1
|
Lewis MW, King CM, Wisniewska K, Regner MJ, Coffey A, Kelly MR, Mendez-Giraldez R, Davis ES, Phanstiel DH, Franco HL. CRISPR Screening of Transcribed Super-Enhancers Identifies Drivers of Triple-Negative Breast Cancer Progression. Cancer Res 2024; 84:3684-3700. [PMID: 39186674 PMCID: PMC11534545 DOI: 10.1158/0008-5472.can-23-3995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most therapeutically recalcitrant form of breast cancer, which is due in part to the paucity of targeted therapies. A systematic analysis of regulatory elements that extend beyond protein-coding genes could uncover avenues for therapeutic intervention. To this end, we analyzed the regulatory mechanisms of TNBC-specific transcriptional enhancers together with their noncoding enhancer RNA (eRNA) transcripts. The functions of the top 30 eRNA-producing super-enhancers were systematically probed using high-throughput CRISPR-interference assays coupled to RNA sequencing that enabled unbiased detection of target genes genome-wide. Generation of high-resolution Hi-C chromatin interaction maps enabled annotation of the direct target genes for each super-enhancer, which highlighted their proclivity for genes that portend worse clinical outcomes in patients with TNBC. Illustrating the utility of this dataset, deletion of an identified super-enhancer controlling the nearby PODXL gene or specific degradation of its eRNAs led to profound inhibitory effects on target gene expression, cell proliferation, and migration. Furthermore, loss of this super-enhancer suppressed tumor growth and metastasis in TNBC mouse xenograft models. Single-cell RNA sequencing and assay for transposase-accessible chromatin with high-throughput sequencing analyses demonstrated the enhanced activity of this super-enhancer within the malignant cells of TNBC tumor specimens compared with nonmalignant cell types. Collectively, this work examines several fundamental questions about how regulatory information encoded into eRNA-producing super-enhancers drives gene expression networks that underlie the biology of TNBC. Significance: Integrative analysis of eRNA-producing super-enhancers defines molecular mechanisms controlling global patterns of gene expression that regulate clinical outcomes in breast cancer, highlighting the potential of enhancers as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Michael W. Lewis
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caitlin M. King
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kamila Wisniewska
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew J. Regner
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alisha Coffey
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael R. Kelly
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Raul Mendez-Giraldez
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eric S. Davis
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Douglas H. Phanstiel
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hector L. Franco
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- The Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935
| |
Collapse
|
2
|
Liao W, Li Y, Liu T, Deng J, Liang H, Shen F. The activation of Piezo1 channel promotes invasion and migration via the release of extracellular ATP in cervical cancer. Pathol Res Pract 2024; 260:155426. [PMID: 38908334 DOI: 10.1016/j.prp.2024.155426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND The mechanosensitive ion channel Piezo1 has emerged as a potential prognostic and therapeutic target in different types of cancers. The aim of this study was to determine the expression levels and underlying mechanisms of Piezo1 in the invasion and migration processes in cervical cancer. METHODS Initially, we employed qRT-PCR, western blot, and immunohistochemical staining techniques to assess the disparity in Piezo1 expression in cervical cancer tissues and cells. Subsequently, we conducted wound healing, transwell assays and phalloidin staining to observe the effects of stable Piezo1 silencing and Piezo1 selective agonist Yoda1 on the invasion and migration capabilities. The release of extracellular ATP was assessed using the enhanced ATP assay kit. Furthermore, we conducted rescue experiments to investigate whether the activation of Piezo1 facilitates cervical cancer invasion and migration through extracellular ATP. Finally, we constructed xenograft tumor models to determine weather the Piezo1 selective agonist Yoda1 influenced the tumor growth in vivo. RESULTS In our study, we found that Piezo1 expression was elevated in both cervical cancer tissues and cells, with the highest levels observed in patients with lymph node metastasis. Knocking down Piezo1 resulted in a significant reduction in the invasion and migration capabilities of cervical cancer cells, whereas the use of the Piezo1 selective agonist Yoda1 enhanced these capabilities. Moreover, the activation of Piezo1 channels was found to regulate the release of extracellular ATP. Mechanistically, the activation of Piezo1 might facilitate cervical cancer invasion, migration, and pseudopodium formation through the release of extracellular ATP. And Piezo1 was an important molecule for the tumor growth of cervical cancer in vivo. CONCLUSION Our findings revealed that Piezo1 facilitated the invasion and migration of cervical cancer by releasing extracellular ATP, which might hold potential as a valuable target for prognostic and therapeutic interventions in cervical cancer.
Collapse
Affiliation(s)
- Wenxin Liao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juexiao Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hua Liang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fujin Shen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Huang Q, Zhang R, Xia Y, Shen J, Dong H, Li X, Tao D, Xie D, Liu L. DAB2IP suppresses invadopodia formation through destabilizing ALK by interacting with USP10 in breast cancer. iScience 2023; 26:107606. [PMID: 37664607 PMCID: PMC10470318 DOI: 10.1016/j.isci.2023.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/26/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Invadopodia, being actin-rich membrane protrusions, play a vital role in tumor cell invasion and metastasis. Our previous studies have revealed some functions of the DOC-2/DAB2 interacting protein (DAB2IP) as a tumor suppressor. Nevertheless, the specific role and mechanism of DAB2IP in invadopodia formation remain unclear. Here, we find that DAB2IP effectively suppresses invadopodia formation and metastasis in breast cancer, both in vitro and in vivo. Additionally, DAB2IP could downregulate anaplastic lymphoma kinase (ALK), resulting in the inhibition of tyrosine phosphorylation of Cortactin and the prevention of invadopodia formation. DAB2IP competitively antagonizes the interaction between the deubiquitinating enzyme Ubiquitin-specific peptidase 10 (USP10) and ALK, leading to a decrease in the abundance of ALK protein. In summary, DAB2IP impairs the stability of ALK through USP10-dependent deubiquitination, suppressing Cortactin phosphorylation, thereby inhibiting invadopodia formation and metastasis of breast cancer cells. Furthermore, this study suggests a potential therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Qingwen Huang
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Rui Zhang
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Yun Xia
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jie Shen
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Hongliang Dong
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xiaolan Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Deding Tao
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Daxing Xie
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Liang Liu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
4
|
Whitehead CA, Fang H, Su H, Morokoff AP, Kaye AH, Hanssen E, Nowell CJ, Drummond KJ, Greening DW, Vella LJ, Mantamadiotis T, Stylli SS. Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner. Cell Oncol (Dordr) 2023; 46:909-931. [PMID: 37014551 PMCID: PMC10356899 DOI: 10.1007/s13402-023-00786-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/05/2023] Open
Abstract
PURPOSE The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell-cell communication. METHODS Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. RESULTS We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. CONCLUSIONS Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Huaqi Su
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia
| | - Andrew H Kaye
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Eric Hanssen
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Microscopy Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Katharine J Drummond
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Laura J Vella
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia.
| |
Collapse
|
5
|
Román-Fernández A, Mansour MA, Kugeratski FG, Anand J, Sandilands E, Galbraith L, Rakovic K, Freckmann EC, Cumming EM, Park J, Nikolatou K, Lilla S, Shaw R, Strachan D, Mason S, Patel R, McGarry L, Katoch A, Campbell KJ, Nixon C, Miller CJ, Leung HY, Le Quesne J, Norman JC, Zanivan S, Blyth K, Bryant DM. Spatial regulation of the glycocalyx component podocalyxin is a switch for prometastatic function. SCIENCE ADVANCES 2023; 9:eabq1858. [PMID: 36735782 PMCID: PMC9897673 DOI: 10.1126/sciadv.abq1858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The glycocalyx component and sialomucin podocalyxin (PODXL) is required for normal tissue development by promoting apical membranes to form between cells, triggering lumen formation. Elevated PODXL expression is also associated with metastasis and poor clinical outcome in multiple tumor types. How PODXL presents this duality in effect remains unknown. We identify an unexpected function of PODXL as a decoy receptor for galectin-3 (GAL3), whereby the PODXL-GAL3 interaction releases GAL3 repression of integrin-based invasion. Differential cortical targeting of PODXL, regulated by ubiquitination, is the molecular mechanism controlling alternate fates. Both PODXL high and low surface levels occur in parallel subpopulations within cancer cells. Orthotopic intraprostatic xenograft of PODXL-manipulated cells or those with different surface levels of PODXL define that this axis controls metastasis in vivo. Clinically, interplay between PODXL-GAL3 stratifies prostate cancer patients with poor outcome. Our studies define the molecular mechanisms and context in which PODXL promotes invasion and metastasis.
Collapse
Affiliation(s)
- Alvaro Román-Fernández
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Mohammed A. Mansour
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London SE1 0AA, UK
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Fernanda G. Kugeratski
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Houston, TX 77054, USA
| | | | - Emma Sandilands
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Kai Rakovic
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Eva C. Freckmann
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Erin M. Cumming
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Ji Park
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Konstantina Nikolatou
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Robin Shaw
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Susan Mason
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | | | - Archana Katoch
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Colin Nixon
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Crispin J. Miller
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Hing Y. Leung
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - John Le Quesne
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - James C. Norman
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Sara Zanivan
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - David M. Bryant
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| |
Collapse
|
6
|
Chen W, Huang W, Pather SR, Chang W, Sung L, Wu H, Liao M, Lee C, Wu H, Wu C, Liao K, Lin C, Yang S, Lin H, Lai P, Ng C, Hu C, Chen I, Chuang C, Lai C, Lin P, Lee Y, Schuyler SC, Schambach A, Lu FL, Lu J. Podocalyxin-Like Protein 1 Regulates Pluripotency through the Cholesterol Biosynthesis Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205451. [PMID: 36373710 PMCID: PMC9811443 DOI: 10.1002/advs.202205451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Deciphering signaling mechanisms critical for the extended pluripotent stem cell (EPSC) state and primed pluripotency is necessary for understanding embryonic development. Here, a membrane protein, podocalyxin-like protein 1 (PODXL) as being essential for extended and primed pluripotency, is identified. Alteration of PODXL expression levels affects self-renewal, protein expression of c-MYC and telomerase, and induced pluripotent stem cell (iPSC) and EPSC colony formation. PODXL is the first membrane protein reported to regulate de novo cholesterol biosynthesis, and human pluripotent stem cells (hPSCs) are more sensitive to cholesterol depletion than fibroblasts. The addition of exogenous cholesterol fully restores PODXL knockdown-mediated loss of pluripotency. PODXL affects lipid raft dynamics via the regulation of cholesterol. PODXL recruits the RAC1/CDC42/actin network to regulate SREBP1 and SREBP2 maturation and lipid raft dynamics. Single-cell RNA sequencing reveals PODXL overexpression enhanced chimerism between human cells in mouse host embryos (hEPSCs 57%). Interestingly, in the human-mouse chimeras, laminin and collagen signaling-related pathways are dominant in PODXL overexpressing cells. It is concluded that cholesterol regulation via PODXL signaling is critical for ESC/EPSC.
Collapse
Affiliation(s)
- Wei‐Ju Chen
- Genomics Research CenterAcademia SinicaGenome and Systems Biology Degree ProgramCollege of Life ScienceNational Taiwan UniversityTaipei10617Taiwan
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Wei‐Kai Huang
- Center for Genomic MedicineMassachusetts General HospitalBostonMA02114USA
| | - Sarshan R. Pather
- Cell and Molecular Biology Graduate GroupPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Wei‐Fang Chang
- Institute of BiotechnologyNational Taiwan UniversityTaipei10617Taiwan
| | - Li‐Ying Sung
- Institute of BiotechnologyNational Taiwan UniversityTaipei10617Taiwan
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Animal Resource CenterNational Taiwan UniversityTaipei10617Taiwan
| | - Han‐Chung Wu
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei11529Taiwan
- Biomedical Translation Research Center (BioTReC)Academia SinicaTaipei11529Taiwan
| | - Mei‐Ying Liao
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei11529Taiwan
| | - Chi‐Chiu Lee
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei11529Taiwan
| | - Hsuan‐Hui Wu
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei11529Taiwan
| | - Chung‐Yi Wu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | | | - Chun‐Yu Lin
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | | | - Hsuan Lin
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Pei‐Lun Lai
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Chi‐Hou Ng
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Chun‐Mei Hu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - I‐Chih Chen
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | | | - Chien‐Ying Lai
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Po‐Yu Lin
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Yueh‐Chang Lee
- Department of OphthalmologyHualien Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationHualien97004Taiwan
| | - Scott C. Schuyler
- Department of Biomedical SciencesCollege of MedicineChang Gung UniversityDivision of Head and Neck SurgeryDepartment of OtolaryngologyChang Gung Memorial HospitalTaoyuan33302Taiwan
| | - Axel Schambach
- Institute of Experimental HematologyHannover Medical School30625HannoverGermany
| | - Frank Leigh Lu
- Department of PediatricsNational Taiwan University Hospital and National Taiwan University Medical CollegeTaipei10051Taiwan
| | - Jean Lu
- Genomics Research CenterAcademia SinicaGenome and Systems Biology Degree ProgramCollege of Life ScienceNational Taiwan UniversityTaipei10617Taiwan
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- National RNAi Platform/ National Core Facility Program for BiotechnologyTaipei11529Taiwan
- Department of Life ScienceTzu Chi UniversityHualien97004Taiwan
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipei11490Taiwan
| |
Collapse
|
7
|
Amo L, Díez-García J, Tamayo-Orbegozo E, Maruri N, Larrucea S. Podocalyxin Expressed in Antigen Presenting Cells Promotes Interaction With T Cells and Alters Centrosome Translocation to the Contact Site. Front Immunol 2022; 13:835527. [PMID: 35711462 PMCID: PMC9197222 DOI: 10.3389/fimmu.2022.835527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Podocalyxin (PODXL), a cell surface sialomucin expressed in diverse types of normal and malignant cells, mediates cellular adhesion to extracellular matrix and cell-to-cell interaction. A previous study reported the expression of PODXL protein on monocytes undergoing macrophage differentiation, yet the expression of this molecule in other antigen presenting cells (APCs) and its function in the immune system still remain undetermined. In this study, we report that PODXL is expressed in human monocyte-derived immature dendritic cells at both the mRNA and protein levels. Following dendritric cells maturation using pro-inflammatory stimuli, PODXL expression level decreased substantially. Furthermore, we found that PODXL expression is positively regulated by IL-4 through MEK/ERK and JAK3/STAT6 signaling pathways. Our results revealed a polarized distribution of PODXL during the interaction of APCs with CD4+ T cells, partially colocalizing with F-actin. Notably, PODXL overexpression in APCs promoted their interaction with CD4+ T cells and CD8+ T cells and decreased the expression of MHC-I, MHC-II, and the costimulatory molecule CD86. In addition, PODXL reduced the translocation of CD4+ T-cell centrosome toward the APC-contact site. These findings suggest a regulatory role for PODXL expressed by APCs in immune responses, thus representing a potential target for therapeutic blockade in infection and cancer.
Collapse
Affiliation(s)
- Laura Amo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Javier Díez-García
- Microscopy Facility, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Estíbaliz Tamayo-Orbegozo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Natalia Maruri
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Susana Larrucea
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- *Correspondence: Susana Larrucea,
| |
Collapse
|
8
|
Abstract
Glycosaminoglycans (GAGs) are an important component of the tumor microenvironment (TME). GAGs can interact with a variety of binding partners and thereby influence cancer progression on multiple levels. GAGs can modulate growth factor and chemokine signaling, invasion and metastasis formation. Moreover, GAGs are able to change the physical property of the extracellular matrix (ECM). Abnormalities in GAG abundance and structure (e.g., sulfation patterns and molecular weight) are found across various cancer types and show biomarker potential. Targeting GAGs, as well as the usage of GAGs and their mimetics, are promising approaches to interfere with cancer progression. In addition, GAGs can be used as drug and cytokine carriers to induce an anti-tumor response. In this review, we summarize the role of GAGs in cancer and the potential use of GAGs and GAG derivatives to target cancer.
Collapse
Affiliation(s)
- Ronja Wieboldt
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, Department of Theragnostics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
CIP4 targeted to recruit GTP-Cdc42 involving in invadopodia formation via NF-κB signaling pathway promotes invasion and metastasis of CRC. Mol Ther Oncolytics 2022; 24:873-886. [PMID: 35317515 PMCID: PMC8924540 DOI: 10.1016/j.omto.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family, which plays an important role in regulating cell membrane and actin, has been reported to interact with Cdc42 and be closely associated with tumor invadopodia formation. In this study, we found that CIP4 expression was significantly higher in human CRC tissues and correlated with the CRC infiltrating depth and metastasis, as well as the lower survival rate in patients. In cultured CRC cells, knockdown of CIP4 inhibited cell migration and invasion ability in vitro and tumor metastasis in vivo, while the overexpression of CIP4 promoted invadopodia formation and matrix degradation ability. We then identified GTP-Cdc42 as a directly interactive protein of CIP4, which was upregulated and recruited by CIP4. Furthermore, activated NF-κB signaling pathway was found in CIP4 overexpression of CRC cells contributing to invadopodia formation, while the inhibition of either CIP4 or Cdc42 led to the suppression of the NF-κB pathway and resulted in a decreased quantity of invadopodia. Our findings suggested that CIP4 targets to recruit GTP-Cdc42 and directly combines with it to accelerate invadopodia formation and function by activating NF-κB signaling pathway, thus promoting CRC infiltration and metastasis.
Collapse
|
10
|
Podocalyxin in Normal Tissue and Epithelial Cancer. Cancers (Basel) 2021; 13:cancers13122863. [PMID: 34201212 PMCID: PMC8227556 DOI: 10.3390/cancers13122863] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Podocalyxin (PODXL), a glycosylated cell surface sialomucin of the CD34 family, is normally expressed in kidney podocytes, vascular endothelial cells, hematopoietic progenitors, mesothelium, as well as a subset of neurons. In the kidney, PODXL functions primarily as an antiadhesive molecule in podocyte epithelial cells, regulating adhesion and cell morphology, and playing an essential role in the development and function of the organ. Outside the kidney, PODXL plays subtle roles in tissue remodelling and development. Furthermore, many cancers, especially those that originated from the epithelium, have been reported to overexpress PODXL. Collective evidence suggests that PODXL overexpression is linked to poor prognosis, more aggressive tumour progression, unfavourable treatment outcomes, and possibly chemoresistance. This review summarises our current knowledge of PODXL in normal tissue function and epithelial cancer, with a particular focus on its underlying roles in cancer metastasis, likely involvement in chemoresistance, and potential use as a diagnostic and prognostic biomarker.
Collapse
|
11
|
Matarrese P, Vona R, Ascione B, Paggi MG, Mileo AM. Physical Interaction between HPV16E7 and the Actin-Binding Protein Gelsolin Regulates Epithelial-Mesenchymal Transition via HIPPO-YAP Axis. Cancers (Basel) 2021; 13:cancers13020353. [PMID: 33477952 PMCID: PMC7836002 DOI: 10.3390/cancers13020353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus 16 (HPV16) exhibits a strong oncogenic potential mainly in cervical, anogenital and oropharyngeal cancers. The E6 and E7 viral oncoproteins, acting via specific interactions with host cellular targets, are required for cell transformation and maintenance of the transformed phenotype as well. We previously demonstrated that HPV16E7 interacts with the actin-binding protein gelsolin, involved in cytoskeletal F-actin dynamics. Herein, we provide evidence that the E7/gelsolin interaction promotes the cytoskeleton rearrangement leading to epithelial-mesenchymal transition-linked morphological and transcriptional changes. E7-mediated cytoskeletal actin remodeling induces the HIPPO pathway by promoting the cytoplasmic retention of inactive P-YAP. These results suggest that YAP could play a role in the "de-differentiation" process underlying the acquisition of a more aggressive phenotype in HPV16-transformed cells. A deeper comprehension of the multifaceted mechanisms elicited by the HPV infection is vital for providing novel strategies to block the biological and clinical features of virus-related cancers.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Rosa Vona
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Barbara Ascione
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Marco G. Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS—Regina Elena National Cancer Institute Rome, 00144 Rome, Italy
- Correspondence: (M.G.P.); (A.M.M.); Tel.: +39-0652662550 (M.G.P. & A.M.M.)
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS—Regina Elena National Cancer Institute Rome, 00144 Rome, Italy
- Correspondence: (M.G.P.); (A.M.M.); Tel.: +39-0652662550 (M.G.P. & A.M.M.)
| |
Collapse
|
12
|
Masi I, Caprara V, Bagnato A, Rosanò L. Tumor Cellular and Microenvironmental Cues Controlling Invadopodia Formation. Front Cell Dev Biol 2020; 8:584181. [PMID: 33178698 PMCID: PMC7593604 DOI: 10.3389/fcell.2020.584181] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
During the metastatic progression, invading cells might achieve degradation and subsequent invasion into the extracellular matrix (ECM) and the underlying vasculature using invadopodia, F-actin-based and force-supporting protrusive membrane structures, operating focalized proteolysis. Their formation is a dynamic process requiring the combined and synergistic activity of ECM-modifying proteins with cellular receptors, and the interplay with factors from the tumor microenvironment (TME). Significant advances have been made in understanding how invadopodia are assembled and how they progress in degradative protrusions, as well as their disassembly, and the cooperation between cellular signals and ECM conditions governing invadopodia formation and activity, holding promise to translation into the identification of molecular targets for therapeutic interventions. These findings have revealed the existence of biochemical and mechanical interactions not only between the actin cores of invadopodia and specific intracellular structures, including the cell nucleus, the microtubular network, and vesicular trafficking players, but also with elements of the TME, such as stromal cells, ECM components, mechanical forces, and metabolic conditions. These interactions reflect the complexity and intricate regulation of invadopodia and suggest that many aspects of their formation and function remain to be determined. In this review, we will provide a brief description of invadopodia and tackle the most recent findings on their regulation by cellular signaling as well as by inputs from the TME. The identification and interplay between these inputs will offer a deeper mechanistic understanding of cell invasion during the metastatic process and will help the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ilenia Masi
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| |
Collapse
|
13
|
Jiang H, Chen H, Chen N. Construction and validation of a seven-gene signature for predicting overall survival in patients with kidney renal clear cell carcinoma via an integrated bioinformatics analysis. Anim Cells Syst (Seoul) 2020; 24:160-170. [PMID: 33209196 PMCID: PMC7651852 DOI: 10.1080/19768354.2020.1760932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/05/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) remains a significant challenge worldwide because of its poor prognosis and high mortality rate, and accurate prognostic gene signatures are urgently required for individual therapy. This study aimed to construct and validate a seven-gene signature for predicting overall survival (OS) in patients with KIRC. The mRNA expression profile and clinical data of patients with KIRC were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). Prognosis-associated genes were identified, and a prognostic gene signature was constructed. Then, the prognostic efficiency of the gene signature was assessed. The results obtained using data from the TCGA were validated using those from the ICGC and other online databases. Gene set enrichment analyses (GSEA) were performed to explore potential molecular mechanisms. A seven-gene signature (PODXL, SLC16A12, ZIC2, ATP2B3, KRT75, C20orf141, and CHGA) was constructed, and it was found to be effective in classifying KIRC patients into high- and low-risk groups, with significantly different survival based on the TCGA and ICGC validation data set. Cox regression analysis revealed that the seven-gene signature had an independent prognostic value. Then, we established a nomogram, including the seven-gene signature, which had a significant clinical net benefit. Interestingly, the seven-gene signature had a good performance in distinguishing KIRC from normal tissues. GSEA revealed that several oncological signatures and GO terms were enriched. This study developed a novel seven-gene signature and nomogram for predicting the OS of patients with KIRC, which may be helpful for clinicians in establishing individualized treatments.
Collapse
Affiliation(s)
- Huiming Jiang
- Department of Urology, Meizhou People’s Hospital (Huangtang Hospital), Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People’s Republic of China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Nanhui Chen
- Department of Urology, Meizhou People’s Hospital (Huangtang Hospital), Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People’s Republic of China
- Nanhui Chen Department of Urology, Meizhou People’s Hospital (Huangtang Hospital), Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, No. 63, Huang Tang Road, Meizhou, Guangdong Province514031, P.R. China
| |
Collapse
|
14
|
Ma LL, Guo LL, Luo Y, Liu GL, Lei Y, Jing FY, Zhang YL, Tong GH, Jing ZL, Shen L, Tang MS, Ding YQ, Deng YJ. Cdc42 subcellular relocation in response to VEGF/NRP1 engagement is associated with the poor prognosis of colorectal cancer. Cell Death Dis 2020; 11:171. [PMID: 32139668 PMCID: PMC7058620 DOI: 10.1038/s41419-020-2370-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Microscopic indications of malignancy and hallmark molecules of cancer are pivotal to determining cancer patient prognosis and subsequent medical intervention. Here, we found that compared to apical expression of Cdc42, which indicated that basal expression of Cdc42 occurred at the migrating cell front, glandular basal expression of Cdc42 (cell division cycle 42) in tissues indicated poorer prognoses for colorectal cancer (CRC) patients. The current study shows that activated Cdc42 was rapidly recruited to the migrating CRC cell front after VEGF stimulation through engagement of membrane-anchored neuropilin-1 (NRP1). When VEGF signalling was blocked with NRP1 knockdown or ATWLPPR (A7R, antagonist of VEGF/NRP1 interaction), Cdc42 activation and relocation to the cell front was attenuated, and filopodia and invadopodia formation was inhibited. The VEGF/NRP1 axis regulates directional migration, invasion, and metastasis through Cdc42 activation and relocation resulting from actin filament polymerisation of the extensions of membrane protrusions. Collectively, the immuno-micromorphological pattern of subcellular Cdc42 at the cell front indicated aggressive behaviours and predicted poor prognosis in CRC patients. Disruption of the intra- and extracellular interactions of the VEGF/NRP1 axis or Cdc42 relocation could be performed in clinical practice because it might inhibit cancer cell motility and metastasis.
Collapse
Affiliation(s)
- Li-Li Ma
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
- Department of Pathology, Guang dong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510515, Guangzhou, China
| | - Li-Li Guo
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
- Department of Pathology, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, 471000, Luoyang, Henan Province, China
| | - Yang Luo
- Department of Urinary Surgery, the Fifth Affiliated Hospital of Southern Medical University, 510900, Guangzhou, China
| | - Guang-Long Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
| | - Yan Lei
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
| | - Fang-Yan Jing
- Department of Anorectal Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yun-Li Zhang
- Department of Oncology, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Gui-Hui Tong
- Department of Pathology, General Hospital of Southern military Command, 510010, Guangzhou, China
| | - Zhi-Liang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
| | - Lan Shen
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
| | - Min-Shan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China.
| | - Yong-Jian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China.
| |
Collapse
|
15
|
Tamayo-Orbegozo E, Amo L, Díez-García J, Amutio E, Riñón M, Alonso M, Arana P, Maruri N, Larrucea S. Emerging Role of Podocalyxin in the Progression of Mature B-Cell Non-Hodgkin Lymphoma. Cancers (Basel) 2020; 12:cancers12020396. [PMID: 32046309 PMCID: PMC7072361 DOI: 10.3390/cancers12020396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mature B-cell non-Hodgkin lymphoma (B-NHL) constitutes a group of heterogeneous malignant lymphoproliferative diseases ranging from indolent to highly aggressive forms. Although the survival after chemo-immunotherapy treatment of mature B-NHL has increased over the last years, many patients relapse or remain refractory due to drug resistance, presenting an unfavorable prognosis. Hence, there is an urgent need to identify new prognostic markers and therapeutic targets. Podocalyxin (PODXL), a sialomucin overexpressed in a variety of tumor cell types and associated with their aggressiveness, has been implicated in multiple aspects of cancer progression, although its participation in hematological malignancies remains unexplored. New evidence points to a role for PODXL in mature B-NHL cell proliferation, survival, migration, drug resistance, and metabolic reprogramming, as well as enhanced levels of PODXL in mature B-NHL. Here, we review the current knowledge on the contribution of PODXL to tumorigenesis, highlighting and discussing its role in mature B-NHL progression.
Collapse
Affiliation(s)
- Estíbaliz Tamayo-Orbegozo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (E.T.-O.); (L.A.)
| | - Laura Amo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (E.T.-O.); (L.A.)
| | - Javier Díez-García
- Microscopy Facility, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain;
| | - Elena Amutio
- Blood Cancer Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain;
| | - Marta Riñón
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Marta Alonso
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Paula Arana
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Natalia Maruri
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Susana Larrucea
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
- Correspondence:
| |
Collapse
|
16
|
Fröse J, Chen MB, Hebron KE, Reinhardt F, Hajal C, Zijlstra A, Kamm RD, Weinberg RA. Epithelial-Mesenchymal Transition Induces Podocalyxin to Promote Extravasation via Ezrin Signaling. Cell Rep 2020; 24:962-972. [PMID: 30044991 PMCID: PMC6181240 DOI: 10.1016/j.celrep.2018.06.092] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/29/2018] [Accepted: 06/21/2018] [Indexed: 01/19/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) endows carcinoma cells with traits needed to complete many of the steps leading to metastasis formation, but its contributions specifically to the late step of extravasation remain understudied. We find that breast cancer cells that have undergone an EMT extravasate more efficiently from blood vessels both in vitro and in vivo. Analysis of gene expression changes associated with the EMT program led to the identification of an EMT-induced cell-surface protein, podocalyxin (PODXL), as a key mediator of extravasation in mesenchymal breast and pancreatic carcinoma cells. PODXL promotes extravasation through direct interaction of its intracellular domain with the cytoskeletal linker protein ezrin. Ezrin proceeds to establish dorsal cortical polarity, enabling the transition of cancer cells from a non-polarized, rounded cell morphology to an invasive extravasation-competent shape. Hence, the EMT program can directly enhance the efficiency of extravasation and subsequent metastasis formation through a PODXL-ezrin signaling axis.
Collapse
Affiliation(s)
- Julia Fröse
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Michelle B Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katie E Hebron
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andries Zijlstra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Ludwig/MIT Center for Molecular Oncology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Lin YY, Wang CY, Phan NN, Chiao CC, Li CY, Sun Z, Hung JH, Chen YL, Yen MC, Weng TY, Hsu HP, Lai MD. PODXL2 maintains cellular stemness and promotes breast cancer development through the Rac1/Akt pathway. Int J Med Sci 2020; 17:1639-1651. [PMID: 32669966 PMCID: PMC7359396 DOI: 10.7150/ijms.46125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
The cluster of differentiation 34 (CD34) family, which includes CD34, podocalyxin-like protein 1 (PODXL), and PODXL2, are type-I transmembrane sialomucins and markers of hematopoietic stem cells (HSCs) and vascular-associated tissues. CD34 family proteins are expressed by endothelial cells and hematopoietic precursors. PODXL is well known to be associated with invadopodia formation and to promote the epithelial-mesenchymal transition, tumor migration and invasion. PODXL expression was correlated with poor survival of cancer patients. However, the role of PODXL2 in cancer has been less fully explored. To reveal the novel role of PODXL2 in breast cancer, the present study evaluated PODXL2 levels in relation to clinical outcomes of cancer patients by performing a bioinformatics analysis using the Oncomine database, Kaplan-Meier plots, and the CCLE database. Empirical validation of bioinformatics predictions was conducted utilizing the short hairpin (sh)-RNA silencing method for PODXL2 in the BT474 invasive ductal breast carcinoma cell line. The bioinformatics analysis revealed that PODXL2 overexpression was correlated with poor survival of breast cancer patients, suggesting an oncogenic role of PODXL2 in breast carcinoma. In a validation experiment, knockdown of PODXL2 in BT474 cells slightly influenced cell proliferation, suppressed migration, and inhibited expressions of downstream molecules, including Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphorylated (p)-Akt (S473), and p-paxillin (Y31) proteins. In addition, knockdown of PODXL2 reduced expression levels of cancer stem cell (CSC) markers, including Oct-4 and Nanog, and the breast CSC marker aldehyde dehydrogenase 1 (ALDH1). Collectively, our present study demonstrated that PODXL2 plays a crucial role in cancer development and could serve as a potential prognostic biomarker in breast cancer patients.
Collapse
Affiliation(s)
- Yi-Yi Lin
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chung-Yen Li
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zhengda Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
18
|
Saito K, Iioka H, Maruyama S, Sumardika IW, Sakaguchi M, Kondo E. PODXL1 promotes metastasis of the pancreatic ductal adenocarcinoma by activating the C5aR/C5a axis from the tumor microenvironment. Neoplasia 2019; 21:1121-1132. [PMID: 31759250 PMCID: PMC6872781 DOI: 10.1016/j.neo.2019.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic invasive ductal adenocarcinoma (PDAC) is a representative intractable malignancy under the current cancer therapies, and is considered a scirrhous carcinoma because it develops dense stroma. Both PODXL1, a member of CD34 family molecules, and C5aR, a critical cell motility inducer, have gained recent attention, as their expression was reported to correlate with poor prognosis for patients with diverse origins including PDAC; however, previous studies reported independently on their respective biological significance. Here we demonstrate that PODXL1 is essential for metastasis of PDAC cells through its specific interaction with C5aR. In vitro assay demonstrated that PODXL1 bound to C5aR, which stabilized C5aR protein and recruited it to cancer cell plasma membranes to receive C5a, an inflammatory chemoattractant factor. PODXL1 knockout in PDAC cells abrogated their metastatic property in vivo, emulating the liver metastatic mouse model treated with anti-C5a neutralizing antibody. In molecular studies, PODXL1 triggered EMT on PDAC cells in response to stimulation by C5a, corroborating PODXL1 involvement in PDAC cellular invasive properties via specific interaction with the C5aR/C5a axis. Confirming the molecular assays, histological examination showed coexpression of PODXL1 and C5aR at the invasive front of primary cancer nests as well as in liver metastatic foci of PDAC both in the mouse metastasis model and patient tissues. Hence, the novel direct interaction between PODXL1 and the C5aR/C5a axis may provide a better integrated understanding of PDAC biological characteristics including its tumor microenvironment factors.
Collapse
Key Words
- podxl1, podocalyxin-like 1
- pdac, pancreatic invasive ductal adenocarcinoma
- c5ar, complement component 5a receptor 1 (c5ar1, cd88)
- caf, cancer-associated fibroblast
- emt, epithelial-mesenchymal transition
- ips, induced pluripotent stem
- itgb1, integrin β1
- wt, wild type
- ko, knockout
- ihc, immunohistochemistry
- ib, immunoblot
- ip, immunoprecipitation
- if, immunofluorescence
- hpne, human immortalized pancreatic ductal epithelium
- nhdf, normal human dermal fibroblast
- mmp, matrix metalloproteinases
- ab, antibody
Collapse
Affiliation(s)
- Ken Saito
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757 Ichibancho, Asahimachi-dori, Chuo Ward, Niigata City 951-8510, Japan
| | - Hidekazu Iioka
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757 Ichibancho, Asahimachi-dori, Chuo Ward, Niigata City 951-8510, Japan
| | - Satoshi Maruyama
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, 2-5274 Gakkoucho-dori, Chuo Ward, Niigata City 951-8514, Japan
| | - I Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757 Ichibancho, Asahimachi-dori, Chuo Ward, Niigata City 951-8510, Japan.
| |
Collapse
|
19
|
Ubiquitination and Long Non-coding RNAs Regulate Actin Cytoskeleton Regulators in Cancer Progression. Int J Mol Sci 2019; 20:ijms20122997. [PMID: 31248165 PMCID: PMC6627692 DOI: 10.3390/ijms20122997] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Actin filaments are a major component of the cytoskeleton in eukaryotic cells and play an important role in cancer metastasis. Dynamics and reorganization of actin filaments are regulated by numerous regulators, including Rho GTPases, PAKs (p21-activated kinases), ROCKs (Rho-associated coiled-coil containing kinases), LIMKs (LIM domain kinases), and SSH1 (slingshot family protein phosphate 1). Ubiquitination, as a ubiquitous post-transcriptional modification, deceases protein levels of actin cytoskeleton regulatory factors and thereby modulates the actin cytoskeleton. There is increasing evidence showing cytoskeleton regulation by long noncoding RNAs (lncRNAs) in cancer metastasis. However, which E3 ligases are activated for the ubiquitination of actin-cytoskeleton regulators involved in tumor metastasis remains to be fully elucidated. Moreover, it is not clear how lncRNAs influence the expression of actin cytoskeleton regulators. Here, we summarize physiological and pathological mechanisms of lncRNAs and ubiquitination control mediators of actin cytoskeleton regulators which that are involved in tumorigenesis and tumor progression. Finally, we briefly discuss crosstalk between ubiquitination and lncRNA control mediators of actin-cytoskeleton regulators in cancer.
Collapse
|
20
|
Wong BS, Shea DJ, Mistriotis P, Tuntithavornwat S, Law RA, Bieber JM, Zheng L, Konstantopoulos K. A Direct Podocalyxin-Dynamin-2 Interaction Regulates Cytoskeletal Dynamics to Promote Migration and Metastasis in Pancreatic Cancer Cells. Cancer Res 2019; 79:2878-2891. [PMID: 30975647 DOI: 10.1158/0008-5472.can-18-3369] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/18/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
The sialoglycoprotein podocalyxin is absent in normal pancreas but is overexpressed in pancreatic cancer and is associated with poor clinical outcome. Here, we investigate the role of podocalyxin in migration and metastasis of pancreatic adenocarcinomas using SW1990 and Pa03c as cell models. Although ezrin is regarded as a cytoplasmic binding partner of podocalyxin that regulates actin polymerization via Rac1 or RhoA, we did not detect podocalyxin-ezrin association in pancreatic cancer cells. Moreover, depletion of podocalyxin did not alter actin dynamics or modulate Rac1 and RhoA activities in pancreatic cancer cells. Using mass spectrometry, bioinformatics analysis, coimmunoprecipitation, and pull-down assays, we discovered a novel, direct binding interaction between the cytoplasmic tail of podocalyxin and the large GTPase dynamin-2 at its GTPase, middle, and pleckstrin homology domains. This podocalyxin-dynamin-2 interaction regulated microtubule growth rate, which in turn modulated focal adhesion dynamics and ultimately promoted efficient pancreatic cancer cell migration via microtubule- and Src-dependent pathways. Depletion of podocalyxin in a hemispleen mouse model of pancreatic cancer diminished liver metastasis without altering primary tumor size. Collectively, these findings reveal a novel mechanism by which podocalyxin facilitates pancreatic cancer cell migration and metastasis. SIGNIFICANCE: These findings reveal that a novel interaction between podocalyxin and dynamin-2 promotes migration and metastasis of pancreatic cancer cells by regulating microtubule and focal adhesion dynamics.
Collapse
Affiliation(s)
- Bin Sheng Wong
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland.,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland
| | - Daniel J Shea
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland.,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland
| | - Soontorn Tuntithavornwat
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Robert A Law
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Jake M Bieber
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Lei Zheng
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland. .,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
21
|
Zhao Z, Li L, Du P, Ma L, Zhang W, Zheng L, Lan B, Zhang B, Ma F, Xu B, Zhan Q, Song Y. Transcriptional Downregulation of miR-4306 serves as a New Therapeutic Target for Triple Negative Breast Cancer. Theranostics 2019; 9:1401-1416. [PMID: 30867840 PMCID: PMC6401504 DOI: 10.7150/thno.30701] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/23/2018] [Indexed: 12/31/2022] Open
Abstract
Rationale: Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor alpha (ER-α), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR) expression, but the effect of lacking the three factors on TNBC is unclear. Whether loss of the three factors contributes to deregulate genes that participate in the progress of TNBC remains unknown. Methods: We performed microRNA arrays and comprehensive analysis to screen for miRNAs that are transcriptionally regulated by ER-α, HER2 and PR. Functional assays and molecular mechanism studies were used to investigate the role of miR-4306 in TNBC. An orthotopic mouse model of TNBC was used to evaluate the therapeutic potential of a cholesterol-conjugated miR-4306 mimic. Results: We found that miR-4306 is transcriptionally regulated by ER-α, HER2 and PR, and the downregulation of miR-4306 in TNBC is caused by the loss of ER-α, HER2 and PR. Clinically, low miR-4306 expression is strongly associated with lymph node metastasis and poor survival for TNBC. Upregulation of miR-4306 greatly suppresses TNBC cell proliferation, migration and invasion and abrogates angiogenesis and lymphangiogenesis in vitro. According to in vivo models, miR-4306 overexpression considerably inhibits TNBC growth, lung metastasis, angiogenesis and lymph node metastasis. Mechanistic analyses indicate that miR-4306 directly targets SIX1/Cdc42/VEGFA to inactivate the signaling pathways mediated by SIX1/Cdc42/VEGFA. Finally, the orthotopic mouse model of TNBC reveals that miR-4306 mimic can be used for TNBC treatment in combination with cisplatin. Conclusions: Our findings suggest that miR-4306 acts as a tumor suppressor in TNBC and is a potential therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Peina Du
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weimin Zhang
- Laboratory of Molecular Oncology, Peking University Cancer Hospital, Beijing 100142, China
| | - Leilei Zheng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bailin Zhang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Xu
- Breast Cancer Center and the Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,Laboratory of Molecular Oncology, Peking University Cancer Hospital, Beijing 100142, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
22
|
Zhang J, Zhu Z, Wu H, Yu Z, Rong Z, Luo Z, Xu Y, Huang K, Qiu Z, Huang C. PODXL, negatively regulated by KLF4, promotes the EMT and metastasis and serves as a novel prognostic indicator of gastric cancer. Gastric Cancer 2019; 22:48-59. [PMID: 29748877 PMCID: PMC6314994 DOI: 10.1007/s10120-018-0833-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Podocalyxin-like 1 (PODXL) was reported to be closely associated with the development of various cancers, yet its functional roles and molecular mechanisms remain vague. The aim of our study was to investigate the clinical significance, biological function and molecular mechanism of PODXL in gastric cancer (GC). METHODS The level of PODXL in GC tissues was detected applying GC tissues microarray, fresh GC tissues and public database (Oncomine). The invasion, metastasis and tumorigenesis role of PODXL were performed in vitro and in vivo. The correlations between KLF4 and PODXL was determined in GC tissues microarray and fresh GC tissues, and the molecular regulatory mechanism between KLF4 and PODXL was explored in vitro. RESULTS The high level of PODXL was detected in GC tissues with advanced T stage, lymph node metastasis, Union for International Cancer Control stage and poor differentiation. And Cox proportional hazards model revealed that PODXL can serve as an independent prognostic indicator for disease-free survival and overall survival of GC patients. Moreover, downregulation of PODXL could inhibit EMT and reduce invasion and metastasis in vitro as well as tumorigenesis in vivo. Additionally, our findings showed that PODXL may be a significant downstream target of KLF4. CONCLUSIONS KLF4/PODXL signaling pathway assumes an irreplaceable role in tumorigenesis, invasion and metastasis of human GC and PODXL serves as an independent prognostic indicator for GC patients.
Collapse
Affiliation(s)
- Jing Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhonglin Zhu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Huijing Wu
- Department of Medical Affairs, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhilong Yu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zeyin Rong
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zai Luo
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yiwei Xu
- Department of Anesthesiology, Wan Nan Medical College, Wuhu, 241002, China
| | - Kejian Huang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
23
|
Pizzi M, Trentin L, Visentin A, Saraggi D, Martini V, Guzzardo V, Righi S, Frezzato F, Piazza F, Sabattini E, Semenzato G, Rugge M. Cortactin expression in non-Hodgkin B-cell lymphomas: a new marker for the differential diagnosis between chronic lymphocytic leukemia and mantle cell lymphoma. Hum Pathol 2018; 85:251-259. [PMID: 30458196 DOI: 10.1016/j.humpath.2018.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
Abstract
Cortactin is a cytoskeletal-remodeling adaptor protein, playing an oncogenic role in solid tumors. Little is known on cortactin expression in non-Hodgkin B-cell lymphomas (B-NHLs). The present study aimed to characterize cortactin expression in B-NHLs and to assess its role in the differential diagnosis of such entities. Cortactin protein expression was first assessed by immunohistochemistry in a series of 131 B-NHLs, including B-cell chronic lymphocytic leukemia (CLL; n = 17), mantle cell lymphoma (MCL; n = 16), follicular lymphoma (FL; n = 25), marginal zone lymphoma (MZL; n = 30), hairy cell leukemia (HCL; n = 10), splenic diffuse red pulp small B-cell lymphomas (SDRPBL; n = 3), and diffuse large B-cell lymphoma (DLBCL; n = 30) cases. Cortactin was expressed in 14 of 17 CLLs, 10 of 10 HCLs, and 22 of 30 DLBCLs. MCLs, SDRPBLs, most FLs, and MZLs were cortactin negative. The immunohistochemical results were in keeping with in silico gene expression data. In CLL, cortactin positivity did correlate with LEF1 and CD200 expression, and the combined positivity for ≥2 markers strongly predicted CLL diagnosis. Such preliminary data suggested a role for cortactin in the differential diagnosis between CLL and MCL. This hypothesis was confirmed in a large validation set of 112 CLLs (n = 55) and MCLs (n = 57), which also disclosed rare cortactin-expressing MCLs. The immunohistochemical and gene expression results were sustained by flow cytometry and Western blot analysis on CLL and MCL cell lines. In conclusion, cortactin is mainly expressed in subsets of CLL and DLBCL and in HCL. Cortactin may represent a novel marker for the differential diagnosis between CLL and MCL.
Collapse
Affiliation(s)
- Marco Pizzi
- General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35121 Italy.
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Deborah Saraggi
- General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35121 Italy
| | - Veronica Martini
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Vincenza Guzzardo
- General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35121 Italy
| | - Simona Righi
- Hematopathology Unit, Department of Hematology and Oncology, Sant'Orsola University Hospital, Bologna, 40138 Italy; Department of Experimental Diagnostic and Specialty Medicine, Sant'Orsola University Hospital, Bologna, 40138 Italy
| | - Federica Frezzato
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Francesco Piazza
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Elena Sabattini
- Hematopathology Unit, Department of Hematology and Oncology, Sant'Orsola University Hospital, Bologna, 40138 Italy; Department of Experimental Diagnostic and Specialty Medicine, Sant'Orsola University Hospital, Bologna, 40138 Italy
| | - Gianpietro Semenzato
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Massimo Rugge
- General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35121 Italy
| |
Collapse
|
24
|
Peng XM, Gao S, Deng HT, Cai HX, Zhou Z, Xiang R, Zhang QZ, Li LY. Perturbation of epithelial apicobasal polarity by rhomboid family-1 gene overexpression. FASEB J 2018; 32:5577-5586. [PMID: 29727209 DOI: 10.1096/fj.201800016r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The human rhomboid family (RHBDF)1 gene is highly expressed in breast cancer under clinical conditions but not in normal mammary gland tissues. Silencing the RHBDF1 gene in breast cancer xenograft tumors leads to inhibition of tumor growth. We show in this study that artificially raising RHBDF1 protein levels in the mammary epithelial cells MCF-10A results in severe perturbations of the ability of the cells to form lumen-containing acini, either in 3-dimensional cell cultures or implanted in mouse mammary fat pads. Knocking down RHBDF1 with short hairpin (sh)RNA leads to restoration of acinus formation. Consistently, RHBDF1 overexpression gives rise to disordered distribution of polarity markers GM130 and laminin-5, which otherwise are located in apical and basal positions, respectively, in the acini. Further investigations reveal that RHBDF1 directly binds to Par6a, a component of a protein complex consisting of partitioning-defective scaffold protein (Par)6, Par3, renin-angiotensin system-related C3 botulinum toxin substrate (Rac)1, and cell-division cycle (Cdc)42, which is structurally critical to the formation of apicobasal polarity. RHBDF1 binding to Par6a results in collapse of the protein complex and thus disruption of polarity formation. Since early stages of breast cancer are characterized by the loss of mammary gland epithelial cell polarity, our findings indicate that perturbations of apicobasal polarity by high levels of RHBDF1 is a significant attribute in the development of breast neoplasia.-Peng, X.-M., Gao, S., Deng, H.-T., Cai, H.-X., Zhou, Z., Xiang, R., Zhang, Q.-Z., Li, L.-Y. Perturbation of epithelial apicobasal polarity by rhomboid family-1 gene overexpression.
Collapse
Affiliation(s)
- Xue-Mei Peng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, China; and
- Department of Immunology, School of Medicine, Shanxi Datong University, Datong, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, China; and
| | - Hui-Ting Deng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, China; and
| | - Hong-Xing Cai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, China; and
| | - Zhuan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, China; and
| | - Rong Xiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, China; and
| | - Qiang-Zhe Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, China; and
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, China; and
| |
Collapse
|
25
|
Yuan D, Chen H, Wang S, Liu F, Cheng Y, Fang J. Identification of LEA, a podocalyxin-like glycoprotein, as a predictor for the progression of colorectal cancer. Cancer Med 2018; 7:5155-5166. [PMID: 30277651 PMCID: PMC6198229 DOI: 10.1002/cam4.1765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/23/2018] [Accepted: 08/08/2018] [Indexed: 01/11/2023] Open
Abstract
Large external antigen (LEA) is considered as a colorectal cancer (CRC)‐associated antigen, which was found via mAb ND‐1 generated using hybridoma technology, but its molecular features remain unknown. To facilitate the clinical application of LEA, we identified LEA as a podocalyxin‐like protein 1 (PODXL) with molecular weight of approximately 230 kDa, a hyperglycosylated protein, using immunoprecipitation and mass spectrometry in combination, and verified that ND‐1‐recognized epitope is on the terminal sialic acid of LEA. Correlation analysis between LEA and PODXL in molecular weight, immunological cross‐reactivity, and gene expression dependence supported the PODXL identity of the LEA. Moreover, we assessed the clinical significance of the LEA in 89 pairs of primary CRC tissues and adjacent nontumor colorectal tissues using ND‐1 by quantum dot‐based immunohistochemistry (QD‐IHC). High LEA expression was correlated significantly with T stage (P = 0.010). Patients with high LEA expression showed significantly poorer prognosis than those with LEA low expression (P = 0.007). Multivariate analysis indicated LEA expression as an independent predictor. Furthermore, the comparative analysis showed that mAb ND‐1‐based IHC analysis toward sugar residue of PODXL has higher sensitivity and specificity to evaluate the LEA/PODXL expression than mAb 3D3‐based method toward core protein of PODXL in CRC cell lines and clinical samples. In addition, we first found that LEA/PODXL can be secreted in exosomes from cancer cells and CRC patient peripheral blood. Our results demonstrate that LEA is an independent predictor for CRC progression and has the potential to be applied for clinical setting with high sensitivity, high specificity, and noninvasive access.
Collapse
Affiliation(s)
- Dezheng Yuan
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Hang Chen
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Shuo Wang
- Analytical Instrumentation Center, Shenyang Agricultural University, Shenyang, China
| | - Furong Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yajie Cheng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Caterson B, Melrose J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability. Glycobiology 2018; 28:182-206. [PMID: 29340594 PMCID: PMC5993099 DOI: 10.1093/glycob/cwy003] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022] Open
Abstract
From an evolutionary perspective keratan sulfate (KS) is the newest glycosaminoglycan (GAG) but the least understood. KS is a sophisticated molecule with a diverse structure, and unique functional roles continue to be uncovered for this GAG. The cornea is the richest tissue source of KS in the human body but the central and peripheral nervous systems also contain significant levels of KS and a diverse range of KS-proteoglycans with essential functional roles. KS also displays important cell regulatory properties in epithelial and mesenchymal tissues and in bone and in tumor development of diagnostic and prognostic utility. Corneal KS-I displays variable degrees of sulfation along the KS chain ranging from non-sulfated polylactosamine, mono-sulfated and disulfated disaccharide regions. Skeletal KS-II is almost completely sulfated consisting of disulfated disaccharides interrupted by occasional mono-sulfated N-acetyllactosamine residues. KS-III also contains highly sulfated KS disaccharides but differs from KS-I and KS-II through 2-O-mannose linkage to serine or threonine core protein residues on proteoglycans such as phosphacan and abakan in brain tissue. Historically, the major emphasis on the biology of KS has focused on its sulfated regions for good reason. The sulfation motifs on KS convey important molecular recognition information and direct cell behavior through a number of interactive proteins. Emerging evidence also suggest functional roles for the poly-N-acetyllactosamine regions of KS requiring further investigation. Thus further research is warranted to better understand the complexities of KS.
Collapse
Affiliation(s)
- Bruce Caterson
- Connective Tissue Biology Laboratories, School of Biosciences, College of Biological & Life Sciences, Cardiff University, Cardiff, Wales, UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
27
|
Xiao B, Chen D, Luo S, Hao W, Jing F, Liu T, Wang S, Geng Y, Li L, Xu W, Zhang Y, Liao X, Zuo D, Wu Y, Li M, Ma Q. Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/ MMP9 signaling. Oncotarget 2018; 7:50057-50073. [PMID: 27367023 PMCID: PMC5226568 DOI: 10.18632/oncotarget.10315] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/08/2016] [Indexed: 01/02/2023] Open
Abstract
The translationally controlled tumor protein (TCTP) can be secreted independently of the endoplasmic reticulum/Golgi pathway and has extrinsic activities when it is characterized as the histamine releasing factor (HRF). Despite its important role in allergies and inflammation, little is known about how extracellular TCTP affects cancer progression. In this study, we found that TCTP was overexpressed in the interstitial tissue of colorectal cancer (CRC) and its expression correlated with poor survival, high pathological grades and metastatic TNM stage in CRC patients. TCTP expression was greater in metastatic liver tissue than in primary tumors and was increased in highly invasive CRC cells. We demonstrated that the expression of TCTP was regulated by HIF-1α and its release was increased in response to low serum and hypoxic stress. Recombinant human TCTP (rhTCTP) promoted the migration and invasiveness of CRC cells in vitro and contributed to distant liver metastasis in vivo. Furthermore, rhTCTP activated Cdc42, phosphorylated JNK (p-JNK), increasing the translocation of p-JNK from the cytoplasm to the nucleus, as well as the secretion of MMP9. In addition, the expression of TCTP positively correlated with that of Cdc42 and p-JNK in clinical CRC samples. The silencing of Cdc42, JNK and MMP9 significantly inhibited the Matrigel invasion of rhTCTP-enhanced CRC cells. Collectively, these results identify a new role for extracellular TCTP as a promoter of CRC progression and liver metastases via Cdc42/JNK/MMP9 activation.
Collapse
Affiliation(s)
- Bin Xiao
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Daxiang Chen
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuhong Luo
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China.,RayBiotech, Inc., Guangzhou 510600, China.,RayBiotech, Inc., Norcross, GA 30092, USA
| | - Wenbo Hao
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fangyan Jing
- Department of Anorectal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Tiancai Liu
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Suihai Wang
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yan Geng
- Department of Intensive Care Unit, 303 Hospital of People's Liberation Army, Nanning 530021, China
| | - Linhai Li
- Department of Laboratory Medicine, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, China
| | - Weiwen Xu
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yajie Zhang
- Division of Clinical Immunology Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Xiaoqing Liao
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Daming Zuo
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yingsong Wu
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ming Li
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiang Ma
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| |
Collapse
|
28
|
Podocalyxin-Like Protein 1 Regulates TAZ Signaling and Stemness Properties in Colon Cancer. Int J Mol Sci 2017; 18:ijms18102047. [PMID: 28946619 PMCID: PMC5666729 DOI: 10.3390/ijms18102047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022] Open
Abstract
Colon cancer is the third most common cancer in the world and the second most common cause of cancer-related mortality. Molecular biomarkers for colon cancer have undergone vigorous discovery and validation. Recent studies reported that overexpression of podocalyxin-like protein 1 (PODXL) is associated with distant metastasis and poor prognosis across several types of malignancies. Its role and underlying molecular mechanism, however, are not yet fully understood. In the present study, we revealed that the Hippo transducer, the transcriptional coactivator with PDZ-binding motif (TAZ), acts as a downstream mediator of PODXL in colon cancer. Inhibition of PODXL resulted in the suppression of TAZ signaling and the downregulation of Hippo downstream genes. Moreover, PODXL plays a critical role in cancer stemness, invasiveness, and sensitivity to chemotherapies in colon cancer HCT15 cells. Notably, expression of PODXL showed a positive correlation with stem-like and epithelial-mesenchymal transition (EMT) core signatures, and was associated with poor survival outcomes in patients with colon cancer. These findings provide novel insights into the molecular mechanism of PODXL-mediated tumorigenesis in colon cancer.
Collapse
|
29
|
Kusumoto H, Shintani Y, Kanzaki R, Kawamura T, Funaki S, Minami M, Nagatomo I, Morii E, Okumura M. Podocalyxin influences malignant potential by controlling epithelial-mesenchymal transition in lung adenocarcinoma. Cancer Sci 2017; 108:528-535. [PMID: 28004467 PMCID: PMC5378270 DOI: 10.1111/cas.13142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in the progression of lung carcinoma. Podocalyxin (PODXL), which belongs to the CD34 family and regulates cell morphology, has been linked to EMT in lung cancer, and PODXL overexpression is associated with poor prognosis in several different classes of cancers. The aim of this study was to clarify the role of PODXL overexpression in EMT in lung cancer, and to determine the prognostic value of PODXL overexpression in tumors from lung cancer patients. The morphology, EMT marker expression, and migration and invasion abilities of engineered A549 PODXL-knockdown (KD) or PODXL-overexpression (OE) lung adenocarcinoma cells were examined. PODXL expression levels were assessed by immunohistochemistry in 114 human clinical lung adenocarcinoma specimens and correlated with clinical outcomes. PODXL-KD cells were epithelial in shape, whereas PODXL-OE cells displayed mesenchymal morphology. Epithelial markers were upregulated in PODXL-KD cells and downregulated in PODXL-OE cells, whereas mesenchymal markers were downregulated in the former and upregulated in the latter. A highly selective inhibitor of phosphatidylinositol 3-kinase-Akt signaling attenuated EMT of PODXL-OE cells, while a transforming growth factor inhibitor did not, suggesting that PODXL induces EMT of lung adenocarcinoma cells via the phosphatidylinositol 3-kinase pathway. In lung adenocarcinoma clinical specimens, PODXL expression was detected in minimally invasive and invasive adenocarcinoma, but not in non-invasive adenocarcinoma. Disease free survival and cancer-specific survival were significantly worse for patients whose tumors overexpressed PODXL. PODXL overexpression induces EMT in lung adenocarcinoma and contributes to tumor progression.
Collapse
Affiliation(s)
- Hidenori Kusumoto
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryu Kanzaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Kawamura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masato Minami
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine, Allergy and Rheumatic Disease, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
30
|
Yasui H, Ohnishi Y, Nakajima M, Nozaki M. Migration of oral squamous cell carcinoma cells are induced by HGF/c-Met signalling via lamellipodia and filopodia formation. Oncol Rep 2017; 37:3674-3680. [PMID: 28440510 DOI: 10.3892/or.2017.5587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/03/2017] [Indexed: 11/06/2022] Open
Abstract
The activation of receptor tyrosine kinases (RTKs) results in cellular effects including cell proliferation, survival, migration and invasion; RTKs also play an important role in tumourigenesis. It has been reported that EGFR signalling controls the migration of oral squamous cell carcinoma (OSCC) SAS and HSC3 cells but not of HSC4 cells, although the proliferation of HSC4 cells is regulated by EGF/EGFR. In the present study, we investigated the roles of EGFR and the c-Met signalling pathway in cell migration via filopodia and lamellipodia formation, which may be prerequisites for migration. To explore the role of c-Met in cell migration, we inhibited c-Met RTK activity using the c-Met inhibitor SU11274 and activated c-Met using hepatocyte growth factor (HGF) in three OSCC cell lines HSC4, SAS and Ca9-22 and investigated migration potency using a wound healing assay. We showed that inhibition of c-Met significantly suppressed, and activation of c-Met significantly promoted, the migration of OSCC cells. Additionally, the migration of SAS and Ca9-22 cells was inhibited by the EGFR inhibitors AG1478 and cetuximab and promoted by EGF treatment. Moreover, migration potency was correlated with lamellipodia formation. Furthermore, western blot analyses demonstrated that SU11274 decreased and HGF increased lamellipodin protein levels as well as phosphorylated c-Met levels. Collectively, we demonstrated that c-Met signalling induced lamellipodia formation by upregulating lamellipodin, thereby promoting the migration of OSCC cells.
Collapse
Affiliation(s)
- Hiroki Yasui
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichi Ohnishi
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Nakajima
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Goicoechea SM, Zinn A, Awadia SS, Snyder K, Garcia-Mata R. A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells. J Cell Sci 2017; 130:1064-1077. [PMID: 28202690 DOI: 10.1242/jcs.195552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/14/2017] [Indexed: 01/11/2023] Open
Abstract
One of the hallmarks of cancer is the ability of tumor cells to invade surrounding tissues and metastasize. During metastasis, cancer cells degrade the extracellular matrix, which acts as a physical barrier, by developing specialized actin-rich membrane protrusion structures called invadopodia. The formation of invadopodia is regulated by Rho GTPases, a family of proteins that regulates the actin cytoskeleton. Here, we describe a novel role for RhoG in the regulation of invadopodia disassembly in human breast cancer cells. Our results show that RhoG and Rac1 have independent and opposite roles in the regulation of invadopodia dynamics. We also show that SGEF (also known as ARHGEF26) is the exchange factor responsible for the activation of RhoG during invadopodia disassembly. When the expression of either RhoG or SGEF is silenced, invadopodia are more stable and have a longer lifetime than in control cells. Our findings also demonstrate that RhoG and SGEF modulate the phosphorylation of paxillin, which plays a key role during invadopodia disassembly. In summary, we have identified a novel signaling pathway involving SGEF, RhoG and paxillin phosphorylation, which functions in the regulation of invadopodia disassembly in breast cancer cells.
Collapse
Affiliation(s)
- Silvia M Goicoechea
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Ashtyn Zinn
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sahezeel S Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Kyle Snyder
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
32
|
Wang K, Sun Y, Tao W, Fei X, Chang C. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett 2017; 394:1-12. [PMID: 28089832 DOI: 10.1016/j.canlet.2016.12.036] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 01/10/2023]
Abstract
Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis.
Collapse
Affiliation(s)
- Kefeng Wang
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Wei Tao
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xiang Fei
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA; Sex Hormone Research Center, China Medical University/Hospital, Taichung, 404, Taiwan.
| |
Collapse
|
33
|
Gays D, Hess C, Camporeale A, Ala U, Provero P, Mosimann C, Santoro MM. An exclusive cellular and molecular network governs intestinal smooth muscle cell differentiation in vertebrates. Development 2017; 144:464-478. [PMID: 28049660 DOI: 10.1242/dev.133926] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/09/2016] [Indexed: 12/19/2022]
Abstract
Intestinal smooth muscle cells (iSMCs) are a crucial component of the adult gastrointestinal tract and support intestinal differentiation, peristalsis and epithelial homeostasis during development. Despite these crucial roles, the origin of iSMCs and the mechanisms responsible for their differentiation and function remain largely unknown in vertebrates. Here, we demonstrate that iSMCs arise from the lateral plate mesoderm (LPM) in a stepwise process. Combining pharmacological and genetic approaches, we show that TGFβ/Alk5 signaling drives the LPM ventral migration and commitment to an iSMC fate. The Alk5-dependent induction of zeb1a and foxo1a is required for this morphogenetic process: zeb1a is responsible for driving LPM migration around the gut, whereas foxo1a regulates LPM predisposition to iSMC differentiation. We further show that TGFβ, zeb1a and foxo1a are tightly linked together by miR-145 In iSMC-committed cells, TGFβ induces the expression of miR-145, which in turn is able to downregulate zeb1a and foxo1a The absence of miR-145 results in only a slight reduction in the number of iSMCs, which still express mesenchymal genes but fail to contract. Together, our data uncover a cascade of molecular events that govern distinct morphogenetic steps during the emergence and differentiation of vertebrate iSMCs.
Collapse
Affiliation(s)
- Dafne Gays
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Christopher Hess
- Institute of Molecular Life Sciences (IMLS), University of Zürich, Zürich 8057, Switzerland
| | - Annalisa Camporeale
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Christian Mosimann
- Institute of Molecular Life Sciences (IMLS), University of Zürich, Zürich 8057, Switzerland
| | - Massimo M Santoro
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy .,Vesalius Research Center, VIB-KUL, Leuven 3000, Belgium
| |
Collapse
|
34
|
Wang J, Zhao Y, Qi R, Zhu X, Huang C, Cheng S, Wang S, Qi X. Prognostic role of podocalyxin-like protein expression in various cancers: A systematic review and meta-analysis. Oncotarget 2016; 8:52457-52464. [PMID: 28881743 PMCID: PMC5581042 DOI: 10.18632/oncotarget.14199] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/20/2016] [Indexed: 12/25/2022] Open
Abstract
Several studies were conducted to explore the prognostic significance of podocalyxin-like protein (PODXL) expression in various cancers, with contradictory. This study aims to summarize the prognostic significance of PODXL expression in cancers. PubMed, the Cochrane Library and Embase were completely retrieved. The prospective or retrospective studies focusing on the prognostic role of PODXL expression in cancers were eligible. The endpoints were overall survival (OS), disease-specific survival (DSS) and disease-free survival (DFS).12 studies involving a total of 5,309 patients were identified. The results indicated that high PODXL expression was significantly associated with worse OS when compared to the low PODXL expression (HR=1.76, 95%CI=1.53-2.04, p<0.00001; I2=41%, p=0.08). And similar results were detected in the subgroup analysis of analysis model, ethnicity, sample size, tumor type and antibody type. And the results also showed that high PODXL expression was obviously related to shorter DSS (HR=2.47, 95%CI=1.53-3.99, p=0.0002; I2=66%, p=0.03) and DFS (HR=2.12, 95%CI=1.58-2.85, p<0.00001; I2=19%, p=0.29). In conclusion, it was revealed that high PODXL expression is an unfavorable predictor of OS, DSS and DFS in patients with cancers, and high PODXL expression is a promising prognostic biomarker for cancers, especially for patients in European.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hepatobiliary Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yongzhao Zhao
- School of Medicine, Tongji University, Shanghai, China
| | - Ruizhao Qi
- Department of General Surgery, 302 Hospital of PLA, Beijing, China
| | - Xiaoning Zhu
- Department of Hepatobiliary Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | | | - Sijin Cheng
- School of Medicine, Tongji University, Shanghai, China
| | - Shengzhi Wang
- Department of General Surgery, 302 Hospital of PLA, Beijing, China
| | - Xiaolong Qi
- Department of Hepatobiliary Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
35
|
Law ME, Ferreira RB, Davis BJ, Higgins PJ, Kim JS, Castellano RK, Chen S, Luesch H, Law BK. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res 2016; 18:80. [PMID: 27495374 PMCID: PMC4974783 DOI: 10.1186/s13058-016-0741-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023] Open
Abstract
Background While localized malignancies often respond to available therapies, most disseminated cancers are refractory. Novel approaches, therefore, are needed for the treatment of metastatic disease. CUB domain-containing protein1 (CDCP1) plays an important role in metastasis and drug resistance; the mechanism however, is poorly understood. Methods Breast cancer cell lines were engineered to stably express EGFR, CDCP1 or phosphorylation site mutants of CDCP1. These cell lines were used for immunoblot analysis or affinity purification followed by immunoblot analysis to assess protein phosphorylation and/or protein complex formation with CDCP1. Kinase activity was evaluated using phosphorylation site-specific antibodies and immunoblot analysis in in vitro kinase assays. Protein band excision and mass spectrometry was utilized to further identify proteins complexed with CDCP1 or ΔCDCP1, which is a mimetic of the cleaved form of CDCP1. Cell detachment was assessed using cell counting. Results This paper reports that CDCP1 forms ternary protein complexes with Src and EGFR, facilitating Src activation and Src-dependent EGFR transactivation. Importantly, we have discovered that a class of compounds termed Disulfide bond Disrupting Agents (DDAs) blocks CDCP1/EGFR/Src ternary complex formation and downstream signaling. CDCP1 and EGFR cooperate to induce detachment of breast cancer cells from the substratum and to disrupt adherens junctions. Analysis of CDCP1-containing complexes using proteomics techniques reveals that CDCP1 associates with several proteins involved in cell adhesion, including adherens junction and desmosomal cadherins, and cytoskeletal elements. Conclusions Together, these results suggest that CDCP1 may facilitate loss of adhesion by promoting activation of EGFR and Src at sites of cell-cell and cell-substratum contact. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0741-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary E Law
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Bradley J Davis
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Paul J Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, 12208, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | | | - Sixue Chen
- Department of Biology, Interdisciplinary Center for Biotechnology, University of Florida, Gainesville, FL, 32611, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Brian K Law
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA. .,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA. .,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
36
|
Larsson AH, Lehn S, Wangefjord S, Karnevi E, Kuteeva E, Sundström M, Nodin B, Uhlén M, Eberhard J, Birgisson H, Jirström K. Significant association and synergistic adverse prognostic effect of podocalyxin-like protein and epidermal growth factor receptor expression in colorectal cancer. J Transl Med 2016; 14:128. [PMID: 27160084 PMCID: PMC4862047 DOI: 10.1186/s12967-016-0882-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/28/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Podocalyxin-like 1 (PODXL) is an anti-adhesive transmembrane protein that has been demonstrated to be an independent factor of poor prognosis in colorectal cancer (CRC). The gene encoding PODXL is located to chromosome 7, which also harbours the gene for the epidermal growth factor receptor (EGFR). The aim of this study was to examine the associations between PODXL and EGFR expression in CRC in vitro and in vivo. METHODS EGFR expression was analysed in tumours from three independent patient cohorts; cohort 1 (n = 533), cohort 2 (n = 259) and cohort 3 (n = 310), previously analysed for immunohistochemical PODXL expression and KRAS and BRAF mutations (cohort 1 and 3). Levels of EGFR and PODXL were determined by western blot in six different CRC cell lines. RESULTS High expression of PODXL was significantly associated with high EGFR expression (p < 0.001) in all three cohorts, and with BRAF mutation (p < 0.001) in cohort 1 and 3. High EGFR expression correlated with BRAF mutation (p < 0.001) in cohort 1. High EGFR expression was associated with adverse clinicopathological factors and independently predicted a reduced 5-year overall survival (OS) in cohort 1 (HR 1.77; 95 % CI 1.27-2.46), cohort 2 (HR 1.58; 95 % CI 1.05-2.38) and cohort 3 (HR 1.83; 95 % CI 1.19-2.81). The highest risk of death within 5 years was observed in patients with tumours displaying high expression of both EGFR and PODXL in cohort 1 and 3 (HR 1.97; 95 % CI 1.18-3.28 and HR 3.56; 95 % CI 1.75-7.22, respectively). Western blot analysis showed a uniform expression of PODXL and EGFR in all six examined CRC cell lines. CONCLUSIONS The results from this study demonstrate that high expression of EGFR is an independent factor of poor prognosis in CRC. Moreover, strong links have been uncovered between expression of the recently proposed biomarker candidate PODXL with EGFR expression in CRC in vivo and in vitro, and with BRAF mutation in vivo. High expression of both PODXL and EGFR may also have a synergistic adverse effect on survival. These findings suggest a potential functional link in CRC between PODXL, EGFR and BRAF, all originating from chromosome 7, which may be highly relevant in the clinical setting and therefore merit future in-depth study.
Collapse
Affiliation(s)
- Anna H Larsson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Sophie Lehn
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sakarias Wangefjord
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emelie Karnevi
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Eugenia Kuteeva
- Atlas Antibodies AB, AlbaNova University Center, Stockholm, Sweden
| | - Magnus Sundström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Björn Nodin
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jakob Eberhard
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Helgi Birgisson
- Department of Surgical Sciences, Colorectal Surgery, Uppsala University, Uppsala, Sweden
| | - Karin Jirström
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Yang H, Guan L, Li S, Jiang Y, Xiong N, Li L, Wu C, Zeng H, Liu Y. Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget 2016; 7:16227-47. [PMID: 26919102 PMCID: PMC4941310 DOI: 10.18632/oncotarget.7583] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/05/2016] [Indexed: 01/27/2023] Open
Abstract
Cancer cells are subjected to fluid shear stress during passage through the venous and lymphatic system. Caveolin-1 (Cav-1), a principal structural component of caveolar membrane domains, contributes to cancer development but its mechanobiological roles under low shear stress (LSS) conditions remain largely unknown. Here, we identified Cav-1 is mechanosensitive to LSS exposure, and its activation-induced PI3K/Akt/mTOR signaling promotes motility, invadopodia formation and metastasis of breast carcinoma MDA-MB-231 cells. Application of LSS (1.8 and 4.0 dynes/cm2) to MDA-MB-231 cells significantly increased the cell motility, invadopodia formation, MT1-MMP expression, ECM degradation, and also induced a sustained activation of Cav-1 and PI3K/Akt/mTOR signaling cascades. Methyl-β-cyclodextrin-caused caveolae destruction markedly decreased LSS-induced activation of both Cav-1 and PI3K/Akt/mTOR, leading to suppress MT1-MMP expression, inhibit invadopodia formation and ECM degradation, suggesting that caveolae integrity also involved in metastasis. Immunocytochemical assay showed that LSS induces the Cav-1 clustering in lipid rafts and co-localization of Cav-1 and MT1-MMP on invadopodia. Immunofluorescence confocal analysis demonstrated that Cav-1 activation were required for the acquisition of a polarized phenotype in MDA-MB-231 cells. Finally, Cav-1 knockdown significantly suppressed tumor colonization in the lungs and distant metastases in animal models. Our findings highlight the importance of Cav-1 in hematogenous metastasis, and provide new insights into the underlying mechanisms of mechanotransduction induced by LSS.
Collapse
Affiliation(s)
- Hong Yang
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Liuyuan Guan
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Niya Xiong
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Li Li
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Hongjuan Zeng
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| |
Collapse
|
38
|
Chijiiwa Y, Moriyama T, Ohuchida K, Nabae T, Ohtsuka T, Miyasaka Y, Fujita H, Maeyama R, Manabe T, Abe A, Mizuuchi Y, Oda Y, Mizumoto K, Nakamura M. Overexpression of microRNA-5100 decreases the aggressive phenotype of pancreatic cancer cells by targeting PODXL. Int J Oncol 2016; 48:1688-700. [PMID: 26892887 DOI: 10.3892/ijo.2016.3389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/21/2016] [Indexed: 11/05/2022] Open
Abstract
Metastasis is the main cause of cancer-associated death, and metastasis of pancreatic cancer remains difficult to treat because of its aggressiveness. MicroRNAs (miRNAs) play crucial roles in the regulation of various human transcripts, and many miRNAs have been reported to correlate with cancer metastasis. We identified an anti-metastatic miRNA, miR-5100, by investigating differences in miRNA profiling between highly metastatic pancreatic cancer cells and their parental cells. Overexpression of miR-5100 inhibited colony formation (P<0.05), cell migration (P<0.0001) and invasion (P<0.0001) of pancreatic cancer cells. In addition, we identified a possible target of miR-5100, podocalyxin-like 1 (PODXL), and demonstrated miR-5100 directly binds to the 3' untranslated region of PODXL and post-transcriptionally regulates its expression in pancreatic cancer cells. Silencing PODXL resulted in diminished cell migration (P<0.0001) and invasion (P<0.05). We also clarified the close relationship between expression of PODXL in human pancreatic cancer specimens and liver metastasis (P=0.0003), and determined that post-operative survival was longer in the low-PODXL expression group than in the high-PODXL expression group (P<0.05). These results indicate that miR-5100 and PODXL have considerable therapeutic potential for anti-metastatic therapy and could be potential indicators for cancer metastases in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yoshiro Chijiiwa
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshinaga Nabae
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Fujita
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Maeyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuya Manabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Abe
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Mizuuchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
The cell surface mucin podocalyxin regulates collective breast tumor budding. Breast Cancer Res 2016; 18:11. [PMID: 26796961 PMCID: PMC4722710 DOI: 10.1186/s13058-015-0670-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/31/2015] [Indexed: 01/10/2023] Open
Abstract
Background Overexpression of the transmembrane sialomucin podocalyxin, which is known to play a role in lumen formation during polarized epithelial morphogenesis, is an independent indicator of poor prognosis in a number of epithelial cancers, including those that arise in the breast. Therefore, we set out to determine if podocalyxin plays a functional role in breast tumor progression. Methods MCF-7 breast cancer cells, which express little endogenous podocalyxin, were stably transfected with wild type podocalyxin for forced overexpression. 4T1 mammary tumor cells, which express considerable endogenous podocalyxin, were retrovirally transduced with a short hairpin ribonucleic acid (shRNA) targeting podocalyxin for stable knockdown. In vitro, the effects of podocalyxin on collective cellular migration and invasion were assessed in two-dimensional monolayer and three-dimensional basement membrane/collagen gel culture, respectively. In vivo, local invasion was assessed after orthotopic transplantation in immunocompromised mice. Results Forced overexpression of podocalyxin caused cohesive clusters of epithelial MCF-7 breast tumor cells to bud off from the primary tumor and collectively invade the stroma of the mouse mammary gland in vivo. This budding was not associated with any obvious changes in histoarchitecture, matrix deposition or proliferation in the primary tumour. In vitro, podocalyxin overexpression induced a collective migration of MCF-7 tumor cells in two-dimensional (2-D) monolayer culture that was dependent on the activity of the actin scaffolding protein ezrin, a cytoplasmic binding partner of podocalyxin. In three-dimensional (3-D) culture, podocalyxin overexpression induced a collective budding and invasion that was dependent on actomyosin contractility. Interestingly, the collectively invasive cell aggregates often contained expanded microlumens that were also observed in vivo. Conversely, when endogenous podocalyxin was removed from highly metastatic, but cohesive, 4T1 mammary tumor cells there was a decrease in collective invasion in three-dimensional culture. Conclusions Podocalyxin is a tumor cell-intrinsic regulator of experimental collective tumor cell invasion and tumor budding. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0670-4) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Bottoni P, Isgrò MA, Scatena R. The epithelial-mesenchymal transition in cancer: a potential critical topic for translational proteomic research. Expert Rev Proteomics 2015; 13:115-33. [PMID: 26567562 DOI: 10.1586/14789450.2016.1112742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a morphogenetic process that results in a loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. First described in embryogenesis, the EMT has been recently implicated in carcinogenesis and tumor progression. In addition, recent evidence has shown that stem-like cancer cells present the hallmarks of the EMT. Some of the molecular mechanisms related to the interrelationships between cancer pathophysiology and the EMT are well-defined. Nevertheless, the precise molecular mechanism by which epithelial cancer cells acquire the mesenchymal phenotype remains largely unknown. This review focuses on various proteomic strategies with the goal of better understanding the physiological and pathological mechanisms of the EMT process.
Collapse
Affiliation(s)
- Patrizia Bottoni
- a Institute of Biochemistry and Clinical Biochemistry , School of Medicine - Catholic University , Rome , Italy
| | - Maria Antonietta Isgrò
- b Department of Diagnostic and Molecular Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Roberto Scatena
- a Institute of Biochemistry and Clinical Biochemistry , School of Medicine - Catholic University , Rome , Italy
| |
Collapse
|
41
|
Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion. Sci Rep 2015; 5:14748. [PMID: 26458510 PMCID: PMC4602187 DOI: 10.1038/srep14748] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/08/2015] [Indexed: 11/09/2022] Open
Abstract
Tumor cell invasion requires the molecular and physical adaptation of both the cell and its microenvironment. Here we show that tumor cells are able to switch between the use of microvesicles and invadopodia to facilitate invasion through the extracellular matrix. Invadopodia formation accompanies the mesenchymal mode of migration on firm matrices and is facilitated by Rac1 activation. On the other hand, during invasion through compliant and deformable environments, tumor cells adopt an amoeboid phenotype and release microvesicles. Notably, firm matrices do not support microvesicle release, whereas compliant matrices are not conducive to invadopodia biogenesis. Furthermore, Rac1 activation is required for invadopodia function, while its inactivation promotes RhoA activation and actomyosin contractility required for microvesicle shedding. Suppression of RhoA signaling blocks microvesicle formation but enhances the formation of invadopodia. Finally, we describe Rho-mediated pathways involved in microvesicle biogenesis through the regulation of myosin light chain phosphatase. Our findings suggest that the ability of tumor cells to switch between the aforementioned qualitatively distinct modes of invasion may allow for dissemination across different microenvironments.
Collapse
|
42
|
Brown GT, Murray GI. Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol 2015; 237:273-81. [PMID: 26174849 DOI: 10.1002/path.4586] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 12/12/2022]
Abstract
The purpose of this review is to highlight the recent mechanistic developments elucidating the role of matrix metalloproteinases (MMPs) in tumour invasion and metastasis. The ability of tumour cells to invade, migrate, and subsequently metastasize is a fundamental characteristic of cancer. Tumour invasion and metastasis are increasingly being characterized by the dynamic relationship between cancer cells and their microenvironment and developing a greater understanding of these basic pathological mechanisms is crucial. While MMPs have been strongly implicated in these processes as a result of extensive circumstantial evidence--for example, increased expression of individual MMPs in tumours and association of specific MMPs with prognosis--the underpinning mechanisms are only now being elucidated. Recent studies are now providing a mechanistic basis, highlighting and reinforcing the catalytic and non-catalytic roles of specific MMPs as key players in tumour invasion and metastasis.
Collapse
Affiliation(s)
- Gordon T Brown
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Graeme I Murray
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
43
|
Amo L, Tamayo-Orbegozo E, Maruri N, Buqué A, Solaun M, Riñón M, Arrieta A, Larrucea S. Podocalyxin-like protein 1 functions as an immunomodulatory molecule in breast cancer cells. Cancer Lett 2015; 368:26-35. [PMID: 26276714 DOI: 10.1016/j.canlet.2015.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 02/02/2023]
Abstract
Podocalyxin-like protein 1 (PCLP1), a CD34-related sialomucin involved in the regulation of cellular morphology and adhesion, is expressed by a number of normal cells and various tumor cells. In breast malignancies PCLP1 overexpression has been associated with the most aggressive, metastatic cancers and poor prognosis. These observations suggest that PCLP1 expression could provide a mechanism to evade the immune response, thereby promoting metastatic progression of cancer. In the present work, we aimed to determine the effect of PCLP1 overexpressed in MCF7 breast cancer cells on natural killer (NK) cell cytotoxicity, dendritic cell maturation, and agonist-induced T cell proliferation. The results showed that PCLP1 expressed in MCF7 breast cancer cells confers resistance to NK cell-mediated cytolysis and impairs T cell proliferation. Furthermore, PCLP1 decreased the levels of NK cell activating receptors NKG2D, NKp30, NKp44, NKp46, DNAM-1, and CD16 on cell surface in a contact-dependent manner. Moreover, NK cells acquired PCLP1 from MCF7 cells by a process known as trogocytosis. These data reveal a new function of PCLP1 expressed on tumor cells as an immunomodulatory molecule, which may represent a mechanism to evade the immune response.
Collapse
Affiliation(s)
- Laura Amo
- Regulation of the Immune System Group, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Estíbaliz Tamayo-Orbegozo
- Regulation of the Immune System Group, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Natalia Maruri
- Regulation of the Immune System Group, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Aitziber Buqué
- Medical Oncology Research Laboratory, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Miren Solaun
- Flow Cytometry Unit, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Marta Riñón
- Regulation of the Immune System Group, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Arantza Arrieta
- Regulation of the Immune System Group, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Susana Larrucea
- Regulation of the Immune System Group, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
44
|
Jimenez L, Sharma VP, Condeelis J, Harris T, Ow TJ, Prystowsky MB, Childs G, Segall JE. MicroRNA-375 Suppresses Extracellular Matrix Degradation and Invadopodial Activity in Head and Neck Squamous Cell Carcinoma. Arch Pathol Lab Med 2015; 139:1349-61. [PMID: 26172508 DOI: 10.5858/arpa.2014-0471-oa] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Head and neck squamous cell carcinoma (HNSCC) is a highly invasive cancer with an association with locoregional recurrence and lymph node metastasis. We have previously reported that low microRNA-375 (miR-375) expression levels correlate with poor patient survival, increased locoregional recurrence, and distant metastasis. Increasing miR-375 expression in HNSCC cell lines to levels found in normal cells results in suppressed invasive properties. HNSCC invasion is mediated in part by invadopodia-associated degradation of the extracellular matrix. OBJECTIVE To determine whether elevated miR-375 expression in HNSCC cell lines also affects invadopodia formation and activity. DESIGN For evaluation of the matrix degradation properties of the HNSCC lines, an invadopodial matrix degradation assay was used. The total protein levels of invadopodia-associated proteins were measured by Western blot analyses. Immunoprecipitation experiments were conducted to evaluate the tyrosine phosphorylation state of cortactin. Human protease arrays were used for the detection of the secreted proteases. Quantitative real time-polymerase chain reaction measurements were used to evaluate the messenger RNA (mRNA) expression of the commonly regulated proteases. RESULTS Increased miR-375 expression in HNSCC cells suppresses extracellular matrix degradation and reduces the number of mature invadopodia. Higher miR-375 expression does not reduce cellular levels of selected invadopodia-associated proteins, nor is tyrosine phosphorylation of cortactin altered. However, HNSCC cells with higher miR-375 expression had significant reductions in the mRNA expression levels and secreted levels of specific proteases. CONCLUSIONS MicroRNA-375 regulates invadopodia maturation and function potentially by suppressing the expression and secretion of proteases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeffrey E Segall
- From the Departments of Pathology (Ms Jimenez and Drs Harris, Ow, Prystowsky, Childs, and Segall) and Anatomy & Structural Biology (Ms Jimenez and Drs Sharma, Condeelis, and Segall), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
45
|
Flores-Téllez TNJ, Lopez TV, Vásquez Garzón VR, Villa-Treviño S. Co-Expression of Ezrin-CLIC5-Podocalyxin Is Associated with Migration and Invasiveness in Hepatocellular Carcinoma. PLoS One 2015; 10:e0131605. [PMID: 26135398 PMCID: PMC4489913 DOI: 10.1371/journal.pone.0131605] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022] Open
Abstract
Background and Aim Prognostic markers are important for predicting the progression and staging of hepatocellular carcinoma (HCC). Ezrin (EZR) and Podocalyxin (PODXL) are proteins associated with invasion, migration and poor prognosis in various types of cancer. Recently, it has been observed that chloride intracellular channel 5 (CLIC5) forms a complex with EZR and PODXL and that it is required for podocyte structure and function. In this study, we evaluated the overexpression of EZR, PODXL and CLIC5 in HCC. Methods The modified resistant hepatocyte model (MRHR), human biopsies and HCC cell lines (HepG2, Huh7 and SNU387) were used in this study. Gene and protein expression levels were evaluated in the MRHR by qRT-PCR, Western blot and immunohistochemistry analyses, and protein expression in the human biopsies was evaluated by immunohistochemistry. Protein expression in the HCC cell lines was evaluated by immunofluorescence and Western blot, also the migration and invasive abilities of Huh7 cells were evaluated using shRNA-mediated inhibition. Results Our results indicated that these genes and proteins were overexpressed in HCC. Moreover, when the expression of CLIC5 and PODXL was inhibited in Huh7 cells, we observed decreased migration and invasion. Conclusion This study suggested that EZR, CLIC5 and PODXL could be biological markers to predict the prognosis of HCC and that these proteins participate in migration and invasion processes.
Collapse
Affiliation(s)
- Teresita N. J. Flores-Téllez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco, México 14, CP 07360, México, Distrito Federal
| | - Tania V. Lopez
- Instituto Nacional De Medicina Genómica (INMEGEN), Periférico Sur 4809, Arenal Tepepan, Tlalpan, 14610 Ciudad de México, Distrito Federal
- * E-mail: (TVL); (SVT)
| | - Verónica Rocío Vásquez Garzón
- Facultad de Medicina y Cirugía, Universidad Benito Juárez de Oaxaca. Av Universidad S/N, Col. 5 Señores. C.P. 68120, México, Oaxaca
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco, México 14, CP 07360, México, Distrito Federal
- * E-mail: (TVL); (SVT)
| |
Collapse
|
46
|
Zhou Y, Zhang L, Pan H, Wang B, Yan F, Fang X, Munnee K, Tang Z. Bmi1 essentially mediates podocalyxin-enhanced Cisplatin chemoresistance in oral tongue squamous cell carcinoma. PLoS One 2015; 10:e0123208. [PMID: 25915207 PMCID: PMC4411128 DOI: 10.1371/journal.pone.0123208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/01/2015] [Indexed: 11/24/2022] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) is one of the most common head and neck cancers. Innate or acquired resistance to cisplatin, a standard chemotherapy agent for OTSCC, is common in patients with OTSCC. Understanding the molecular basis for cisplatin chemoresistance in OTSCC cells may serve as a basis for identification of novel therapeutic targets. Podocalyxin (PODXL) has been found critical for malignant progression in a variety of cancers. Bmi1 has recently been found to induce cell apoptosis and cisplatin chemosensitivity in OTSCC cells. In this study, we explored the interaction between PODXL and Bmi1 in OTSCC cells, and assessed its impact on OTSCC cell chemoresistance to cisplatin. PODXL and/or Bmi1 were stably overexpressed or knocked down in SCC-4 and Tca8113 human OTSCC cells. Overexpression of PODXL in both cell lines markedly elevated the expression level of Bmi1 and the half maximal inhibitory concentration (IC50) of cisplain and reduced cisplatin-induced cell apoptosis, which was abolished by knockdown of Bmi1 or a selective focal adhesion kinase (FAK) inhibitor. On the other hand, knockdown of PODXL significantly decreased the Bmi1 expression level and cisplatin IC50 and increased cisplatin-induced cell apoptosis, which was completely reversed by overexpression of Bmi1. While overexpression and knockdown of PODXL respectively increased and decreased the FAK activity, Bmi1 showed no significant effect on the FAK activity in OTSCC cells. In addition, overexpression of PODXL markedly elevated the stability of Bmi1 mRNA, which was abolished by a selective FAK inhibitor. In conclusion, this study provides the first evidence that PODXL up-regulates the expression level of Bmi1 in OTSCC cells by increasing the stability of Bmi1 mRNA through a FAK-dependent mechanism; this effect leads to enhanced cisplatin chemoresistance in OTSCC cells. This study adds new insights into the molecular mechanisms underlying OTSCC chemoresistance.
Collapse
Affiliation(s)
- Yueying Zhou
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Leiyi Zhang
- Department of Minimal Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hao Pan
- Department of Maxillofacial Surgery, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Baisheng Wang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yan
- Department of Prosthodontics, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Xiaodan Fang
- Department of Maxillofacial Surgery, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Krishna Munnee
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangui Tang
- Department of Maxillofacial Surgery, Xiangya Stomatological Hospital, Central South University, Changsha, China
- * E-mail:
| |
Collapse
|
47
|
Snyder KA, Hughes MR, Hedberg B, Brandon J, Hernaez DC, Bergqvist P, Cruz F, Po K, Graves ML, Turvey ME, Nielsen JS, Wilkins JA, McColl SR, Babcook JS, Roskelley CD, McNagny KM. Podocalyxin enhances breast tumor growth and metastasis and is a target for monoclonal antibody therapy. Breast Cancer Res 2015; 17:46. [PMID: 25887862 PMCID: PMC4423095 DOI: 10.1186/s13058-015-0562-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 03/17/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction Podocalyxin (gene name PODXL) is a CD34-related sialomucin implicated in the regulation of cell adhesion, migration and polarity. Upregulated expression of podocalyxin is linked to poor patient survival in epithelial cancers. However, it is not known if podocalyxin has a functional role in tumor progression. Methods We silenced podocalyxin expression in the aggressive basal-like human (MDA-MB-231) and mouse (4T1) breast cancer cell lines and also overexpressed podocalyxin in the more benign human breast cancer cell line, MCF7. We evaluated how podocalyxin affects tumorsphere formation in vitro and compared the ability of podocalyxin-deficient and podocalyxin-replete cell lines to form tumors and metastasize using xenogenic or syngeneic transplant models in mice. Finally, in an effort to develop therapeutic treatments for systemic cancers, we generated a series of antihuman podocalyxin antibodies and screened these for their ability to inhibit tumor progression in xenografted mice. Results Although deletion of podocalyxin does not alter gross cell morphology and growth under standard (adherent) culture conditions, expression of PODXL is required for efficient formation of tumorspheres in vitro. Correspondingly, silencing podocalyxin resulted in attenuated primary tumor growth and invasiveness in mice and severely impaired the formation of distant metastases. Likewise, in competitive tumor engraftment assays where we injected a 50:50 mixture of control and shPODXL (short-hairpin RNA targeting PODXL)-expressing cells, we found that podocalyxin-deficient cells exhibited a striking decrease in the ability to form clonal tumors in the lung, liver and bone marrow. Finally, to validate podocalyxin as a viable target for immunotherapy, we screened a series of novel antihuman podocalyxin antibodies for their ability to inhibit tumor progression in vivo. One of these antibodies, PODOC1, potently blocked tumor growth and metastasis. Conclusions We show that podocalyxin plays a key role in the formation of primary tumors and distant tumor metastasis. In addition, we validate podocalyxin as potential target for monoclonal antibody therapy to inhibit primary tumor growth and systemic dissemination. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0562-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kimberly A Snyder
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Bradley Hedberg
- Centre for Drug Research and Development, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Jill Brandon
- Centre for Drug Research and Development, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Diana Canals Hernaez
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Peter Bergqvist
- Centre for Drug Research and Development, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Frederic Cruz
- Centre for Drug Research and Development, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Kelvin Po
- Centre for Drug Research and Development, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Marcia L Graves
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Michelle E Turvey
- Centre for Molecular Pathology, School of Molecular & Biological Science, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Julie S Nielsen
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - John A Wilkins
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.
| | - Shaun R McColl
- Centre for Molecular Pathology, School of Molecular & Biological Science, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - John S Babcook
- Centre for Drug Research and Development, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
48
|
JI JUN, FENG XIAOJING, SHI MIN, CAI QU, YU YINGYAN, ZHU ZHENGGANG, ZHANG JUN. Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. Int J Oncol 2015; 46:1343-53. [PMID: 25585795 DOI: 10.3892/ijo.2015.2836] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/05/2015] [Indexed: 11/05/2022] Open
|
49
|
Yang X, Ren H, Yao L, Chen X, He A. Role of EHD2 in migration and invasion of human breast cancer cells. Tumour Biol 2015; 36:3717-26. [PMID: 25557791 DOI: 10.1007/s13277-014-3011-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/23/2014] [Indexed: 02/06/2023] Open
Abstract
Eps15 homology domain-containing 2 (EHD2) is a tumor suppressor gene, overexpressed in several solid tumors, including ovarian cancer and esophageal squamous cell carcinoma. The current study examined the expression and the role of EHD2 in human breast cancer. EHD2 expression was determined by Western blot and immunohistochemistry (IHC) in 80 breast cancer and paired noncancerous breast tissues. Correlations between clinicopathologic variables, overall survival, and EHD2 expression were analyzed. We investigated the role of EHD2 in breast cancer migration and invasion by wound healing assay and trans-well invasion assays. A notably lower level of EHD2 expression was found in breast cancer tissues. EHD2 expression was associated with histological grade, lymph node metastasis, and tumor size. Expression of EHD2 was found to be an independent prognostic factor in breast cancer patients. Furthermore, overexpression of EHD2 suppressed, while elimination of EHD2 promoted, the migration and invasion of breast cancer cells. Molecular data showed that EHD2 inhibited breast cancer migration and invasion probably by dampening the expression of Ras-related C3 botulinum toxin substrate 1 (Rac1). Downregulation of EHD2 was associated with migration and invasion by abrogating the expression of Rac1 in breast cancer patients. EHD2 may serve as a prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, China,
| | | | | | | | | |
Collapse
|
50
|
ZHENG ZHONGHUI, DING MULIANG, NI JIANGDONG, SONG DEYE, HUANG JUN, WANG JUNJIE. miR-142 acts as a tumor suppressor in osteosarcoma cell lines by targeting Rac1. Oncol Rep 2014; 33:1291-9. [DOI: 10.3892/or.2014.3687] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/12/2014] [Indexed: 11/05/2022] Open
|