, Shanghai, China
| | - Lei Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weiping Zhou
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Hui Liu
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
15
|
Yang J, Guo Y, Lu C, Zhang R, Wang Y, Luo L, Zhang Y, Chu CH, Wang KJ, Obbad S, Yan W, Li X. Inhibition of Karyopherin beta 1 suppresses prostate cancer growth. Oncogene 2019; 38:4700-4714. [PMID: 30742095 PMCID: PMC6565446 DOI: 10.1038/s41388-019-0745-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/10/2018] [Accepted: 01/26/2019] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) initiation and progression requires activation of numerous oncogenic signaling pathways. Nuclear-cytoplasmic transport of oncogenic factors is mediated by Karyopherin proteins during cell transformation. However, the role of nuclear transporter proteins in PCa progression has not been well defined. Here, we report that the KPNB1, a key member of Karyopherin beta subunits, is highly expressed in advanced prostate cancers. Further study showed that targeting KPNB1 suppressed the proliferation of prostate cancer cells. The knockdown of KPNB1 reduced nuclear translocation of c-Myc, the expression of downstream cell cycle modulators, and phosphorylation of regulator of chromatin condensation 1 (RCC1), a key protein for spindle assembly during mitosis. Meanwhile, CHIP assay demonstrated the binding of c-Myc to KPNB1 promoter region, which indicated a positive feedback regulation of KPNB1 expression mediated by the c-Myc. In addition, NF-κB subunit p50 translocation to nuclei was blocked by KPNB1 inhibition, which led to an increase in apoptosis and a decrease in tumor sphere formation of PCa cells. Furthermore, subcutaneous xenograft tumor models with a stable knockdown of KPNB1 in C42B PCa cells validated that the inhibition of KPNB1 could suppress the growth of prostate tumor in vivo. Moreover, the intravenously administration of importazole, a specific inhibitor for KPNB1, effectively reduced PCa tumor size and weight in mice inoculated with PC3 PCa cells. In summary, our data established the functional link between KPNB1 and PCa prone c-Myc, NF-kB, and cell cycle modulators. More importantly, inhibition of KPNB1 could be a new therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Jian Yang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yuqi Guo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Cuijie Lu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Ruohan Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yaoyu Wang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Liang Luo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yanli Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Catherine H Chu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Katherine J Wang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Sabrine Obbad
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Wenbo Yan
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Xin Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA. .,Department of Urology, New York University Langone Medical Center, New York, NY, 10016, USA. .,Perlmutter Cancer Institute, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
16
|
Kosyna FK, Depping R. Controlling the Gatekeeper: Therapeutic Targeting of Nuclear Transport. Cells 2018; 7:cells7110221. [PMID: 30469340 PMCID: PMC6262578 DOI: 10.3390/cells7110221] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
Nuclear transport receptors of the karyopherin superfamily of proteins transport macromolecules from one compartment to the other and are critical for both cell physiology and pathophysiology. The nuclear transport machinery is tightly regulated and essential to a number of key cellular processes since the spatiotemporally expression of many proteins and the nuclear transporters themselves is crucial for cellular activities. Dysregulation of the nuclear transport machinery results in localization shifts of specific cargo proteins and associates with the pathogenesis of disease states such as cancer, inflammation, viral illness and neurodegenerative diseases. Therefore, inhibition of the nuclear transport system has future potential for therapeutic intervention and could contribute to the elucidation of disease mechanisms. In this review, we recapitulate clue findings in the pathophysiological significance of nuclear transport processes and describe the development of nuclear transport inhibitors. Finally, clinical implications and results of the first clinical trials are discussed for the most promising nuclear transport inhibitors.
Collapse
Affiliation(s)
- Friederike K Kosyna
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| | - Reinhard Depping
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
17
|
Carden S, van der Watt P, Chi A, Ajayi-Smith A, Hadley K, Leaner VD. A tight balance of Karyopherin β1 expression is required in cervical cancer cells. BMC Cancer 2018; 18:1123. [PMID: 30445944 PMCID: PMC6240311 DOI: 10.1186/s12885-018-5044-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023] Open
Abstract
Background Karyopherin β1 (Kpnβ1) is the main nuclear import protein involved in the transport of cargoes from the cytoplasm into the cell nucleus. Previous research has found Kpnβ1 to be significantly overexpressed in cervical cancer and other cancer tissues, and further studies showed that inhibition of Kpnβ1 expression by siRNA resulted in cancer cell death, while non-cancer cells were minimally affected. These results suggest that Kpnβ1 has potential as an anticancer therapeutic target, thus warranting further research into the association between Kpnβ1 expression and cancer progression. Here, the biological effects associated with Kpnβ1 overexpression were investigated in order to further elucidate the relationship between Kpnβ1 and the cancer phenotype. Methods To evaluate the effect of Kpnβ1 overexpression on cell biology, cell proliferation, cell cycle, cell morphology and cell adhesion assays were performed. To determine whether Kpnβ1 overexpression influences cell sensitivity to chemotherapeutic agents like Cisplatin, cell viability assays were performed. Expression levels of key proteins were analysed by Western blot analysis. Results Our data revealed that Kpnβ1 overexpression, above that which was already detected in cancer cells, resulted in reduced proliferation of cervical cancer cells. Likewise, normal epithelial cells showed reduced proliferation after Kpnβ1 overxpression. Reduced cancer cell proliferation was associated with a delay in cell cycle progression, as well as changes in the morphology and adhesion properties of cells. Additionally, Kpnβ1 overexpressing HeLa cells exhibited increased sensitivity to cisplatin, as shown by decreased cell viability and increased apoptosis, where p53 and p21 inhibition reduced and enhanced cell sensitivity to Cisplatin, respectively. Conclusions Overall, our results suggest that a tight balance of Kpnβ1 expression is required for cellular function, and that perturbation of this balance results in negative effects associated with a variety of biological processes. Electronic supplementary material The online version of this article (10.1186/s12885-018-5044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Carden
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pauline van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alicia Chi
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Aderonke Ajayi-Smith
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Katie Hadley
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
18
|
Zhu ZC, Liu JW, Li K, Zheng J, Xiong ZQ. KPNB1 inhibition disrupts proteostasis and triggers unfolded protein response-mediated apoptosis in glioblastoma cells. Oncogene 2018; 37:2936-2952. [PMID: 29520102 PMCID: PMC5978811 DOI: 10.1038/s41388-018-0180-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/28/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
The nuclear import receptor karyopherin β1 (KPNB1) is involved in the nuclear import of most proteins and in the regulation of multiple mitotic events. Upregulation of KPNB1 has been observed in cancers including glioblastoma. Depletion of KPNB1 induces mitotic arrest and apoptosis in cancer cells, but the underlying mechanism is not clearly elucidated. Here, we found that downregulation and functional inhibition of KPNB1 in glioblastoma cells induced growth arrest and apoptosis without apparent mitotic arrest. KPNB1 inhibition upregulated Puma and Noxa and freed Mcl-1-sequestered Bax and Bak, leading to mitochondrial outer membrane permeabilization (MOMP) and apoptosis. Moreover, combination of Bcl-xL inhibitors and KPNB1 inhibition enhanced apoptosis in glioblastoma cells. KPNB1 inhibition promoted cytosolic retention of its cargo and impaired cellular proteostasis, resulting in elevated polyubiquitination, formation of aggresome-like-induced structure (ALIS), and unfolded protein response (UPR). Ubiquitination elevation and UPR activation in KPNB1-deficient cells were reversed by KPNB1 overexpression or inhibitors of protein synthesis but aggravated by inhibitors of autophagy-lysosome or proteasome, indicating that rebalance of cytosolic/nuclear protein distribution and alleviation of protein overload favor proteostasis and cell survival. Chronic activation of eIF2α/ATF4 cascade of UPR was responsible for the upregulation of Puma and Noxa, apoptosis and ABT-263 sensitivity. Taken together, our findings demonstrate that KPNB1 is required for proteostasis maintenance and its inhibition induces apoptosis in glioblastoma cells through UPR-mediated deregulation of Bcl-2 family members.
Collapse
Affiliation(s)
- Zhi-Chuan Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ji-Wei Liu
- School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Kui Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jing Zheng
- School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
19
|
Stelma T, Leaner VD. KPNB1-mediated nuclear import is required for motility and inflammatory transcription factor activity in cervical cancer cells. Oncotarget 2018; 8:32833-32847. [PMID: 28427184 PMCID: PMC5464831 DOI: 10.18632/oncotarget.15834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Karyopherin β1 is a nuclear import protein involved in the transport of proteins containing a nuclear localisation sequence. Elevated Karyopherin β1 expression has been reported in cancer and transformed cells and is essential for cancer cell proliferation and survival. Transcription factors such as NFĸB and AP-1 contain a nuclear localisation sequence and initiate the expression of multiple factors associated with inflammation and cancer cell biology. Our study investigated the effect of inhibiting nuclear import via Karyopherin β1 on cancer cell motility and inflammatory signaling using siRNA and the novel small molecule, Inhibitor of Nuclear Import-43, INI-43. Inhibition of Karyopherin β1 led to reduced migration and invasion of cervical cancer cells. Karyopherin β1 is essential for the translocation of NFĸB into the nucleus as nuclear import inhibition caused its cytoplasmic retention and decreased transcriptional activity. A similar decrease was seen in AP-1 transcriptional activity upon Karyopherin β1 inhibition. Consequently reduced interleukin-6, interleukin-1 beta, tumour necrosis factor alpha and granulocyte macrophage colony stimulating factor expression, target genes of NFkB and AP-1, was observed. Migration studies inhibiting individual transcription factors suggested that INI-43 may affect a combination of signaling events. Our study provides further evidence that inhibiting KPNB1 has anti-cancer effects and shows promise as a chemotherapeutic target.
Collapse
Affiliation(s)
- Tamara Stelma
- Division of Medical Biochemistry and Structural Biology, SAMRC Gynaecology Cancer Research Centre, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, SAMRC Gynaecology Cancer Research Centre, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Wang H, Wang D, Li C, Zhang X, Zhou X, Huang J. High Kpnβ1 expression promotes non-small cell lung cancer proliferation and chemoresistance via the PI3-kinase/AKT pathway. Tissue Cell 2018; 51:39-48. [PMID: 29622086 DOI: 10.1016/j.tice.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/26/2018] [Accepted: 02/14/2018] [Indexed: 01/11/2023]
Abstract
Karyopherin β1 (Kpnβ1), also known as importin-β, is part of the karyopherin superfamily of nuclear transport proteins. Kpnβ1 is an oncogene that is overexpressed in various human cancers. Recent studies have showed that Kpnβ1 is one of the leading causes of cancer-related deaths in the world. However, the role of Kpnβ1 in non-small cell lung cancer (NSCLC) remains uncertain. In this study, we used western blotting to show that Kpnβ1 expression is higher in lung-cancer tissues and cells, and immunohistochemistry analysis revealed that Kpnβ1 was significantly associated with the clinicopathological features of NSCLC. Kaplan-Meier analysis showed that elevated Kpnβ1 expression correlated with a poor prognosis in NSCLC patients. Serum starvation-refeeding experiments and Kpnβ1-shRNA transfection assays revealed that elevated Kpnβ1 expression promoted cell proliferation and reduced sensitivity to cis-diamminedichloroplatinum. Immunoprecipitation assays showed that Kpnβ1 interacts with PI3 K to activate the PI3-kinase/AKT pathway, leading to enhanced cell survival and drug resistance in NSCLC cells. Collectively, our findings suggest that Kpnβ1 plays a significant role in NSCLC progression and chemoresistance. Our study provides new insights for targeted therapy to treat NSCLC.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Respiratory, Affiliated Hospital of Nantong University, Nantong, China
| | - Danping Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chunsun Li
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, China
| | - Xingsong Zhang
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, China
| | - Xiaolin Zhou
- Department of Respiratory, The Second People's Hospital of NanTong, Nantong, China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
21
|
Zhou Z, Cheng Y, Jiang Y, Liu S, Zhang M, Liu J, Zhao Q. Ten hub genes associated with progression and prognosis of pancreatic carcinoma identified by co-expression analysis. Int J Biol Sci 2018; 14:124-136. [PMID: 29483831 PMCID: PMC5821034 DOI: 10.7150/ijbs.22619] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022] Open
Abstract
Since the five-year survival rate is less than 5%, pancreatic ductal adenocarcinoma (PDAC) remains the 4th cause of cancer-related death. Although PDAC has been repeatedly researched in recent years, it is still predicted to be the second leading cause of cancer death by year 2030. In our study, the differentially expressed genes in dataset GSE62452 were used to construct a co-expression network by WGCNA. The yellow module related to grade of PDAC was screened. Combined with co-expression network and PPI network, 36 candidates were screened. After survival and regression analysis by using GSE62452 and TCGA dataset, we identified 10 real hub genes (CCNA2, CCNB1, CENPF, DLGAP5, KIF14, KIF23, NEK2, RACGAP1, TPX2 and UBE2C) tightly related to progression of PDAC. According to Oncomine database and The Human Protein Atlas (HPA), we found that all real hub genes were overexpressed in pancreatic carcinoma compared with normal tissues on transcriptional and translational level. ROC curve was plotted and AUC was calculated to distinguish recurrent and non-recurrent PDAC and every AUC of the real hub gene was greater than 0.5. Finally, functional enrichment analysis and gene set enrichment (GSEA) was performed and both of them showed the cell cycle played a vital role in PDAC.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University
| | - Yian Cheng
- Department of Gastroenterology, Renming Hospital of Wuhan University
| | - Yinan Jiang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University
| | - Shi Liu
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University
| | - Meng Zhang
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University
| | - Jing Liu
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University
| | - Qiu Zhao
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University
| |
Collapse
|
22
|
Sheng C, Qiu J, He Z, Wang H, Wang Q, Guo Z, Zhu L, Ni Q. Suppression of Kpnβ1 expression inhibits human breast cancer cell proliferation by abrogating nuclear transport of Her2. Oncol Rep 2017; 39:554-564. [PMID: 29251332 PMCID: PMC5783623 DOI: 10.3892/or.2017.6151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Breast cancer (BC) is one of the most fatal diseases and poses critical health problems worldwide. However, its mechanisms remain unclear. Consequently, there is an urgency to investigate the mechanisms involved in BC initiation and progression and identify novel therapeutics for its prevention and treatment. In this study, we identified karyopherin β-1 (Kpnβ1) as a possible novel therapeutic target for BC. Western blotting was used to evaluate the expression of Kpnβ1 in four pairs of tumorous and adjacent non-tumorous tissues. The results revealed that the protein level of Kpnβ1 was higher in the cancer samples compared with those in the corresponding normal samples. Immunohistochemistry was performed on 140 BC cases and indicated that Kpnβ1 was significantly associated with clinical pathological variables. Kaplan-Meier curve revealed that high expression of Kpnβ1 was related to poor BC patient prognosis. A starvation and re-feeding assay was used to imitate the cell cycle using the SKBR-3 cell line, indicating that Kpnβ1 plays a critical role in cell proliferation. The Cell Counting Kit-8 assay revealed that SKBR-3 cells treated with Kpnβ1-siRNA (siKpnβ1) grew more slowly than the control cells, while flow cytometry revealed that low-Kpnβ1 expressing SKBR-3 cells exhibited increased BC cell apoptosis. Furthermore, the interaction between Kpnβ1 and Her2 was clearly observed by immunoprecipitation, indicating that Kpnβ1-knockdown abrogated nuclear transport of Her2. In summary, our findings revealed that Kpnβ1 is involved in the progression of BC and may be a useful therapeutic target.
Collapse
Affiliation(s)
- Chenyi Sheng
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Qiu
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zengya Guo
- Department of General Surgery, Tongzhou People's Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Lianxin Zhu
- Department of Surgical Oncology, Lu'an People's Hospital Tumor Center, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237000, P.R. China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
23
|
Sekimoto N, Suzuki Y, Sugano S. Decreased KPNB1 Expression is Induced by PLK1 Inhibition and Leads to Apoptosis in Lung Adenocarcinoma. J Cancer 2017; 8:4125-4140. [PMID: 29187890 PMCID: PMC5706017 DOI: 10.7150/jca.21802] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is a major cause of death worldwide, with lung adenocarcinoma being the most frequently diagnosed subtype in Japan. Finding the target of an anticancer drug can improve lung adenocarcinoma treatments. Polo-like kinase 1 (PLK1) is an essential mitotic kinase in mitotic progression, and PLK1 inhibition induces cell cycle arrest and apoptosis in tumor cells. In addition, a variety of PLK1 inhibitors have been identified for cancer treatments. In this study, we looked for the target gene of the anticancer drug that has synergy with PLK1 inhibitors. We identified karyopherin beta 1 (KPNB1) as a possible target for lung adenocarcinoma treatment. We found that PLK1 inhibition decreased KPNB1 expression in lung adenocarcinoma cells and KPNB1 depletion inhibited cell proliferation via apoptosis. The same apoptosis signaling pathway may be activated because the expression of common apoptosis-related genes was decreased by PLK1 and KPNB1 silencing; however, the time course of cell growth inhibition was somewhat different. Cell cycle analysis showed that KPNB1 depletion increased the proportion of cells at the G0/G1 phase, although cells also accumulated at the G2/M phase in PLK1-depleted cells. Our findings suggest that decreased KPNB1 expression may be associated with the apoptosis induced by PLK1 inhibition.
Collapse
Affiliation(s)
- Noboru Sekimoto
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
24
|
Stelma T, Chi A, van der Watt PJ, Verrico A, Lavia P, Leaner VD. Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential. IUBMB Life 2016; 68:268-80. [PMID: 26970212 DOI: 10.1002/iub.1484] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 01/10/2023]
Abstract
The Karyopherin superfamily is a major class of soluble transport receptors consisting of both import and export proteins. The trafficking of proteins involved in transcription, cell signalling and cell cycle regulation among other functions across the nuclear membrane is essential for normal cellular functioning. However, in cancer cells, the altered expression or localization of nuclear transporters as well as the disruption of endogenous nuclear transport inhibitors are some ways in which the Karyopherin proteins are dysregulated. The value of nuclear transporters in the diagnosis, prognosis and treatment of cancer is currently being elucidated with recent studies highlighting their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tamara Stelma
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alicia Chi
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pauline J van der Watt
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Annalisa Verrico
- Institute of Molecular Biology and Pathology, National Research Council of Italy, C/O University of Roma "La Sapienza", Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology, National Research Council of Italy, C/O University of Roma "La Sapienza", Rome, Italy
| | - Virna D Leaner
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
van der Watt PJ, Chi A, Stelma T, Stowell C, Strydom E, Carden S, Angus L, Hadley K, Lang D, Wei W, Birrer MJ, Trent JO, Leaner VD. Targeting the Nuclear Import Receptor Kpnβ1 as an Anticancer Therapeutic. Mol Cancer Ther 2016; 15:560-73. [PMID: 26832790 DOI: 10.1158/1535-7163.mct-15-0052] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/15/2016] [Indexed: 11/16/2022]
Abstract
Karyopherin beta 1 (Kpnβ1) is a nuclear transport receptor that imports cargoes into the nucleus. Recently, elevated Kpnβ1 expression was found in certain cancers and Kpnβ1 silencing with siRNA was shown to induce cancer cell death. This study aimed to identify novel small molecule inhibitors of Kpnβ1, and determine their anticancer activity. An in silico screen identified molecules that potentially bind Kpnβ1 and Inhibitor of Nuclear Import-43, INI-43 (3-(1H-benzimidazol-2-yl)-1-(3-dimethylaminopropyl)pyrrolo[5,4-b]quinoxalin-2-amine) was investigated further as it interfered with the nuclear localization of Kpnβ1 and known Kpnβ1 cargoes NFAT, NFκB, AP-1, and NFY and inhibited the proliferation of cancer cells of different tissue origins. Minimum effect on the proliferation of noncancer cells was observed at the concentration of INI-43 that showed a significant cytotoxic effect on various cervical and esophageal cancer cell lines. A rescue experiment confirmed that INI-43 exerted its cell killing effects, in part, by targeting Kpnβ1. INI-43 treatment elicited a G2-M cell-cycle arrest in cancer cells and induced the intrinsic apoptotic pathway. Intraperitoneal administration of INI-43 significantly inhibited the growth of subcutaneously xenografted esophageal and cervical tumor cells. We propose that Kpnβ1 inhibitors could have therapeutic potential for the treatment of cancer. Mol Cancer Ther; 15(4); 560-73. ©2016 AACR.
Collapse
Affiliation(s)
- Pauline J van der Watt
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alicia Chi
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tamara Stelma
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Catherine Stowell
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Erin Strydom
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Carden
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Liselotte Angus
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kate Hadley
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk Lang
- Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Wei Wei
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael J Birrer
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - John O Trent
- Department of Medicine, J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Virna D Leaner
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
26
|
Upregulation of nuclear transporter, Kpnβ1, contributes to accelerated cell proliferation- and cell adhesion-mediated drug resistance (CAM-DR) in diffuse large B-cell lymphoma. J Cancer Res Clin Oncol 2015; 142:561-72. [PMID: 26498772 DOI: 10.1007/s00432-015-2057-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND The Karyopherin proteins are involved in the shuttling of cargo proteins, and certain RNAs, across the nuclear pore complex into and out of the cell nucleus. Karyopherin β1 (Kpnβ1) is a member of the Karyopherin β superfamily of nuclear transport proteins. In addition to the nuclear import function, Kpnβ1 is associated with the occurrence of tumors. This study investigated the expression and biologic function of Kpnβ1 in diffuse large B-cell lymphoma (DLBCL). METHODS The prognostic value of Kpnβ1 expression was evaluated using immunohistochemical staining. The role of Kpnβ1 on cell proliferation- and cell adhesion-mediated drug resistance (CAM-DR) was also determined. RESULTS We demonstrated that Kpnβ1 mRNA and protein expression levels were significantly higher in DLBCL B-cells and DLBCL cell lines than in normal CD19 purified B-cells. Immunohistochemical analysis suggested that the expression of Kpnβ1 was correlated with Ki-67 (P < 0.001). Kaplan-Meier curve showed that high expression of Kpnβ1 was significantly associated with shorter overall survival. In addition, Kpnβ1 was associated with the proliferation of DLBCL cells. Importantly, we found that Kpnβ1 could interact with p65 and promote CAM-DR via accelerating NF-κB activation in DLBCL. CONCLUSIONS Patients with tumors highly expressing Kpnβ1 have poorer overall survivals. Kpnβ1 interacts with p65 and enhances CAM-DR.
Collapse
|
27
|
Yang L, Hu B, Zhang Y, Qiang S, Cai J, Huang W, Gong C, Zhang T, Zhang S, Xu P, Wu X, Liu J. Suppression of the nuclear transporter-KPNβ1 expression inhibits tumor proliferation in hepatocellular carcinoma. Med Oncol 2015; 32:128. [PMID: 25794490 DOI: 10.1007/s12032-015-0559-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/28/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the malignant tumors and leads to the highly death in the solid tumors, but its mechanism remains unclear. KPNβ1 is one of the soluble nuclear transport receptors, has been reported to act as an important role in the occurrence and development of tumor, such as cervical cancer, head and neck and lung cancer. However, the expression mechanisms and physiological significance of KPNβ1 in HCC is still unclear. AIM The expression of KPNβ1 and its involvement in HCC was studied. METHODS The expression of KPNβ1 protein was measured by Western blot and immunohistochemistry in HCC. We analyzed the effects of growth and interference of KPNβ1 in the cell cycle process by CCK8 and flow cytometrical analysis. RESULTS KPNβ1 protein level was up-regulated in HCC tissue samples. The KPNβ1 expression was significantly associated with histological differentiation. The levels of KPNβ1 were significantly correlated with histological grade (P = 0.03), metastasis (P = 0.01), vein invasion (P = 0.04) and tumor size (P = 0.01) in HCC samples. Serum starvation assay proved that KPNβ1 was arrested in G1 phase and was gradually reduced by refeeding serum. Moreover, the knockdown of KPNβ1 induced cell proliferation arrest in HepG2 cell. Western blot analyses showed that KPNβ1 was correlated with NF-кB signaling pathway. CONCLUSIONS Our datum showed that KPNβ1 expression was up-regulated in HCC tissue samples and increasing HCC cells growth and the KPNβ1 expression was associated with poor survival. KPNβ1 may take part in the pathogenesis of hepatocellular carcinoma via NF-кB signaling pathway and serve as an independent prognostic indicator and a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Hepatic Oncology, Nantong Tumor Hospital, Nantong, 226361, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|