1
|
León-Vega II, Oregon R, Schnoor M, Vadillo E. From Ulcerative Colitis to Metastatic Colorectal Cancer: The Neutrophil Contribution. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00036-7. [PMID: 39889826 DOI: 10.1016/j.ajpath.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Ulcerative colitis (UC) is an inflammatory colon and rectum disease affecting approximately 5 million people worldwide. There is no cure available for UC, and approximately 8% of patients with UC develop colorectal cancer (CRC) by gradual acquisition of mutations driving the formation of adenomas and their progression to adenocarcinomas and metastatic disease. CRC constitutes 10% of total cancer cases worldwide and 9% of cancer deaths. Both UC and CRC have an increasing incidence worldwide. Although the epithelium has been well studied in UC and CRC, the contributions of neutrophils are less clear. They are rapidly recruited in excessive amounts from peripheral blood to the colon during UC, and their overactivation in the proinflammatory UC tissue environment contributes to tissue damage. In CRC, the role of neutrophils is controversial, but emerging evidence suggests that their role depends on the evolution and context of the disease. The role of neutrophils in the transition from UC to CRC is even less clear. However, recent studies propose neutrophils as therapeutic targets for better clinical management of both diseases. This review summarizes the current knowledge on the roles of neutrophils in UC and CRC.
Collapse
Affiliation(s)
| | - Reyna Oregon
- Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Cinvestav-IPN, Mexico City, Mexico.
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico.
| |
Collapse
|
2
|
Yamamoto-Furusho JK, Gutierrez-Herrera FD. Molecular Mechanisms and Clinical Aspects of Colitis-Associated Cancer in Ulcerative Colitis. Cells 2025; 14:162. [PMID: 39936954 DOI: 10.3390/cells14030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Inflammatory bowel diseases have long been recognized as entities with a higher risk of colorectal cancer. An increasing amount of information has been published regarding ulcerative colitis-associated colorectal cancer and its unique mechanisms in recent decades, as ulcerative colitis constitutes a chronic process characterized by cycles of activity and remission of unpredictable durations and intensities; cumulative genomic alterations occur during active disease and mucosal healing, resulting in a special sequence of events different to the events associated with sporadic colorectal cancer. The recognition of the core differences between sporadic colorectal cancer and colitis-associated cancer is of great importance to understand and guide the directions in which new research could be performed, and how it could be applied to current clinical scenarios. A DSS/AOM murine model has allowed for a better understanding of the pathogenic mechanisms in colitis-associated cancer, as it is currently the closest model to this unique scenario. In this review, we provide a summary of the main molecular mechanisms and the clinical aspects of colitis-associated cancer in ulcerative colitis.
Collapse
Affiliation(s)
- Jesus K Yamamoto-Furusho
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Ciudad de México 14080, Mexico
| | - Fausto D Gutierrez-Herrera
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Ciudad de México 14080, Mexico
| |
Collapse
|
3
|
Chen T, Liu J, Hang R, Chen Q, Wang D. Neutrophils: From Inflammatory Bowel Disease to Colitis-Associated Colorectal Cancer. J Inflamm Res 2025; 18:925-947. [PMID: 39871958 PMCID: PMC11770381 DOI: 10.2147/jir.s497701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of digestive tract, primarily manifesting as ulcerative colitis (UC) and Crohn's disease (CD). The precise etiology of IBD remains elusive. The interplay of genetic factors, environmental influences, and intestinal microbiota contributes to the establishment of an uncontrolled immune environment within the intestine, which can progressively lead to atypical hyperplasia and ultimately to malignancy over a long period. This colorectal malignant tumor that arises from chronic IBD is referred to as colitis-associated colorectal cancer (CAC). Dysregulation in the quantity and functionality of neutrophils plays a significant role in the onset, progression, and recurrence of IBD, as well as in the transition from IBD to CAC. Neutrophils affect the pathophysiology of IBD through various mechanisms, including the production of reactive oxygen species (ROS), degranulation, the release of inflammatory mediators and chemokines, and the formation of neutrophil extracellular traps (NETs). These processes can induce DNA mutations, thereby facilitating the development of colon cancer. Given the incomplete understanding of the disease mechanisms underlying IBD and CAC, effective treatment and prevention strategies remain challenging. Consequently, a comprehensive review of the functional roles of neutrophils in IBD and CAC is essential for advancing our understanding of IBD pathogenesis and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jiachen Liu
- Radiology Department, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruyi Hang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qian Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
- Oncology Department of Qianjiang Center Hospital, Chongqing University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y, Li M. Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol 2024; 14:1338918. [PMID: 38288125 PMCID: PMC10822953 DOI: 10.3389/fimmu.2023.1338918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.
Collapse
Affiliation(s)
- Haonan Zhang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengcheng He
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Wang L, Wang H. The putative role of ferroptosis in gastric cancer: a review. Eur J Cancer Prev 2023; 32:575-583. [PMID: 37318883 PMCID: PMC10538621 DOI: 10.1097/cej.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Ferroptosis is a unique cell death modality triggered by iron-dependent lipid peroxidation, with cysteine metabolism and glutathione-dependent antioxidant defence responses as the primary triggering mechanisms. Ferroptosis is an independent tumour suppression mechanism and has been implicated in various disorders. In tumourigenesis, ferroptosis plays a dual role in promoting and inhibiting tumours. P53, NFE2L2, BAP1, HIF, and other tumour suppressor genes regulate ferroptosis, releasing damage-associated molecular patterns or lipid metabolites to influence cellular immune responses. Ferroptosis is also involved in tumour suppression and metabolism. The combination of amino acid, lipid, and iron metabolism is involved in the initiation and execution of ferroptosis, and metabolic regulatory mechanisms also play roles in malignancies. Most investigations into ferroptosis in gastric cancer are concentrated on predictive models, not the underlying processes. This review investigates the underlying mechanisms of ferroptosis, tumour suppressor genes, and the tumour microenvironment.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency Medicine, Second Affiliated Hospital of School of Medicine and
| | - Haibin Wang
- Department of Radiology, Hangzhou First People’s Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Yin Y, Wan J, Yu J, Wu K. Molecular Pathogenesis of Colitis-associated Colorectal Cancer: Immunity, Genetics, and Intestinal Microecology. Inflamm Bowel Dis 2023; 29:1648-1657. [PMID: 37202830 DOI: 10.1093/ibd/izad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 05/20/2023]
Abstract
Patients with inflammatory bowel disease (IBD) have a high risk for colorectal cancer (CRC). This cancer type, which is strongly associated with chronic inflammation, is called colitis-associated CRC (CAC). Understanding the molecular pathogenesis of CAC is crucial to identify biomarkers necessary for early diagnosis and more effective treatment directions. The accumulation of immune cells and inflammatory factors, which constitute a complex chronic inflammatory environment in the intestinal mucosa, may cause oxidative stress or DNA damage to the epithelial cells, leading to CAC development and progression. An important feature of CAC is genetic instability, which includes chromosome instability, microsatellite instability, hypermethylation, and changes in noncoding RNAs. Furthermore, the intestinal microbiota and metabolites have a great impact on IBD and CAC. By clarifying immune, genetic, intestinal microecology, and other related pathogenesis, CAC may be more predictable and treatable.
Collapse
Affiliation(s)
- Yue Yin
- Medical School, Fourth Military Medical University, Xi'an, China
| | - Jian Wan
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jingmin Yu
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Xiao S, Liu X, Yuan L, Wang F. A Ferroptosis-Related lncRNAs Signature Predicts Prognosis and Therapeutic Response of Gastric Cancer. Front Cell Dev Biol 2021; 9:736682. [PMID: 34926441 PMCID: PMC8674955 DOI: 10.3389/fcell.2021.736682] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Accumulating literature demonstrates that long noncoding RNAs (lncRNAs) are involved in ferroptosis and gastric cancer progression. However, the predictive value of ferroptosis-related lncRNAs for prognosis and therapeutic response is yet to be elucidated in gastric cancer (GC). Method: The transcriptomic data and corresponding clinical information of GC patients were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database. The association between ferroptosis-related lncRNAs and ferroptosis regulators was analyzed by Spearman correlation analysis. Then, we established a risk predictive model based on the ferroptosis-related lncRNAs using multivariate Cox regression analysis. Furthermore, we performed correlation analysis for the risk score and characteristics of biological processes, immune landscape, stromal activity, genomic integrity, drug response, and immunotherapy efficacy. Results: We constructed a 17-ferroptosis-related-lncRNA signature via multivariate Cox analysis to divide patients into two groups: low- and high-risk groups. The low-risk group was linked to prolonged overall survival and relapse-free survival. The risk score had good predictive ability to predict the prognosis of GC patients compared with other clinical biomarkers. We found that the high-risk group was associated with activation of carcinogenetic signaling pathways, including stromal activation, epithelial-mesenchymal-transition (EMT) activation, and immune escape through integrated bioinformatics analysis. In contrast, the low-risk group was associated with DNA replication, immune-flamed state, and genomic instability. Additionally, through Spearman correlation analysis, we found that patients in the high-risk group may respond well to drugs targeting cytoskeleton, WNT signaling, and PI3K/mTOR signaling, and drugs targeting chromatin histone acetylation, cell cycle, and apoptosis regulation could bring more benefits for the low-risk group. The high-risk group was associated with poor immunotherapy efficacy. Conclusion: Our study systematically evaluated the role of ferroptosis-related lncRNAs in t tumor microenvironment, therapeutic response, and prognosis of GC. Risk score-based stratification could reflect the characteristic of biological processes, immune landscape, stromal activity, genomic stability, and pharmaceutical profile in GC patients. The ferroptosis-related lncRNA signature could serve as a reliable biomarker to predict prognosis and therapeutic response of patients with GC.
Collapse
Affiliation(s)
- Shilang Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Lingzhi Yuan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| |
Collapse
|
8
|
Xiao S, Liu X, Yuan L, Chen X, Wang F. Expression of Ferroptosis-Related Genes Shapes Tumor Microenvironment and Pharmacological Profile in Gastric Cancer. Front Cell Dev Biol 2021; 9:694003. [PMID: 34660573 PMCID: PMC8517126 DOI: 10.3389/fcell.2021.694003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/13/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Ferroptosis is a form of regulated cell death that occurs as a consequence of lethal lipid peroxidation. A wealth of studies has demonstrated that ferroptosis profoundly modulated numerous biological behaviors of tumor. However, its natural functions in gastric cancer (GC) remain to be explored. Methods: Firstly, a total of over 1,000 GC patients from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database were included in our study. Secondly, 32 ferroptosis-related genes were extracted from the ferrDb website. Then, unsupervised clustering was performed to classify patients into three distinct ferroptosis-related clusters. Subsequently, we systematically and comprehensively explored the biological characteristics of each cluster. Finally, we constructed a scoring system, named ferroptosis score, to quantify each cluster and also investigated the predictive therapeutic value of the ferroptosis score for chemotherapy and immunotherapy. Results: Based on the expressions of 32 ferroptosis-related genes, three distinct ferroptosis-related subtypes with various biological characteristics were determined. Integrated analysis showed that cluster 1 is a microsatellite instability (MSI)-like subtype, cluster 2 is an epithelial–mesenchymal transition (EMT)-like subtype, while cluster 3 tends to be a metabolic-like subtype. Prognostic analysis revealed that patients in cluster 2 had a worse overall survival and relapse-free survival. The distribution of the ferroptosis score was significantly different in clusters and gene clusters. The ferroptosis score could predict the biological characteristics of each cluster, the stromal activity, and progression of tumor. The low ferroptosis score group was characterized by the activation of antigen processing and presentation, DNA damage repair pathways, and metabolic pathways, while the high ferroptosis score group was characterized by stromal activation. In response to anticancer drugs, the ferroptosis score was highly negatively associated with drugs targeting MAPK signaling and PI3K/mTOR signaling, while it was positively correlated with drugs targeting the cell cycle, mitosis, and metabolism. Finally, we also proved that the ferroptosis score could serve as a reliable biomarker to predict response to immunotherapy. Conclusion: This work revealed that tumor cells and their surrounding microenvironment could be shaped by varying the activation degrees of ferroptosis. Establishing ferroptosis-related subtypes would guide in predicting the biological features of individual tumors and selecting appropriate treatment protocols for patients.
Collapse
Affiliation(s)
- Shilang Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Changsha, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Changsha, China
| | - Lingzhi Yuan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Changsha, China
| | - Xiao Chen
- Department of Gastroenterology, Human Cancer Hospital of Huaihua, Huaihua, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Changsha, China
| |
Collapse
|
9
|
Stefanius K, Servage K, Orth K. Exosomes in cancer development. Curr Opin Genet Dev 2021; 66:83-92. [PMID: 33477017 DOI: 10.1016/j.gde.2020.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Exosomes are secreted small extracellular vesicles (EVs) packaged with diverse biological cargo. They mediate complex intercellular communications among cells in maintenance of normal physiology or to trigger profound disease progression. Increasing numbers of studies have identified exosome-mediated functions contributing to cancer progression, including roles in paracrine cell-to-cell communication, stromal reprogramming, angiogenesis, and immune responses. Despite the growing body of knowledge, the specific role of exosomes in mediating pre-cancerous conditions is not fully understood and their ability to transform a healthy cell is still controversial. Here we review recent studies describing functions attributed to exosomes in different stages of carcinogenesis. We also explore how exosomes ultimately contribute to the progression of a primary tumor to metastatic disease.
Collapse
Affiliation(s)
- Karoliina Stefanius
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
10
|
Muthusami S, Ramachandran IK, Babu KN, Krishnamoorthy S, Guruswamy A, Queimado L, Chaudhuri G, Ramachandran I. Role of Inflammation in the Development of Colorectal Cancer. Endocr Metab Immune Disord Drug Targets 2020; 21:77-90. [PMID: 32901590 DOI: 10.2174/1871530320666200909092908] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
Chronic inflammation can lead to the development of many diseases, including cancer. Inflammatory bowel disease (IBD) that includes both ulcerative colitis (UC) and Crohnmp's disease (CD) are risk factors for the development of colorectal cancer (CRC). Many cytokines produced primarily by the gut immune cells either during or in response to localized inflammation in the colon and rectum are known to stimulate the complex interactions between the different cell types in the gut environment resulting in acute inflammation. Subsequently, chronic inflammation, together with genetic and epigenetic changes, have been shown to lead to the development and progression of CRC. Various cell types present in the colon, such as enterocytes, Paneth cells, goblet cells, and macrophages, express receptors for inflammatory cytokines and respond to tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and other cytokines. Among the several cytokines produced, TNF-α and IL-1β are the key pro-inflammatory molecules that play critical roles in the development of CRC. The current review is intended to consolidate the published findings to focus on the role of pro-inflammatory cytokines, namely TNF-α and IL-1β, on inflammation (and the altered immune response) in the gut, to better understand the development of CRC in IBD, using various experimental model systems, preclinical and clinical studies. Moreover, this review also highlights the current therapeutic strategies available (monotherapy and combination therapy) to alleviate the symptoms or treat inflammation-associated CRC by using monoclonal antibodies or aptamers to block pro-inflammatory molecules, inhibitors of tyrosine kinases in the inflammatory signaling cascade, competitive inhibitors of pro-inflammatory molecules, and the nucleic acid drugs like small activating RNAs (saRNAs) or microRNA (miRNA) mimics to activate tumor suppressor or repress oncogene/pro-inflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | | | - Kokelavani Nampalli Babu
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Akash Guruswamy
- University of Missouri- Kansas City, College of Medicine, Kansas City, MO 64110, United States
| | - Lurdes Queimado
- Departments of Otorhinolaryngology - Head and Neck Surgery, Cell Biology, Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Ilangovan Ramachandran
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
11
|
Khoury W, Glogauer J, Tenenbaum HC, Glogauer M. Oral inflammatory load: Neutrophils as oral health biomarkers. J Periodontal Res 2020; 55:594-601. [PMID: 32372438 DOI: 10.1111/jre.12758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 01/13/2023]
Abstract
Periodontal diseases present a significant challenge to our healthcare system in terms of morbidity from the disease itself as well as their putative and deleterious effects on systemic health. The current method of diagnosing periodontal disease utilizes clinical criteria solely. These are imprecise and are somewhat invasive. There is thus significant benefit to creating a non-invasive test as a method of screening for and monitoring of periodontal diseases, and, in particular, chronic periodontitis. Oral polymorphonuclear neutrophil (oPMN) counts have been found to correlate with extent of oral inflammation and the presence and severity of periodontal diseases. Potentially then, quantification of oPMNs might be used to identify and measure the severity of oral inflammation (oral inflammatory load; OIL) in subjects with healthy and inflamed periodontal tissues, demonstrating a positive correlation between higher oPMN counts and the extent/severity of OIL. These findings support the development and utilization of a non-invasive chair-side test enabling rapid, accurate, and objective screening of OIL based on measurement of oPMN numbers (similar to white blood cell levels in blood as used in medicine for assessment of infection). The use of such a test before, during, and after treatment of gingivitis and periodontitis could lead to improvements in timing of intervention (ie, when inflammation is active) thereby reducing long-term morbidity.
Collapse
Affiliation(s)
- William Khoury
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Queen's University School of Medicine, Kingston, ON, Canada
| | - Judah Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Michael G. DeGroote School of Medicine, Hamilton, ON, Canada
| | - Howard C Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Sinai Health System, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Sinai Health System, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Department of Dental Oncology, Toronto, ON, Canada
| |
Collapse
|
12
|
Wang Q, Zheng J, Zou JX, Xu J, Han F, Xiang S, Liu P, Chen HW, Wang J. S-adenosylhomocysteine (AdoHcy)-dependent methyltransferase inhibitor DZNep overcomes breast cancer tamoxifen resistance via induction of NSD2 degradation and suppression of NSD2-driven redox homeostasis. Chem Biol Interact 2020; 317:108965. [PMID: 32001260 DOI: 10.1016/j.cbi.2020.108965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 02/05/2023]
Abstract
Endocrine therapies (e.g. tamoxifen and aromatase inhibitors) targeting estrogen action are effective in decreasing mortality of breast cancer. However, their efficacy is limited by intrinsic and acquired resistance. Our previous study demonstrated that overexpression of a histone methyltransferase NSD2 drives tamoxifen resistance in breast cancer cells and that NSD2 is a potential biomarker of tamoxifen resistant breast cancer. Here, we found that DZNep, an indirect inhibitor of histone methyltransferases, potently induces the degradation of NSD2 protein and inhibits the expression of NSD2 target genes (HK2, G6PD, GLUT1 and TIGAR) involved in the pentose phosphate pathway (PPP). DZNep treatment of tamoxifen-resistant breast cancer cells and xenograft tumors also strongly inhibits tumor growth and the cancer cell survival through decreasing cell production of NADPH and glutathione (GSH) and invoking elevated ROS to cause apoptosis. These findings suggest that DZNep-like agents can be developed to target NSD2 histone methyltransferase for effective treatment of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Qianqian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Jianwei Zheng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - June X Zou
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA; Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA
| | - Jianzhen Xu
- Shantou University Medical College, No. 22 Xinling Road, Shantou, China
| | - Fanghai Han
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, PR China
| | - Songtao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Peiqing Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China; National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA; Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA.
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China; National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
13
|
Wang SQ, Yang XY, Cui SX, Gao ZH, Qu XJ. Heterozygous knockout insulin-like growth factor-1 receptor (IGF-1R) regulates mitochondrial functions and prevents colitis and colorectal cancer. Free Radic Biol Med 2019; 134:87-98. [PMID: 30611867 DOI: 10.1016/j.freeradbiomed.2018.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 01/06/2023]
Abstract
Although insulin-like growth factor-1 receptor (IGF-1R) has been accepted as a major determinant of cancers, its biological roles and corresponding mechanisms in tumorigenesis have remained elusive. Herein, we demonstrate that IGF-1R plays pivotal roles in the regulation of mitochondrial respiratory chain and functions during colitis and tumorigenesis. Heterozygous knockout IGF-1R attenuated azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis and colitis associated cancer (CAC) in Igf1r+/- mice. Heterozygous knockout IGF-1R confers resistance to oxidative stress-induced damage on colorectal epithelial cells by protecting mitochondrial dynamics and structures. IGF-1R low expression improves the biological function of mitochondrial fusion under oxidative stress. Mechanically, an increase in respiratory coupling index (RCI) and oxidative phosphorylation index (ADP/O) was seen in colorectal epithelial cells of Igf1r+/- mice. Seahorse XFe-24 analyzer analysis of mitochondrial bioenergetics demonstrated an increase in oxygen consumption rate (OCR) and a decrease of extracellular acidification rate (ECAR) in Igf1r+/- cells. Further analysis suggests the protection mechanisms of Igf1r+/- cells from oxidative stress through the activation of the mitochondrial respiratory chain and LKB1/AMPK pathways. These results highlight the biological roles of IGF-1R at the nexus between oxidative damage and mitochondrial function and a connection between colitis and colorectal cancer.
Collapse
Affiliation(s)
- Shu Qing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiang Yu Yang
- Department of Stomatology, Aerospace Center Hospital, Haidian Distrct, Beijing, China
| | - Shu Xiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China.
| | - Zu Hua Gao
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Xian Jun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|