1
|
Buteyn NJ, Burke CG, Sartori VJ, Deering-Gardner E, DeBruine ZJ, Kamarudin D, Chandler DP, Monovich AC, Perez MW, Yi JS, Ries RE, Alonzo TA, Ryan RJ, Meshinchi S, Triche TJ. EZH2-driven immune evasion defines high-risk pediatric AML with t(16;21) FUS::ERG gene fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594150. [PMID: 38798454 PMCID: PMC11118270 DOI: 10.1101/2024.05.14.594150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite decades of research, acute myeloid leukemia (AML) remains a remarkably lethal malignancy. While pediatric AML (pAML) carries a more favorable prognosis than adult AML, the past 25 years of large clinical trials have produced few improvements in pAML survival. Nowhere is this more evident than in patients carrying a t(16;21)(p11;q22) translocation, which yields the FUS::ERG fusion transcript. Patients with FUS::ERG-positive AML are often primary refractory, and most responders quickly relapse. In COG clinical trials, allogeneic stem cell transplantation was of no benefit to FUS::ERG pAML patients; 100% of transplanted patients succumbed to their disease. Expression of major histocompatibility complex (MHC) class I & II and costimulatory molecules is absent at diagnosis in FUS::ERG AML, mirroring the epigenetic mechanism of post-transplant relapse seen in adult AML and its associated dismal outcomes. Here we show that this class-defining immune-repressive phenotype is driven by overexpression of the EZH2 histone lysine methyltransferase in vitro and in multiple clinical cohorts. We show that treatment with the FDA-approved EZH2 inhibitor tazemetostat along with IFN-γ reverses this phenotype, re-establishes MHC presentation, and severely impairs the viability of FUS::ERG AML cells. EZH2 inhibitors may thus provide the first targeted therapeutic option for patients with this high-risk subtype of pAML, with particular benefit as a bridge to successful allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Nathaniel J Buteyn
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | - Connor G Burke
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | - Vincent J Sartori
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | | | - Zachary J DeBruine
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | - Dahlya Kamarudin
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | - Darrell P Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | | | - Monika W Perez
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Joanna S Yi
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Todd A Alonzo
- Children's Oncology Group, Monrovia, CA
- Department of Translational Genomics, University of Southern California, Los Angeles, CA
| | - Russell Jh Ryan
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Children's Oncology Group, Monrovia, CA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Timothy J Triche
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
- Department of Translational Genomics, University of Southern California, Los Angeles, CA
- Department of Pediatrics, College of Human Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
2
|
Maekawa S, Takata R, Obara W. Molecular Mechanisms of Prostate Cancer Development in the Precision Medicine Era: A Comprehensive Review. Cancers (Basel) 2024; 16:523. [PMID: 38339274 PMCID: PMC10854717 DOI: 10.3390/cancers16030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The progression of prostate cancer (PCa) relies on the activation of the androgen receptor (AR) by androgens. Despite efforts to block this pathway through androgen deprivation therapy, resistance can occur through several mechanisms, including the abnormal activation of AR, resulting in castration-resistant PCa following the introduction of treatment. Mutations, amplifications, and splicing variants in AR-related genes have garnered attention in this regard. Furthermore, recent large-scale next-generation sequencing analysis has revealed the critical roles of AR and AR-related genes, as well as the DNA repair, PI3K, and cell cycle pathways, in the onset and progression of PCa. Moreover, research on epigenomics and microRNA has increasingly become popular; however, it has not translated into the development of effective therapeutic strategies. Additionally, treatments targeting homologous recombination repair mutations and the PI3K/Akt pathway have been developed and are increasingly accessible, and multiple clinical trials have investigated the efficacy of immune checkpoint inhibitors. In this comprehensive review, we outline the status of PCa research in genomics and briefly explore potential future developments in the field of epigenetic modifications and microRNAs.
Collapse
Affiliation(s)
- Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (R.T.); (W.O.)
| | | | | |
Collapse
|
3
|
Bai YK, Sun J, Wang YS, Zheng N, Xu QL, Wang Y. The clinicopathological and prognostic significances of EZH2 expression in urological cancers: A meta‑analysis and bioinformatics analysis. Oncol Lett 2023; 26:315. [PMID: 37346412 PMCID: PMC10280112 DOI: 10.3892/ol.2023.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
The Drosophila zeste enhancer homolog 2 gene (enhancer of zeste homolog 2; EZH2) is an important member of the polycomb group (PcG) gene family, which maintains the homologous gene via chromosome modification during embryonic development. EZH2 is overexpressed in various tumors, is closely related to tumor formation and growth, and has a malignant phenotype that promotes tumor cell proliferation, proliferation and metastasis. In the present study, a meta- and bioinformatic analysis was performed using data from multiple online databases until August 30, 2022. EZH2 upregulation was found in kidney, bladder and prostate cancers. EZH2 expression was negatively related to TNM staging and pathological grade in kidney and prostate cancers (P<0.05), as well as invasion depth and pathological grade in bladder cancer. According to the KM-plotter database, EZH2 expression was inversely associated with poor overall survival in patients with kidney clear cell renal cell carcinoma (RCC) and papillary RCC and with favorable survival in bladder cancer. EZH2 expression was negatively related to relapse-free survival in kidney papillary RCC and bladder cancer but positively associated with kidney clear cell RCC. According to GEPIA and UALCAN databases, EZH2 expression was higher in tumor tissue than normal tissue. The TIMER database showed that EZH2 was closely associated with the proportion of seven immune cell infiltrates in kidney, bladder, and prostate cancers. High EZH2 expression may be a potential marker of tumorigenesis and metastasis in patients with urological cancers.
Collapse
Affiliation(s)
- Yang-Kai Bai
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Jing Sun
- Department of Medical Oncology, Affiliated 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, P.R. China
| | - Ye-Song Wang
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Nan Zheng
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Qing-Le Xu
- Department of Urology, Hebei Provincial People's Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Yang Wang
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| |
Collapse
|
4
|
Hansen AF, Høiem TS, Selnaes KM, Bofin AM, Størkersen Ø, Bertilsson H, Wright AJ, Giskeødegård GF, Bathen TF, Rye MB, Tessem MB. Prediction of recurrence from metabolites and expression of TOP2A and EZH2 in prostate cancer patients treated with radiotherapy. NMR IN BIOMEDICINE 2023; 36:e4694. [PMID: 35032074 DOI: 10.1002/nbm.4694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The dual upregulation of TOP2A and EZH2 gene expression has been proposed as a biomarker for recurrence in prostate cancer patients to be treated with radical prostatectomy. A low tissue level of the metabolite citrate has additionally been connected to aggressive disease and recurrence in this patient group. However, for radiotherapy prostate cancer patients, few prognostic biomarkers have been suggested. The main aim of this study was to use an integrated tissue analysis to evaluate metabolites and expression of TOP2A and EZH2 as predictors for recurrence among radiotherapy patients. METHODS From 90 prostate cancer patients (56 received neoadjuvant hormonal treatment), 172 transrectal ultrasound-guided (TRUS) biopsies were collected prior to radiotherapy. Metabolic profiles were acquired from fresh frozen TRUS biopsies using high resolution-magic angle spinning MRS. Histopathology and immunohistochemistry staining for TOP2A and EZH2 were performed on TRUS biopsies containing cancer cells (n = 65) from 46 patients, where 24 of these patients (n = 31 samples) received hormonal treatment. Eleven radical prostatectomy cohorts of a total of 2059 patients were used for validation in a meta-analysis. RESULTS Among radiotherapy patients with up to 11 years of follow-up, a low level of citrate was found to predict recurrence, p = 0.001 (C-index = 0.74). Citrate had a higher predictive ability compared with individual clinical variables, highlighting its strength as a potential biomarker for recurrence. The dual upregulation of TOP2A and EZH2 was suggested as a biomarker for recurrence, particularly for patients not receiving neoadjuvant hormonal treatment, p = 0.001 (C-index = 0.84). While citrate was a statistically significant biomarker independent of hormonal treatment status, the current study indicated a potential of glutamine, glutamate and choline as biomarkers for recurrence among patients receiving neoadjuvant hormonal treatment, and glucose among patients not receiving neoadjuvant hormonal treatment. CONCLUSION Using an integrated approach, our study shows the potential of citrate and the dual upregulation of TOP2A and EZH2 as biomarkers for recurrence among radiotherapy patients.
Collapse
Affiliation(s)
- Ailin Falkmo Hansen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Therese Stork Høiem
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Kirsten Margrete Selnaes
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anna Mary Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Øystein Størkersen
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Helena Bertilsson
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Guro Fanneløb Giskeødegård
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten Beck Rye
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
5
|
Segura‐Moreno YY, Sanabria‐Salas MC, Mesa‐López De Mesa JA, Varela‐Ramirez R, Acosta‐Vega NL, Serrano ML. Determination of ERG(+), EZH2, NKX3.1, and SPINK-1 subtypes to evaluate their association with clonal origin and disease progression in multifocal prostate cancer. Cancer Rep (Hoboken) 2023; 6:e1728. [PMID: 36199157 PMCID: PMC9940006 DOI: 10.1002/cnr2.1728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The prognostic relevance of prostate cancer (PCa) molecular subtypes remains controversial, given the presence of multiple foci with the possibility of different subtypes in the same patient. AIM To determine the clonal origin of heterogeneity in PCa and its association with disease progression, SPOP, ERG(+), EZH2, NKX3.1, and SPINK-1 subtypes were analyzed. METHODS A total of 103 samples from 20 PCa patients were analyzed; foci of adjacent non-tumor prostate tissue, HGPIN, GL3, GL4, GL5, and LN were examined to determine the presence of the TMPRSS2-ERG fusion and ERG, EZH2, NKX3.1, and SPINK-1 expression levels, using RT-PCR. Mutations in exons 6 and 7 of the SPOP gene were determined by sequencing. The presence of subtypes and molecular patterns were identified by combining all subtypes analyzed. To establish the clonal origin of multifocal PCa, molecular concordance between different foci of the same patient was determined. Association of these subtypes with histopathological groups and time to biochemical recurrence (BCR) was assessed. RESULTS No mutation was found in SPOP in any sample. The ERG(+) subtype was the most frequent. The molecular pattern containing all four PCa subtypes was only detected in 3 samples (4%), all LN, but it was the most frequent (40%) in patients. Molecular discordance was the predominant status (55%) when all analyzed molecular characteristics were considered. It was possible to find all subtypes, starting as a preneoplastic lesion, and all but one LN molecular subtype were ERG(+) and NKX3.1 subtypes. Only the expression of the NKX3.1 gene was significantly different among the histopathological groups. No association was found between BCR time in patients and molecular subtypes or molecular concordance or between clinicopathological characteristics and molecular subtypes of ERG, EZH2, and SPINK-1. CONCLUSION The predominance of molecular discordance in prostatic foci per patient, which reflects the multifocal origin of PCa foci, highlights the importance of analyzing multiple samples to establish the prognostic and therapeutic relevance of molecular subtypes in a patient. All the subtypes analyzed here are of early onset, starting from preneoplastic lesions. NKX3.1 gene expression is the only molecular characteristic that shows a progression pattern by sample.
Collapse
Affiliation(s)
- Yenifer Yamile Segura‐Moreno
- Cancer Biology Research GroupInstituto Nacional de CancerologíaBogotáColombia
- Department of ChemistryUniversidad Nacional de Colombia, Ciudad UniversitariaBogotáColombia
| | | | | | - Rodolfo Varela‐Ramirez
- Department of UrologyInstituto Nacional de CancerologíaBogotáColombia
- Department of UrologyUniversidad Nacional de ColombiaBogotáColombia
| | | | - Martha Lucía Serrano
- Cancer Biology Research GroupInstituto Nacional de CancerologíaBogotáColombia
- Department of ChemistryUniversidad Nacional de Colombia, Ciudad UniversitariaBogotáColombia
| |
Collapse
|
6
|
Su Z, Zhang M, Luo H, Zhong J, Tan J, Xu Y, Pan X, Zeng H, Nie L, Xu M, Chen N, Chen X, Zhou Q. circEZH2 E2 /E3 is a dual suppressor of miR363/miR708 to promote EZH2 expression and prostate cancer progression. Cancer Sci 2022; 114:1378-1395. [PMID: 36519785 PMCID: PMC10067432 DOI: 10.1111/cas.15694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The histone methyltransferase enhancer of zeste homolog 2 (EZH2) is overexpressed in a variety of malignancies including prostate cancer (PCa) and may play important roles in tumor progression. Gene copy number gains, enhanced transcription, and a few circRNAs have been reported to upregulate EZH2. It was not known whether EZH2 itself generates circRNAs that promote its own expression. We here report the identification of circEZH2E2/E3 that is derived from exons 2 and 3 of the EZH2 gene and overexpressed in PCa. We show that circEZH2E2/E3 functions as a dual inhibitor for both miR363 and miR708 that target the EZH2 3'UTR and CDS, respectively, resulting in the upregulation of EZH2 expression and hence the downregulation of EZH2-repressed genes (e.g., CDH1 and DAB2IP), and enhancement of PCa cell proliferation, migration, invasion, and xenograft PCa growth. Overexpression of circEZH2E2/E3 is significantly correlated with higher tumor grade, tumor progression, and unfavorable progression-free and disease-specific survival in PCa patients. These findings show a novel autoenhancing EZH2-circEZH2E2/E3 -miR363/miR708-EZH2 regulatory loop, by which circEZH2E2/E3 plays important roles in PCa tumorigenesis and progression by upregulating EZH2, and may have potential diagnostic, prognostic, and therapeutic uses in PCa management.
Collapse
Affiliation(s)
- Zhengzheng Su
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Mengni Zhang
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jinjing Zhong
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Junya Tan
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yunyi Xu
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xiuyi Pan
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xueqin Chen
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qiao Zhou
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
High EZH2 Protein Expression Is a Poor Prognostic Predictor in IDH1 R132H-Negative Gliomas. Diagnostics (Basel) 2022; 12:diagnostics12102383. [PMID: 36292072 PMCID: PMC9600772 DOI: 10.3390/diagnostics12102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating data indicates that enhancer of zeste homology 2 (EZH2) and isocitrate dehydrogenase 1 (IDH1) are implicated in promoting tumourigenesis in a myriad of malignancies including gliomas. We aimed to determine the immunoexpression of EZH2 in gliomas and its correlation with clinicopathological variables. The prognostic value of the combined immunoexpression of EZH2 and IDH1 was further explored in a retrospective analysis involving 56 patients with histologically confirmed gliomas in Universiti Kebangsaan Malaysia Medical Centre from 2010 to 2016. The patients were then followed up for a period of five years. EZH2 and IDH1 R132H immunoexpressions were performed and analysed on respective tissue blocks. Five-year progression-free survival (PFS) and overall survival (OS) were estimated by Kaplan−Meier analysis. Univariate and multivariate Cox proportional hazard regression models were performed to evaluate the value of EZH2 as an independent factor for the prediction of PFS and OS. High EZH2 immunoexpression was demonstrated in 27 (48.2%) gliomas. High EZH2 expression was significantly correlated with older age (p = 0.003), higher tumour grade (p < 0.001), negative IDH1 R132H immunoexpression (p = 0.039), a poor 5-year PFS (mean = 9.7 months, p < 0.001) and 5-year OS (mean = 28.2 months, p = 0.007). In IDH1 R132H-negative gliomas, there was a trend toward shorter 5-year PFS (mean = 8.0 months, p = 0.001) and 5-year OS (mean = 28.7 months, p = 0.06) in gliomas demonstrating high EZH2 expression compared with those with low EZH2 expression. High EZH2 immunoexpression is an unfavourable independent prognostic predictor of poor survival in gliomas. EZH2 analysis might therefore be of clinical value for risk stratification, especially in patients with IDH1 R132H-negative gliomas.
Collapse
|
8
|
Huang M, Ding J, Wu X, Peng X, Wu G, Peng C, Zhang H, Mao C, Huang B. EZH2 affects malignant progression and DNA damage repair of lung adenocarcinoma cells by regulating RAI2 expression. Mutat Res 2022; 825:111792. [PMID: 35939884 DOI: 10.1016/j.mrfmmm.2022.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is featured in high morbidity and mortality. Aberrant activation of the histone methyltransferase EZH2 has close association with cancer progression. This research aimed to deeply dive into the role and possible molecular mechanisms of EZH2 and its downstream genes in malignant progression and DNA damage repair of LUAD cells. METHODS Expression of EZH2 in LUAD cells was analyzed by qRT-PCR, and the effects of EZH2 on proliferation, and apoptosis of LUAD cells were examined by CCK-8, colony formation and flow cytometry assays. The downstream targets of EZH2 were predicted by bioinformatics analysis. Then, the targeting relationship between EZH2 and RAI2 was examined by CHIP and luciferase reporter assays. Rescue assay were used to further validate the effect of EZH2/RAI2 on the malignant progression of LUAD cells. The expression levels of EZH2, RAI2 and p53 were examined by Western blot. RESULTS Upregulation of EZH2 was identified in LUAD tissues and cells. RAI2 was a downstream target gene of EZH2, and the two were negatively correlated. Silencing EZH2 suppressed proliferation of LUAD cells, promoted expression of p53, cell cycle arrest and apoptosis. While silencing RAI2 could reverse the above-mentioned effects caused by EZH2 silencing. CONCLUSION These results demonstrated that EZH2 promoted malignant progression and DNA damage repair of LUAD cells by targeting and negatively regulating RAI2.
Collapse
Affiliation(s)
- Mingjiang Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuyang Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Congxiong Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chaofan Mao
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.
| |
Collapse
|
9
|
López J, Añazco-Guenkova AM, Monteagudo-García Ó, Blanco S. Epigenetic and Epitranscriptomic Control in Prostate Cancer. Genes (Basel) 2022; 13:genes13020378. [PMID: 35205419 PMCID: PMC8872343 DOI: 10.3390/genes13020378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
The initiation of prostate cancer has been long associated with DNA copy-number alterations, the loss of specific chromosomal regions and gene fusions, and driver mutations, especially those of the Androgen Receptor. Non-mutational events, particularly DNA and RNA epigenetic dysregulation, are emerging as key players in tumorigenesis. In this review we summarize the molecular changes linked to epigenetic and epitranscriptomic dysregulation in prostate cancer and the role that alterations to DNA and RNA modifications play in the initiation and progression of prostate cancer.
Collapse
Affiliation(s)
- Judith López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Ana M. Añazco-Guenkova
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Óscar Monteagudo-García
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|
10
|
Kukkonen K, Taavitsainen S, Huhtala L, Uusi-Makela J, Granberg KJ, Nykter M, Urbanucci A. Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response. Cancers (Basel) 2021; 13:3325. [PMID: 34283056 PMCID: PMC8268970 DOI: 10.3390/cancers13133325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The dysregulation of chromatin and epigenetics has been defined as the overarching cancer hallmark. By disrupting transcriptional regulation in normal cells and mediating tumor progression by promoting cancer cell plasticity, this process has the ability to mediate all defined hallmarks of cancer. In this review, we collect and assess evidence on the contribution of chromatin and epigenetic dysregulation in prostate cancer. We highlight important mechanisms leading to prostate carcinogenesis, the emergence of castration-resistance upon treatment with androgen deprivation therapy, and resistance to antiandrogens. We examine in particular the contribution of chromatin structure and epigenetics to cell lineage commitment, which is dysregulated during tumorigenesis, and cell plasticity, which is altered during tumor progression.
Collapse
Affiliation(s)
- Konsta Kukkonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Joonas Uusi-Makela
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Kirsi J. Granberg
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
11
|
Segura-Moreno YY, Sanabria-Salas MC, Varela R, Mesa JA, Serrano ML. Decoding the heterogeneous landscape in the development prostate cancer. Oncol Lett 2021; 21:376. [PMID: 33777200 PMCID: PMC7988715 DOI: 10.3892/ol.2021.12637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/02/2020] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PCa) is characterized as being histologically and molecularly heterogeneous; however, this is not only incorrect among individuals, but also at the multiple foci level, which originates in the prostate gland itself. The reasons for such heterogeneity have not been fully elucidated; however, understanding these may be crucial in determining the course of the disease. PCa is characterized by a complex network of chromosomal rearrangements, which simultaneously deregulate multiple genes; this could explain the appearance of exclusive events associated with molecular subtypes, which have been extensively investigated to establish clinical management and the development of therapies targeted to this type of cancer. From a clinical aspect, the prognosis of the patient has focused on the characteristics of the index lesion (the largest focus in PCa); however, a significant percentage of patients (11%) also exhibit an aggressive secondary foci, which may determine the prognosis of the disease, and could be the determining factor of why, in different studies, the classification of the subtypes does not have an association with prognosis. Due to the aforementioned reasons, the analysis of molecular subtypes in several foci, from the same individual could assist in determining the association between clinical evolution and management of patients with PCa. Castration-resistant PCa (CRPC) has the worst prognosis and develops following androgen ablation therapy. Currently, there are two models to explain the development of CRPC: i) The selection model and ii) the adaptation model; both of which, have been found to include alterations described in the molecular subtypes, such as Enhancer of zeste 2 polycomb repressive complex 2 subunit overexpression, isocitrate dehydrogenase (NAPD+)1 and forkhead box A1 mutations, suggesting that the presence of specific molecular alterations could predict the development of CRPC. This type of analysis could lead to a biological understanding of PCa, to develop personalized medicine strategies, which could improve the response to treatment thus, avoiding the development of resistance. Therefore, the present review discusses the primary molecular factors, to which variable heterogeneity in PCa progress has been attributed.
Collapse
Affiliation(s)
- Yenifer Yamile Segura-Moreno
- Cancer Biology Research Group, National Institute of Cancerology, Bogota 110411, Colombia.,Department of Chemistry, Faculty of Sciences, National University of Colombia, University City, Bogota 111321, Colombia
| | | | - Rodolfo Varela
- Department of Urology, National Institute of Cancerology, Bogota 110411, Colombia.,Department of Urology, National University of Colombia, University City, Bogota 111321, Colombia
| | - Jorge Andrés Mesa
- Department of Pathology, National Institute of Cancerology, Bogota 110411, Colombia
| | - Martha Lucia Serrano
- Cancer Biology Research Group, National Institute of Cancerology, Bogota 110411, Colombia.,Department of Chemistry, Faculty of Sciences, National University of Colombia, University City, Bogota 111321, Colombia
| |
Collapse
|
12
|
Cerrato A, Bedia C, Capriotti AL, Cavaliere C, Gentile V, Maggi M, Montone CM, Piovesana S, Sciarra A, Tauler R, Laganà A. Untargeted metabolomics of prostate cancer zwitterionic and positively charged compounds in urine. Anal Chim Acta 2021; 1158:338381. [PMID: 33863412 DOI: 10.1016/j.aca.2021.338381] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Prostate cancer, a leading cause of cancer-related deaths worldwide, principally occurs in over 50-year-old men. Nowadays there is urgency to discover biomarkers alternative to prostate-specific antigen, as it cannot discriminate patients with benign prostatic hyperplasia from clinically significant forms of prostatic cancer. In the present paper, 32 benign prostatic hyperplasia and 41 prostatic cancer urine samples were collected and analyzed. Polar and positively charged metabolites were therein investigated using an analytical platform comprising an up to 40-fold analyte enrichment step by graphitized carbon black solid-phase extraction, HILIC separation, and untargeted high-resolution mass spectrometry analysis. These classes of compounds are often neglected in common metabolomics experiments even though previous studies reported their significance in cancer biomarker discovery. The complex metabolomics big datasets, generated by the UHPLC-HRMS, were analyzed with the ROIMCR procedure, based on the selection of the MS regions of interest data and their analysis by the Multivariate Curve-Resolution Alternating Least Squares chemometrics method. This approach allowed the resolution and tentative identification of the metabolites differentially expressed by the two data sets. Among these, amino acids and carnitine derivatives were tentatively identified highlighting the importance of the proposed methodology for cancer biomarker research.
Collapse
Affiliation(s)
- Andrea Cerrato
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmen Bedia
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Chiara Cavaliere
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Vincenzo Gentile
- Dipartimento di Scienze Ginecologio-ostetriche e Scienze Urologiche, Sapienza Università, di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Martina Maggi
- Dipartimento di Scienze Ginecologio-ostetriche e Scienze Urologiche, Sapienza Università, di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmela Maria Montone
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Susy Piovesana
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Alessandro Sciarra
- Dipartimento di Scienze Ginecologio-ostetriche e Scienze Urologiche, Sapienza Università, di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Roma Tauler
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
13
|
Doultsinos D, Mills IG. Derivation and Application of Molecular Signatures to Prostate Cancer: Opportunities and Challenges. Cancers (Basel) 2021; 13:495. [PMID: 33525365 PMCID: PMC7865812 DOI: 10.3390/cancers13030495] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is a high-incidence cancer that requires improved patient stratification to ensure accurate predictions of risk and treatment response. Due to the significant contributions of transcription factors and epigenetic regulators to prostate cancer progression, there has been considerable progress made in developing gene signatures that may achieve this. Some of these are aligned to activities of key drivers such as the androgen receptor, whilst others are more agnostic. In this review, we present an overview of these signatures, the strategies for their derivation, and future perspectives on their continued development and evolution.
Collapse
Affiliation(s)
- Dimitrios Doultsinos
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
| | - Ian G. Mills
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
- Patrick G Johnston Centre for Cancer Research, Queen’s University of Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
14
|
Kaundal B, Kushwaha AC, Srivastava AK, Karmakar S, Choudhury SR. A non-viral nano-delivery system targeting epigenetic methyltransferase EZH2 for precise acute myeloid leukemia therapy. J Mater Chem B 2020; 8:8658-8670. [PMID: 32844866 DOI: 10.1039/d0tb01177k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute myeloid leukemia (AML), which is common in the elderly population, accounts for poor long-term survival with a high possibility of relapse. The associated lack of currently developed therapeutics is directing the search for new therapeutic targets relating to AML. EZH2 (Enhancer of Zeste Homolog 2) is a histone methyltransferase member of the polycomb-group (PcG) family, and its significant overexpression in AML means it has emerged as a potential epigenetic target. Here, we propose the human serum albumin (HSA) nanoparticle based delivery of small interfering RNA (siRNA), which can target EZH2-expressing genes in AML. EZH2 specific siRNA loaded in a polyethyleneimine (PEI) conjugated HSA nanocarrier can overcome the systemic instability of siRNA and precisely target the AML cell population for increased EZH2 gene silencing. A stable nanosized complex (HSANPs-PEI@EZH2siRNA), achieved via the electrostatic interaction of PEI and EZH2 siRNA, shows increased systemic stability and hemocompatibility, and enhanced EZH2 gene silencing activity in vitro, compared to conventional transfection reagents. HSANPs-PEI@EZH2siRNA-treated AML cells showed downregulated EZH2, which is associated with a reduced level of Bmi-1 protein, and H3K27me3 and H2AK119ub modification. The ubiquitin-mediated proteasomal degradation pathway plays a critical role in the downregulation of associated proteins following HSANPs-PEI@EZH2siRNA exposure to AML cells. c-Myb is the AML-responsive transcription factor that directly binds on the EZH2 promoter and was downregulated in HSANPs-PEI@EZH2siRNA-treated AML cells. The systemic exposure to HSANPs-PEI@EZH2siRNA of AML engrafted immunodeficient nude mice displayed efficient EZH2 gene silencing and a reduced AML cell population in peripheral blood and bone marrow. The present study demonstrates a non-viral siRNA delivery system for epigenetic targeting based superior anti-leukemic therapy.
Collapse
Affiliation(s)
- Babita Kaundal
- Institute of Nano Science and Technology, Mohali, Punjab, India.
| | | | | | - Surajit Karmakar
- Institute of Nano Science and Technology, Mohali, Punjab, India.
| | | |
Collapse
|
15
|
COCOA: coordinate covariation analysis of epigenetic heterogeneity. Genome Biol 2020; 21:240. [PMID: 32894181 PMCID: PMC7487606 DOI: 10.1186/s13059-020-02139-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
A key challenge in epigenetics is to determine the biological significance of epigenetic variation among individuals. We present Coordinate Covariation Analysis (COCOA), a computational framework that uses covariation of epigenetic signals across individuals and a database of region sets to annotate epigenetic heterogeneity. COCOA is the first such tool for DNA methylation data and can also analyze any epigenetic signal with genomic coordinates. We demonstrate COCOA’s utility by analyzing DNA methylation, ATAC-seq, and multi-omic data in supervised and unsupervised analyses, showing that COCOA provides new understanding of inter-sample epigenetic variation. COCOA is available on Bioconductor (http://bioconductor.org/packages/COCOA).
Collapse
|
16
|
Secreted Frizzled-Related Protein 4 (SFRP4) Is an Independent Prognostic Marker in Prostate Cancers Lacking TMPRSS2: ERG Fusions. Pathol Oncol Res 2020; 26:2709-2722. [PMID: 32677026 PMCID: PMC7471174 DOI: 10.1007/s12253-020-00861-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
Secreted frizzled-related protein 4 (SFRP4) controls WNT signaling and is thought to play a role for tumor aggressiveness. Here, we analyzed a tissue microarray containing 11,152 prostate cancers with pathological, clinical and molecular data by immunohistochemistry. SFRP4 expression was higher in cancer than in non-neoplastic acinar cells. SFRP4 staining was seen in 64.9% of tumors and classified as weak in 33.2%, moderate in 23.9% and strong in 7.8% of cancers. SFRP4 overexpression was linked to advanced tumor stage, high classical/quantitative Gleason grade (p < 0.0001 each), lymph node metastasis (p = 0.0002), and a positive surgical margin (p = 0.0017). SFRP4 positivity was markedly more frequent in ERG positive (77.4%) than in ERG negative cancers (57.4% p < 0.0001). Subset analyses in 2725 cancers with and 3592 cancers without TMPRSS2:ERG fusion revealed that associations with tumor phenotype and patient outcome were largely driven by the subset of ERG negative tumors. In a multivariate analysis including various postoperative and prognostic clinico-pathological features, SFRP4 protein expression emerged as an independent prognostic parameter in ERG negative cancers. SFRP4 immunostaining was significantly linked with 10 of 11 previously analyzed chromosomal deletions (p < 0.05 each). In conclusion, high SFRP4 immunostaining is associated with poor prognosis and genomic instability in ERG negative prostate cancers.
Collapse
|
17
|
Zhang Y, Wang J, An W, Chen C, Wang W, Zhu C, Chen F, Chen H, Zheng W, Gong J. MiR-32 Inhibits Proliferation and Metastasis by Targeting EZH2 in Glioma. Technol Cancer Res Treat 2019; 18:1533033819854132. [PMID: 31138033 PMCID: PMC6542126 DOI: 10.1177/1533033819854132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose: Glioma is identified as a broad category of brain and spinal cord tumors. MiR-32 is important in regulating the genesis of different cancers; however, the underlying mechanisms of miR-32 in glioma still largely unknown. This study aimed to elucidate pathobiological functions of miR-32 in glioma and verify its effect on the regulation of enhancer of zeste homolog 2. Methods: The expression of miR-32 and enhancer of zeste homolog 2 was detected by quantitative real-time polymerase chain reaction and Western blot in glioma tissues and cells. Cell Counting Kit-8 (CCK-8) assay was used to examine the effects of miR-32 on human glioma cells proliferation. Transwell assay was used to examine cell metastasis, respectively. Two bioinformatics analysis software and luciferase reporter assay were chosen to confirm targeting association between miR-32 and enhancer of zeste homolog 2. Results: MiR-32 was downregulated in glioma tissues and cells. Furthermore, enhancer of zeste homolog 2 expression was upregulated and negatively correlated with miR-32 in clinical tissues. Ectopic expression of miR-32 inhibited glioma cell proliferation, migration, and invasion. Enhancer of zeste homolog 2 was identified as direct target gene of miR-32 in glioma. Overexpression of enhancer of zeste homolog 2 ablated the inhibitory effects of miR-32. Conclusion: In summary, our finding suggests that miR-32 acts an important role in inhibiting glioma cell proliferation and metastasis and suppresses the expression of ABCC4 by directly targeting its 3′-untranslated region. The miR-32/enhancer of zeste homolog 2 axis may provide new insights to the treatment for glioma.
Collapse
Affiliation(s)
- Yuan Zhang
- 1 Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan City, Shandong Province, People's Republic of China.,2 Shandong Key Laboratory of Brain Function Remodeling, Jinan City, Shandong Province, People's Republic of China
| | - Jiangang Wang
- 1 Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan City, Shandong Province, People's Republic of China.,2 Shandong Key Laboratory of Brain Function Remodeling, Jinan City, Shandong Province, People's Republic of China
| | - Wenzhi An
- 3 Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei Province, People's Republic of China
| | - Chen Chen
- 4 Taishan Medical University, Taian City, Shandong Province, People's Republic of China
| | - Wencheng Wang
- 4 Taishan Medical University, Taian City, Shandong Province, People's Republic of China
| | - Chao Zhu
- 5 Department of Neurosurgery, Affiliated Hospital of Taishan Medical University, Taian City, Shandong Province, People's Republic of China
| | - Fangzhou Chen
- 5 Department of Neurosurgery, Affiliated Hospital of Taishan Medical University, Taian City, Shandong Province, People's Republic of China
| | - Huizhao Chen
- 5 Department of Neurosurgery, Affiliated Hospital of Taishan Medical University, Taian City, Shandong Province, People's Republic of China
| | - Wei Zheng
- 5 Department of Neurosurgery, Affiliated Hospital of Taishan Medical University, Taian City, Shandong Province, People's Republic of China
| | - Jie Gong
- 1 Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan City, Shandong Province, People's Republic of China.,2 Shandong Key Laboratory of Brain Function Remodeling, Jinan City, Shandong Province, People's Republic of China
| |
Collapse
|
18
|
JAB1/COPS5 is a putative oncogene that controls critical oncoproteins deregulated in prostate cancer. Biochem Biophys Res Commun 2019; 518:374-380. [PMID: 31434609 DOI: 10.1016/j.bbrc.2019.08.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Recent evidence support that the c-Jun activation domain-binding protein 1 (JAB1)/COPS5 has an oncogenic function in various tissues. We show that JAB1 amplification in human prostate cancer (PCa) correlates with reduced overall survival and disease-free progression. Immunohistochemical staining shows enhanced expression of JAB1 in the cytoplasmic compartment of PCa cells compared to the normal prostate epithelium, indicating the activity/function of JAB1 is altered in PCa. To test the function of JAB1 in PCa, we efficiently silenced JAB1 expression using four unique shRNAs in three PCa cell lines (LNCaP, C4-2, and PC-3) and an immortalized prostate epithelial cell line, RWPE-1. Our data clearly show that silencing JAB1 robustly suppresses the growth of PCa cells, but not RWPE-1 cells, suggesting that PCa cells become addicted to JAB1. To study the potential mechanism by which JAB1 controls PCa growth, we profiled gene expression changes by whole transcriptome microarray analysis of C4-2 cells silenced for JAB1 using a pool of 3 shRNAs compared to scrambled shRNA control. We identified 1268 gene changes ≥1.5 fold by silencing JAB1 in C4-2. Western blot confirmation and bioinformatics pathway analyses support that PCa cells become addicted to JAB1 through controlling the following signaling pathways: cell cycle, p53 signaling, DNA replication, TGF-β/BMP, MAPK, TNF, and steroid hormone biosynthesis. We propose that UGT2B28, UGT2B10, UGT2B11, Skp2, EZH2, MDM2, BIRC5 (Survivin), UBE2C, and Smads 1/5/8, which are all associated with the abovementioned key oncogenic pathways, may play critical roles in the putative oncogenic function of JAB1 in PCa.
Collapse
|
19
|
Overexpression of polycomb repressive complex 2 key components EZH2/SUZ12/EED as an unfavorable prognostic marker in cholangiocarcinoma. Pathol Res Pract 2019; 215:152451. [PMID: 31126817 DOI: 10.1016/j.prp.2019.152451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a fatal liver cancer arising from bile duct epithelium. Polycomb repressive complex 2 (PRC2) is a histone methyltransferase enzyme that catalyzes trimethylation of histone H3 on lysine 27, resulting transcriptional gene silencing. The key components of PRC2 are EZH2, SUZ12 and EED, which EZH2 is a catalytic subunit. The defect of individual PRC2 components has been shown to enhance carcinogenesis and cancer progression. The aim of this study was to determine the expression of individual PRC2 components and evaluate its association with clinicopathological data in CCA patients. METHODS The expression of PRC2 components including EZH2, SUZ12 and EED was determined by immunohistochemistry in 40 CCA tissue samples. RESULTS The expression of EZH2 and SUZ12 in CCA tissue was significantly higher than that in adjacent non-cancerous tissue (P < 0.001). The high cytoplasmic EZH2 expression was significantly associated with short overall survival in CCA (P = 0.030). Interestingly, a combined high nuclear and cytoplasmic expression of EZH2 was found to be a worse prognostic marker for overall survival (P = 0.015). Moreover, combined high expression of EZH2 and SUZ12/EED was also associated with short overall survival (P < 0.05). CONCLUSIONS Our findings suggest that overexpression of the PRC2 key components especially EZH2 in both nucleus and cytoplasm can be potentially used as a prognostic marker for CCA.
Collapse
|
20
|
Park JM, Lee JE, Park CM, Kim JH. USP44 Promotes the Tumorigenesis of Prostate Cancer Cells through EZH2 Protein Stabilization. Mol Cells 2019; 42:17-27. [PMID: 30622230 PMCID: PMC6354053 DOI: 10.14348/molcells.2018.0329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/18/2018] [Accepted: 10/11/2018] [Indexed: 01/22/2023] Open
Abstract
Ubiquitin-specific protease 44 (USP44) has been implicated in tumor progression and metastasis across various tumors. However, the function of USP44 in prostate cancers and regulatory mechanism of histone-modifying enzymes by USP44 in tumors is not well-understood. Here, we found that enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, is regulated by USP44. We showed that EZH2 is a novel target of USP44 and that the protein stability of EZH2 is upregulated by USP44-mediated deubiquitination. In USP44 knockdown prostate cancer cells, the EZH2 protein level and its gene silencing activity were decreased. Furthermore, USP44 knockdown inhibited the tumorigenic characteristics and cancer stem cell-like behaviors of prostate cancer cells. Inhibition of tumorigenesis caused by USP44 knockdown was recovered by ectopic introduction of EZH2. Additionally, USP44 regulates the protein stability of oncogenic EZH2 mutants. Taken together, our results suggest that USP44 promotes the tumorigenesis of prostate cancer cells partly by stabilizing EZH2 and that USP44 is a viable therapeutic target for treating EZH2-dependent cancers.
Collapse
Affiliation(s)
- Jae Min Park
- Department of Biological Sciences, Inha University, Incheon 22212,
Korea
| | - Jae Eun Lee
- Department of Biological Sciences, Inha University, Incheon 22212,
Korea
| | - Chan Mi Park
- Department of Biological Sciences, Inha University, Incheon 22212,
Korea
| | - Jung Hwa Kim
- Department of Biological Sciences, Inha University, Incheon 22212,
Korea
| |
Collapse
|
21
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
22
|
Luebke AM, Attarchi-Tehrani A, Meiners J, Hube-Magg C, Lang DS, Kluth M, Tsourlakis MC, Minner S, Simon R, Sauter G, Büscheck F, Jacobsen F, Hinsch A, Steurer S, Schlomm T, Huland H, Graefen M, Haese A, Heinzer H, Clauditz TS, Burandt E, Wilczak W, Höflmayer D. Loss of PSP94 expression is associated with early PSA recurrence and deteriorates outcome of PTEN deleted prostate cancers. Cancer Biol Med 2019; 16:319-330. [PMID: 31516752 PMCID: PMC6713635 DOI: 10.20892/j.issn.2095-3941.2018.0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective Prostate secretory protein of 94 amino acids (PSP94) is a target gene of the EZH2 transcriptional repressor and is often downregulated in prostate cancer; however, its prognostic value is disputed. Methods Immunohistochemical analysis of a tissue microarray of 12, 432 prostate cancer specimens was performed to evaluate PSP94 expression. Correlation of PSP94 expression with tumor phenotype, patient prognosis, TMPRSS2:ERG fusion status, EZH2 expression and PTEN deletion was studied. Results PSP94 expression was increased in benign prostatic hyperplasia; however, it was downregulated in 48% and negative in 42% of the 9, 881 interpretable prostate cancer specimens. The loss of PSP94 expression was inversely correlated to EZH2 expression (P < 0.0001) and largely unrelated to the ERG status, but strongly correlated with high Gleason grade, advanced tumor stage, and nodal metastasis ( P <0.0001 each). The fraction of PSP94-negative cancer specimens increased from 40% in pT2 to 52% in pT3b-pT4 ( P < 0.0001) and from 40% in Gleason 3+3 = 6 to 46% in Gleason 4+3 = 7 and 60% in Gleason ≥4+4 = 8 ( P < 0.0001). Loss of PSP94 was linked to early prostate-specific antigen recurrence, but with little absolute effect ( P < 0.0001). However, it provided additional prognostic impact in cancer specimens with PTEN deletion. Loss of PSP94 deteriorated prognosis of cancer patients with PTEN deletion by more than 10% (P < 0.0001). The combination of PTEN deletion and PSP94 loss provided independent prognostic information that was observed in several subgroups defined by classical and quantitative Gleason grade. Conclusions The results of our study suggest that combined PSP94/PTEN analysis can be potentially used in the clinical prognosis of prostate cancer.
Collapse
Affiliation(s)
- Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ali Attarchi-Tehrani
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan Meiners
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Dagmar S Lang
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
23
|
Ma X, Zhou J, Liu J, Wu G, Yu Y, Zhu H, Liu J. LncRNA ANCR promotes proliferation and radiation resistance of nasopharyngeal carcinoma by inhibiting PTEN expression. Onco Targets Ther 2018; 11:8399-8408. [PMID: 30568463 PMCID: PMC6267624 DOI: 10.2147/ott.s182573] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction Antidifferentiation noncoding RNA (ANCR) is a newly identified long noncoding RNA, which is reported to function as an oncogene in multiple human cancers. However, its function in nasopharyngeal carcinoma (NPC) and underlying mechanism are still unclear. Materials and methods We explored the expression of ANCR in NPC tissues and cells by real-time PCR and analyzed the relationship between ANCR expression and clinicopathological characteristics of NPC patients by Pearson's chi-squared test. Then we inhibited ANCR expression in NPC cells using siRNAs and evaluated the effect of ANCR expression on cell proliferation, colony formation, and radiosensitivity by cell counting kit-8 assay and colony formation assay. We used RT-PCR and Western blot analyses to search target genes of ANCR. Also, we used RNA immunoprecipitation (RIP) assay and chromatin immunoprecipitation assay to study the molecular mechanism in this regulation. Results We found that ANCR was upregulated in NPC tissues and cells. ANCR expression was significantly correlated with tumor size and TNM stage. Further, ANCR knockdown inhibited NPC cell growth and radiation resistance. Mechanistically, we found that PTEN was upregulated in ANCR knockdown NPC cells. In addition, RIP assay indicated that EZH2, the oncogenic histone methyltransferase of polycomb repressive complex 2, interacted with ANCR in NPC cells. More importantly, the binding of EZH2 and deposition of relevant negative histone marker H3K27me3 on PTEN promoter depended on ANCR expression. Conclusion ANCR expression is upregulated in NPC and promotes NPC growth and radiation resistance through an epigenetic regulation of PTEN expression.
Collapse
Affiliation(s)
- Xingkai Ma
- Department of Otorhinolaryngology, Zhangjiagang First People's Hospital, Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China,
| | - Jieyu Zhou
- Department of Otorhinolaryngology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, P.R. China
| | - Jianyong Liu
- Department of Otorhinolaryngology, Zhangjiagang First People's Hospital, Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China,
| | - Geping Wu
- Department of Otorhinolaryngology, Zhangjiagang First People's Hospital, Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China,
| | - Yan Yu
- Department of Otorhinolaryngology, Zhangjiagang First People's Hospital, Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China,
| | - Hongyan Zhu
- Department of Otorhinolaryngology, Zhangjiagang First People's Hospital, Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China,
| | - Jisheng Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China,
| |
Collapse
|
24
|
Correlation between EZH2 and CEP55 and lung adenocarcinoma prognosis. Pathol Res Pract 2018; 215:292-301. [PMID: 30527357 DOI: 10.1016/j.prp.2018.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Recently, accumulated evidence indicates that the enhancer of zeste homologue 2 (EZH2) is highly expressed in a wide range of cancer types, including NSCLC. The downstream genes regulated by EZH2 were screened using bioinformatics analysis. This study aimed to analyse the correlation between the downstream genes of EZH2 and the prognosis of lung adenocarcinoma. METHODS Expression and methylation data of lung adenocarcinoma were downloaded from The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov/) database, and data were categorized into EZH2 overexpression and EZH2 downregulation groups according to EZH2 expression. The genes that showed opposite trends of methylation and expression changes were screened, and the association of gene expression was calculated. Based on the String database, a protein association analysis was conducted to identify genes related to EZH2, which are referred to as EZH2 regulation candidate genes. According to gene expression (GSE27262) and methylation (GSE66836) chip data in the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) database, the genes with differential expression and methylation in lung adenocarcinoma tissues were analysed, and the trends of EZH2 regulation candidate gene expression and methylation were verified to identify the EZH2 regulation candidate genes. Subsequently, MethHC (http://methhc.mbc.nctu.edu.tw/php/index.php) and UALCAN (http://ualcan.path.uab.edu/index.html) were employed to verify changes in the expression and methylation of EZH2 downstream regulation candidate genes and to analyse the correlation between these genes and the prognosis of lung adenocarcinoma. RESULTS Expression and methylation data of lung adenocarcinoma were downloaded from TCGA database and categorized into EZH2 overexpression and EZH2 downregulation groups according to EZH2 expression. A total of 337 genes that showed opposite trends of methylation and expression changes were obtained. The protein association analysis using the String (https://string-db.org/) database showed that 61 genes interact with EZH2 and 61 genes represent EZH2 downstream regulation candidate genes. Moreover, 222 genes obtained from GSE27262 and GSE66836 chip data were negatively correlated with methylation and expression changes, and centrosomal protein 55 (CEP55) was identified as the EZH2 downstream regulation candidate gene. CEP55 was upregulated in lung adenocarcinoma tissues and showed low methylation. According to gene expression data from TCGA database, CEP55 and EZH2 exhibit higher levels in lung adenocarcinoma tissue than in adjacent normal tissue. Finally, the survival analysis revealed that EZH2 is not associated with the prognosis of lung adenocarcinoma, while CEP55 is related to lung adenocarcinoma prognosis. CONCLUSION Taken together, these results indicate that changes in EZH2 expression lead to changes in CEP55 expression in lung adenocarcinoma, and these changes are associated with its prognosis.
Collapse
|
25
|
Wen Y, Cai J, Hou Y, Huang Z, Wang Z. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget 2018; 8:37974-37990. [PMID: 28415635 PMCID: PMC5514966 DOI: 10.18632/oncotarget.16467] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications in cancer stem cells largely result in phenotypic and functional heterogeneity in many solid tumors. Increasing evidence indicates that enhancer of zeste homolog 2 (EZH2), the catalytic subunit of Polycomb repressor complex 2, is highly expressed in cancer stem cells of numerous malignant tumors and has a critical function in cancer stem cell expansion and maintenance. Here, we review up-to-date information regarding EZH2 expression patterns, functions, and molecular mechanisms in cancer stem cells in various malignant tumors and discuss the therapeutic potential of targeting EZH2 in tumors.
Collapse
Affiliation(s)
- Yiping Wen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaya Hou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Ruggero K, Farran-Matas S, Martinez-Tebar A, Aytes A. Epigenetic Regulation in Prostate Cancer Progression. ACTA ACUST UNITED AC 2018; 4:101-115. [PMID: 29888169 PMCID: PMC5976687 DOI: 10.1007/s40610-018-0095-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. Recent Findings Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. Summary Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.
Collapse
Affiliation(s)
- Katia Ruggero
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Granvia de l'Hopitalet, 199 08908, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Sonia Farran-Matas
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Granvia de l'Hopitalet, 199 08908, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Adrian Martinez-Tebar
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Granvia de l'Hopitalet, 199 08908, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Alvaro Aytes
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Granvia de l'Hopitalet, 199 08908, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.,Programs of Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
27
|
Tolkach Y, Kristiansen G. The Heterogeneity of Prostate Cancer: A Practical Approach. Pathobiology 2018; 85:108-116. [PMID: 29393241 DOI: 10.1159/000477852] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer is a paradigm tumor model for heterogeneity in almost every sense. Its clinical, spatial, and morphological heterogeneity divided by the high-level molecular genetic diversity outline the complexity of this disease in the clinical and research settings. In this review, we summarize the main aspects of prostate cancer heterogeneity at different levels, with special attention given to the spatial heterogeneity within the prostate, and to the standard morphological heterogeneity, with respect to tumor grading and modern classifications. We also cover the complex issue of molecular genetic heterogeneity, discussing it in the context of the current evidence of the genetic characterization of prostate carcinoma; the interpatient, intertumoral (multifocal disease), and intratumoral heterogeneity; tumor clonality; and metastatic disease. Clinical and research implications are summarized and serve to address the most pertinent problems stemming from the extreme heterogeneity of prostate cancer.
Collapse
|
28
|
Jia J, Li F, Tang XS, Xu S, Gao Y, Shi Q, Guo W, Wang X, He D, Guo P. Long noncoding RNA DANCR promotes invasion of prostate cancer through epigenetically silencing expression of TIMP2/3. Oncotarget 2018; 7:37868-37881. [PMID: 27191265 PMCID: PMC5122356 DOI: 10.18632/oncotarget.9350] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 05/01/2016] [Indexed: 01/22/2023] Open
Abstract
LncRNA DANCR suppresses differentiation of epithelial cells, however, its function in prostate cancer development is still unknown. In the present study, we found the expression of DANCR increases in prostate cancer tissues and cells compared to normal prostate tissues and cells, moreover, DANCR promotes invasion and migration of prostate cancer cells in vitro and metastasis of tumor xenografts in nude mice. Mechanistically, we found that TIMP2/3, which are critical metastasis inhibitor of prostate cancer, were down-regulated by DANCR synergistically with EZH2 through epigenetically silencing their promoter by chromatin immunoprecipitation assay. In addition, we further investigated whether DANCR is regulated by the differentiation-promoting androgen-androgen receptor (AR) pathway and found that DANCR expression is repressed by androgen-AR; furthermore, DANCR impedes the upregulation of TIMP2/3 and the suppression of invasion and migration by androgen-AR. On the other hand, interestingly, we found that in prostate cancer cells DANCR knockdown decreased the promotion of invasion and migration by the treatment of enzalutamide, which is an AR inhibitor. In summary, our results indicate that DANCR promotes prostate cancer invasion and metastasis through repressing the expression of TIMP2/3, and suggest that DANCR could be a potential target for preventing prostate cancer metastasis, and knockdown DANCR may lessen the potential side effect of AR inhibitor.
Collapse
Affiliation(s)
- Jing Jia
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao-Shuang Tang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Shi
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhuan Guo
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
29
|
Chen JF, Luo X, Xiang LS, Li HT, Zha L, Li N, He JM, Xie GF, Xie X, Liang HJ. EZH2 promotes colorectal cancer stem-like cell expansion by activating p21cip1-Wnt/β-catenin signaling. Oncotarget 2018; 7:41540-41558. [PMID: 27172794 PMCID: PMC5173077 DOI: 10.18632/oncotarget.9236] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/24/2016] [Indexed: 02/05/2023] Open
Abstract
Because colorectal cancer (CRC) stem-like cells (CCS-like cells) contribute to poor patient prognosis, these cells are a potential target for CRC therapy. However, the mechanism underlying the maintenance of CCS-like cell properties remains unclear. Here, we found that patients with advanced stage CRC expressed high levels of polycomb group protein enhancer of zeste homologue 2 (EZH2). High expression of EZH2 in tumor tissues correlated with poor patient prognosis. Conversely, silencing EZH2 reduced CRC cell proliferation. Surprisingly, EZH2 was more highly expressed in the CCS-like cell subpopulation than in the non-CCS-like cell subpopulation. EZH2 knockdown significantly reduced the CD133+/CD44+ subpopulation, suppressed mammosphere formation, and decreased the expression of self-renewal-related genes and strongly impaired tumor-initiating capacity in a re-implantation mouse model. Gene expression data from 433 human CRC specimens from TCGA database and in vitro results revealed that EZH2 helped maintain CCS-like cell properties by activating the Wnt/β-catenin pathway. We further revealed that p21cip1–mediated arrest of the cell cycle at G1/S phase is required for EZH2 activation of the Wnt/β-catenin pathway. Moreover, the specific EZH2 inhibitor EPZ-6438, a clinical trial drug, prevented CRC progression. Collectively, these findings revealed EZH2 maintaining CCS-like cell characteristics by arresting the cell cycle at the G1/S phase. These results indicate a new approach to CRC therapy.
Collapse
Affiliation(s)
- Jian-Fang Chen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xi Luo
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li-Sha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Hong-Tao Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Zha
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ni Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Ming He
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Gan-Feng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiong Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hou-Jie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
30
|
Wang Y, Zang J, Zhang D, Sun Z, Qiu B, Wang X. KDM2B overexpression correlates with poor prognosis and regulates glioma cell growth. Onco Targets Ther 2018; 11:201-209. [PMID: 29386904 PMCID: PMC5764301 DOI: 10.2147/ott.s149833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Gliomas are one of the most lethal cancers in the human central nervous system. Despite clinical treatment advancements, the prognosis of patients with glioma remains poor. KDM2B is a histone lysine demethylase, which has been observed in multiple tumors. But the concrete role of KDM2B in gliomas remains to be further illustrated. Methods The KDM2B expression in gliomas was detected with immunohistochemistry and Western blot assay. Furthermore, knockdown of KDM2B in U87 and U251 glioma cell lines, the proliferation capacity was evaluated by cell viability assay, colon formation assay and flow cytometry in vitro. Western blot assay was used to analyze the p21, EZH2 and cyclinD1 changes followed by knockdown of KDM2B. Results KDM2B was upregulated in tissues of glioma patients, and the expression was correlated to cancer progression. Downregulation of KDM2B in U87 and U251 glioma cell lines inhibited cell proliferation and arrested cell cycle in G0/G1 phase. In addition, silencing KDM2B promoted the upregulation of p21 while reduced the expression of EZH2 and cyclinD1. Conclusion Taken together, our results revealed that KDM2B might influence gliomas growth and act as a novel therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City
| | - Jin Zang
- Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City
| | - Dongyong Zhang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, China
| | - Zhenxiang Sun
- Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City
| | - Bo Qiu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, China
| | - Xiaojie Wang
- Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City
| |
Collapse
|
31
|
High immunoexpression of Ki67, EZH2, and SMYD3 in diagnostic prostate biopsies independently predicts outcome in patients with prostate cancer. Urol Oncol 2017; 36:161.e7-161.e17. [PMID: 29174711 DOI: 10.1016/j.urolonc.2017.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/05/2017] [Accepted: 10/31/2017] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Overtreatment is a major concern in patients with prostate cancer (PCa). Prognostic biomarkers discriminating indolent from aggressive disease in prostate biopsy are urgently needed. We aimed to evaluate the prognostic value of Ki67, EZH2, LSD1, and SMYD3 immunoexpression in diagnostic biopsies from a cohort of PCa patients with long term follow-up. MATERIALS AND METHODS A series of 189 consecutive prostate biopsies diagnosed with PCa (1997-2001) in a cancer center was included in the study, with follow-up last updated in November 2016. Biopsies were reviewed and graded according to 2016 WHO criteria. Immunohistochemistry was performed in the most representative block. Nuclear staining was assessed using digital image analysis. Study outcomes included disease-specific, disease-free, and progression-free survival. Statistical analysis was tabulated using SPSS version 22.0. Survival curves and hazard ratios (HRs) were estimated using Kaplan-Meyer and Cox-regression models, respectively. Statistical significance was set at P<0.05. RESULTS The proportion of patients who completed the study was 177/189 (94%). In univariable analysis, high Ki67, EZH2, and SMYD3 immunoexpression associated with significantly worse disease-specific survival (HR = 1.86, 95% CI: 1.05-3.29; HR = 1.87, 95% CI: 1.10-3.27; HR = 2.68, 95% CI: 1.02-7.92). In multivariable analysis, the 3 biomarkers displayed significantly worse DSS adjusted for CAPRA score (HR = 1.78, 95% CI: 1.01-3.16; HR = 1.93, 95% CI: 1.12-3.32; HR = 2.71, 95% CI: 1.04-7.10). Among patients with low/intermediate risk CAPRA score, high Ki67 immunoexpression identified those more prone to experience disease recurrence (HR = 9.20, 95% CI: 1.27-66.44) and progression (HR = 2.97, 95% CI: 1.05-8.43). CONCLUSIONS High Ki67, EZH2, and SMYD3 immunoexpression, adjusted for standard clinicopathological parameters, independently predicts outcome in patients with PCa, at diagnosis. This might assist in discriminating indolent from aggressive PCa, improving treatment selection.
Collapse
|
32
|
Labbé DP, Sweeney CJ, Brown M, Galbo P, Rosario S, Wadosky KM, Ku SY, Sjöström M, Alshalalfa M, Erho N, Davicioni E, Karnes RJ, Schaeffer EM, Jenkins RB, Den RB, Ross AE, Bowden M, Huang Y, Gray KP, Feng FY, Spratt DE, Goodrich DW, Eng KH, Ellis L. TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup. Clin Cancer Res 2017; 23:7072-7083. [PMID: 28899973 PMCID: PMC5690819 DOI: 10.1158/1078-0432.ccr-17-0413] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/28/2017] [Accepted: 09/01/2017] [Indexed: 01/05/2023]
Abstract
Purpose: Current clinical parameters do not stratify indolent from aggressive prostate cancer. Aggressive prostate cancer, defined by the progression from localized disease to metastasis, is responsible for the majority of prostate cancer-associated mortality. Recent gene expression profiling has proven successful in predicting the outcome of prostate cancer patients; however, they have yet to provide targeted therapy approaches that could inhibit a patient's progression to metastatic disease.Experimental Design: We have interrogated a total of seven primary prostate cancer cohorts (n = 1,900), two metastatic castration-resistant prostate cancer datasets (n = 293), and one prospective cohort (n = 1,385) to assess the impact of TOP2A and EZH2 expression on prostate cancer cellular program and patient outcomes. We also performed IHC staining for TOP2A and EZH2 in a cohort of primary prostate cancer patients (n = 89) with known outcome. Finally, we explored the therapeutic potential of a combination therapy targeting both TOP2A and EZH2 using novel prostate cancer-derived murine cell lines.Results: We demonstrate by genome-wide analysis of independent primary and metastatic prostate cancer datasets that concurrent TOP2A and EZH2 mRNA and protein upregulation selected for a subgroup of primary and metastatic patients with more aggressive disease and notable overlap of genes involved in mitotic regulation. Importantly, TOP2A and EZH2 in prostate cancer cells act as key driving oncogenes, a fact highlighted by sensitivity to combination-targeted therapy.Conclusions: Overall, our data support further assessment of TOP2A and EZH2 as biomarkers for early identification of patients with increased metastatic potential that may benefit from adjuvant or neoadjuvant targeted therapy approaches. Clin Cancer Res; 23(22); 7072-83. ©2017 AACR.
Collapse
Affiliation(s)
- David P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Christopher J Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Phillip Galbo
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Spencer Rosario
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Kristine M Wadosky
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Sheng-Yu Ku
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Martin Sjöström
- Department of Clinical Sciences, Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | | | - Nicholas Erho
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Elai Davicioni
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | | | | | - Robert B Jenkins
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, Minnesota
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Michaela Bowden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ying Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kathryn P Gray
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Felix Y Feng
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, California
| | - Daniel E Spratt
- Department of Radiation Oncology, Michigan Center for Translational Pathology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Kevin H Eng
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Massachusetts.
| |
Collapse
|
33
|
EZH2 Single Nucleotide Variants (SNVs): Diagnostic and Prognostic Role in 10 Solid Tumor Types. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1030018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Karami Madani G, Rad A, Molavi M, Ardalan Khales S, Abbaszadegan MR, Forghanifard MM. Predicting the Correlation of EZH2 and Cancer Stem Cell Markers in Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2017; 49:437-441. [DOI: 10.1007/s12029-017-9985-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Decreased expression of MT1E is a potential biomarker of prostate cancer progression. Oncotarget 2017; 8:61709-61718. [PMID: 28977898 PMCID: PMC5617458 DOI: 10.18632/oncotarget.18683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/22/2017] [Indexed: 11/25/2022] Open
Abstract
Differentiation of indolent and aggressive prostate carcinoma (PCa) at the time of diagnosis is currently one of the major challenges. This study aimed at identification of prognostic biomarkers to aid in predicting biochemical recurrence (BCR) of the disease. Microarray-based gene expression profiling in tissues of 8 BCR and 8 No-BCR cases revealed expression differences of 455 genes, most of which were down-regulated in BCR cases. Eleven genes were selected for validation by real-time PCR in the first PCa cohort (N = 55), while seven of them were further validated in the second, independent, PCa cohort (N = 53). Down-regulation of MT1E (p < 0.001) and GPR52 (p = 0.002) expression and up-regulated levels of EZH2 (p = 0.025) were specific biomarkers of BCR in at least one of the two PCa cohorts, but only MT1E expression retained the independent prognostic value in a multivariate analysis (p < 0.001). DNA methylation analysis (114 PCa and 24 non-cancerous tissues) showed frequent MT1E methylation in PCa (p < 0.001) and was associated (p < 0.010) with the down-regulated expression in one PCa cohort. The results of our study suggest MT1E down-regulation as a potential feature of aggressive PCa.
Collapse
|
36
|
Baumgart SJ, Haendler B. Exploiting Epigenetic Alterations in Prostate Cancer. Int J Mol Sci 2017; 18:ijms18051017. [PMID: 28486411 PMCID: PMC5454930 DOI: 10.3390/ijms18051017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.
Collapse
Affiliation(s)
- Simon J Baumgart
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
37
|
García-Tobilla P, Solórzano SR, Salido-Guadarrama I, González-Covarrubias V, Morales-Montor G, Díaz-Otañez CE, Rodríguez-Dorantes M. SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms. Gene 2016; 593:292-301. [PMID: 27570179 DOI: 10.1016/j.gene.2016.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
Abstract
Worldwide, prostate cancer (PCa) is the second cause of death from malignant tumors among men. Establishment of aberrant epigenetic modifications, such as histone post-translational modifications (PTMs) and DNA methylation (DNAme) produce alterations of gene expression that are common in PCa. Genes of the SFRP family are tumor suppressor genes that are frequently silenced by DNA hypermethylation in many cancer types. The SFRP family is composed of 5 members (SFRP1-5) that modulate the WNT pathway, which is aberrantly activated in PCa. The expression of SFRP genes in PCa and their regulation by DNAme has been controversial. Our objective was to determine the gene expression pattern of the SFRP family in prostatic cell lines and fresh frozen tissues from normal prostates (NP), benign prostatic hyperplasia (BPH) and prostate cancer (PCa), by qRT-PCR, and their DNAme status by MSP and bisulfite sequencing. In prostatic cancer cell lines, the 5 SFRPs showed significantly decreased expression levels compared to a control normal prostatic cell line (p<0.0001). In agreement, SFRP1 and SFRP5 genes showed decreased expression levels in CaP fresh frozen tissues compared to NP (p<0.01), while a similar trend was observed for SFRP2. Conversely, increased levels of SFRP4 expression were found in PCa compared to BPH (p<0.01). Moreover, SFRP2, SFRP3, and SFRP5 showed DNA hypermethylation in PCa cell lines. Interestingly, we observed DNA hypermethylation at the promoter of SFRP1 in the PC3 cell line, but not in LNCaP. However, in the LNCaP cell line we found an aberrant gain of the repressive histone posttranslational modification Histone H3 lysine 27 trimethylation (H3K27me3). In conclusion, decreased expression by DNA hypermethylation of SFRP5 is a common feature of PCa, while decreased expression of SFRP1 can be due to DNA hypermethylation, but sometimes an aberrant gain of the histone mark H3K27me3 is observed instead.
Collapse
Affiliation(s)
- Pilar García-Tobilla
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Susana R Solórzano
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Iván Salido-Guadarrama
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | | | | | | | | |
Collapse
|
38
|
Ferro M, Buonerba C, Terracciano D, Lucarelli G, Cosimato V, Bottero D, Deliu VM, Ditonno P, Perdonà S, Autorino R, Coman I, De Placido S, Di Lorenzo G, De Cobelli O. Biomarkers in localized prostate cancer. Future Oncol 2016; 12:399-411. [PMID: 26768791 DOI: 10.2217/fon.15.318] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biomarkers can improve prostate cancer diagnosis and treatment. Accuracy of prostate-specific antigen (PSA) for early diagnosis of prostate cancer is not satisfactory, as it is an organ- but not cancer-specific biomarker, and it can be improved by using models that incorporate PSA along with other test results, such as prostate cancer antigen 3, the molecular forms of PSA (proPSA, benign PSA and intact PSA), as well as kallikreins. Recent reports suggest that new tools may be provided by metabolomic studies as shown by preliminary data on sarcosine. Additional molecular biomarkers have been identified by the use of genomics, proteomics and metabolomics. We review the most relevant biomarkers for early diagnosis and management of localized prostate cancer.
Collapse
Affiliation(s)
- Matteo Ferro
- Division of Urology, European Institute of Oncology, Milan, Italy
| | - Carlo Buonerba
- Medical Oncology, Department of Clinical Medicine & Surgery, University 'Federico II', Naples, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University 'Federico II', Naples, Italy
| | - Giuseppe Lucarelli
- Department of Emergency & Organ Transplantation - Urology, Andrology & Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Vincenzo Cosimato
- Department of Translational Medical Sciences, University 'Federico II', Naples, Italy
| | - Danilo Bottero
- Division of Urology, European Institute of Oncology, Milan, Italy
| | - Victor M Deliu
- Division of Urology, European Institute of Oncology, Milan, Italy
| | - Pasquale Ditonno
- Department of Emergency & Organ Transplantation - Urology, Andrology & Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Sisto Perdonà
- Department of Urology, National Cancer Institute of Naples, Naples, Italy
| | - Riccardo Autorino
- Urology Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Ioman Coman
- Department of Urology 'Iuliu Hatieganu', University of Medicine & Pharmacy, 400012 Cluj-Napoca, Romania
| | - Sabino De Placido
- Medical Oncology, Department of Clinical Medicine & Surgery, University 'Federico II', Naples, Italy
| | - Giuseppe Di Lorenzo
- Medical Oncology, Department of Clinical Medicine & Surgery, University 'Federico II', Naples, Italy
| | - Ottavio De Cobelli
- Division of Urology, European Institute of Oncology, Milan, Italy.,Department of Urology 'Iuliu Hatieganu', University of Medicine & Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|