1
|
Conley J, Genenger B, Ashford B, Ranson M. Micro RNA Dysregulation in Keratinocyte Carcinomas: Clinical Evidence, Functional Impact, and Future Directions. Int J Mol Sci 2024; 25:8493. [PMID: 39126067 PMCID: PMC11313315 DOI: 10.3390/ijms25158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The keratinocyte carcinomas, basal cell carcinoma (BCC), and cutaneous squamous cell carcinoma (cSCC), are the most common cancers in humans. Recently, an increasing body of literature has investigated the role of miRNAs in keratinocyte carcinoma pathogenesis, progression and their use as therapeutic agents and targets, or biomarkers. However, there is very little consistency in the literature regarding the identity of and/or role of individual miRNAs in cSCC (and to a lesser extent BCC) biology. miRNA analyses that combine clinical evidence with experimental elucidation of targets and functional impact provide far more compelling evidence than studies purely based on clinical findings or bioinformatic analyses. In this study, we review the clinical evidence associated with miRNA dysregulation in KCs, assessing the quality of validation evidence provided, identify gaps, and provide recommendations for future studies based on relevant studies that investigated miRNA levels in human cSCC and BCC. Furthermore, we demonstrate how miRNAs contribute to the regulation of a diverse network of cellular functions, and that large-scale changes in tumor cell biology can be attributed to miRNA dysregulation. We highlight the need for further studies investigating the role of miRNAs as communicators between different cell types in the tumor microenvironment. Finally, we explore the clinical benefits of miRNAs as biomarkers of keratinocyte carcinoma prognosis and treatment.
Collapse
Affiliation(s)
- Jessica Conley
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Benjamin Genenger
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Bruce Ashford
- Illawarra Shoalhaven Local Health District (ISLHD), NSW Health, Wollongong, NSW 2500, Australia;
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Marie Ranson
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| |
Collapse
|
2
|
Zhang L, Lv Y. microRNA-203 Targets Insulin-Like Growth Factor Receptor 1 to Inhibit Trophoblast Vascular Remodeling to Augment Preeclampsia. Am J Perinatol 2024; 41:355-364. [PMID: 34891198 DOI: 10.1055/s-0041-1740300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Preeclampsia (PE) is a pregnancy-specific condition featured by high blood pressure, edema, and proteinuria. Research about the role of microRNA (miR)-203 in PE remains insufficient. This experiment is designed to investigate the specific role of miR-203 in trophoblasts in PE. STUDY DESIGN miR-203 expression in placenta tissues of normal pregnant women and PE patients was examined to analyze the relevance between miR-203 and PE diagnostic efficiency and between miR-203 and blood pressure (systolic pressure and diastolic pressure) and proteinuria of PE patients. miR-203 expression was downregulated in hypoxia-cultured trophoblasts using miR-203 inhibitor to assess matrix metalloproteinase-9 (MMP-9) level. Then, the angiogenesis of trophoblasts with different treatments was determined. Subsequently, the target relation between miR-203 and insulin-like growth factor receptor 1 (IGF-1R) was predicted and verified. Additionally, the effect of IGF-1R in the mechanism of miR-203 modulating trophoblast vascular remodeling was detected. RESULTS miR-203 was overexpressed in the placenta of PE patients and it acted as a promising diagnostic indicator for PE. Moreover, miR-203 was positively associated with blood pressure (systolic pressure and diastolic pressure) and proteinuria of PE patients. miR-203 silencing in hypoxia-cultured trophoblasts enhanced trophoblast vascular remodeling. Mechanically, miR-203 bound to IGF-1R to suppress its transcription. IGF-1R downregulation counteracted the promotive effect of miR-203 silencing on trophoblast vascular remodeling. CONCLUSION miR-203 was overexpressed in PE, and it targeted IGF-1R to limit trophoblast vascular remodeling. KEY POINTS · miR-203 is overexpressed in the placenta of PE patients.. · miR-203 acts as a potential diagnostic marker for PE.. · miR-203 targets IGF-1R to reduce trophoblast vascular remodeling in PE..
Collapse
Affiliation(s)
- Li Zhang
- Department of Obstetrics, Maternal and Child health Hospital of Hubei Province, Wuhan City, Hubei Province, People's Republic of China
| | - Yuxia Lv
- Department of Obstetrics, Maternal and Child health Hospital of Hubei Province, Wuhan City, Hubei Province, People's Republic of China
| |
Collapse
|
3
|
Panoutsopoulou K, Liu Y, Avgeris M, Dreyer T, Dorn J, Magdolen V, Scorilas A. Repression of miR-146a in predicting poor treatment outcome in triple-negative breast cancer. Clin Biochem 2023; 114:43-51. [PMID: 36502883 DOI: 10.1016/j.clinbiochem.2022.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES In the era of precision medicine, the highly aggressive and heterogenous triple-negative breast cancer (TNBC) is still characterized by limited options to support personalized prognosis and guide therapeutic interventions. Thereafter, the aim of the present study has been the thorough evaluation of miR-146a as a novel molecular indicator of TNBC prognosis and treatment outcome, utilizing four independent TNBC cohorts. DESIGN & METHODS miR-146a levels were clinically evaluated in our screening (n = 122) and three external validation TNBC cohorts (de Rinaldis et al. 2013, n = 114; Jézéquel et al. 2015, n = 107; TCGA, n = 180). Analysis of miR-146a and validated gene targets was performed in Jézéquel et al. and TCGA validation cohorts. Patients' survival, recurrence and metastasis were determined as clinical endpoints for the survival analysis. Internal validation was performed by bootstrap analysis and clinical net benefit was evaluated by decision curve analysis. RESULTS Reduction of miR-146a is strongly associated with patients' poor survival and can predict post-treatment disease early-recurrence, independently of tumor size, lymph node status, histological grade and patients' age. The analysis of the external validation cohorts corroborated the unfavorable nature of miR-146a repression regarding patients' survival and, strikingly, unveiled the ability of miR-146a to predict TNBC metastasis. Combined assessment of miR-146a levels and lymph node status resulted in superior risk-stratification of TNBC patients and higher clinical benefit regarding disease prognosis and post-treatment outcome. Ultimately, miR-146a was negatively associated with EGFR and SOX2 expression in TNBC. CONCLUSIONS miR-146a evaluation could ameliorate personalized prognosis and support precision medicine decisions in TNBC.
Collapse
Affiliation(s)
- Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Yueyang Liu
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany; Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
4
|
Panoutsopoulou K, Magkou P, Dreyer T, Dorn J, Obermayr E, Mahner S, van Gorp T, Braicu I, Magdolen V, Zeillinger R, Avgeris M, Scorilas A. tRNA-derived small RNA 3'U-tRF ValCAC promotes tumour migration and early progression in ovarian cancer. Eur J Cancer 2023; 180:134-145. [PMID: 36599181 DOI: 10.1016/j.ejca.2022.11.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Despite recent advances in epithelial ovarian cancer (EOC) management, the highly heterogenous histological/molecular tumour background and patients' treatment response obstructs personalised prognosis and therapeutics. Herein, we have studied the role and clinical utility of the novel subclass of tRNA-derived small RNA fragments emerging via 3'-trailer processing of pre-tRNAs (3'U-tRFs) in EOC. METHODS SK-OV-3 and OVCAR-3 cells were used for in vitro study. Following transfection, cell growth and migration were assessed by CCK8 and wound healing assays, respectively. 3'U-tRFs levels were assessed by reverse transcription quantitative PCR (RT-qPCR), following 3'-end RNA polyadenylation. A screening (OVCAD, n = 100) and institutionally independent validation (TU Munich, n = 103) cohorts were employed for survival analysis using disease progression and patients' death as clinical end-points. Bootstrap analysis was performed for internal validation, and decision curve analysis was used to evaluate clinical benefit on disease prognosis. RESULTS Following primary clinical assessment, target prediction and gene ontology analyses, the 3'U-tRFValCAC (derived from pre-tRNAValCAC) was highlighted to regulate cell proliferation and adhesion, and to correlate with inferior patients' outcome. 3'U-tRFValCAC transfection of SK-OV-3 and OVCAR-3 cells resulted in significantly increased cell growth and migration, in a dose-dependent manner. Elevated tumour 3'U-tRFValCAC levels were associated with significantly higher risk for early progression and worse survival following first-line platinum-based chemotherapy, independently of patients' clinicopathological data, chemotherapy response, and residual tumour. Interestingly, 3'U-tRFValCAC-fitted multivariate models improved risk stratification and provided superior clinical net benefit in prediction of treatment outcome compared to disease established markers. CONCLUSIONS 3'U-tRFValCAC promotes tumour cell growth and migration and supports modern risk stratification and prognosis in EOC.
Collapse
Affiliation(s)
- Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Magkou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Toon van Gorp
- Department of Obstetrics and Gynaecology, Division of Gynecologic Oncology, University Hospital Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Ioana Braicu
- Department of Gynecology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
5
|
Aghayousefi R, Hosseiniyan Khatibi SM, Zununi Vahed S, Bastami M, Pirmoradi S, Teshnehlab M. A diagnostic miRNA panel to detect recurrence of ovarian cancer through artificial intelligence approaches. J Cancer Res Clin Oncol 2023; 149:325-341. [PMID: 36378340 DOI: 10.1007/s00432-022-04468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Ovarian Cancer (OC) is the deadliest gynecology malignancy, whose high recurrence rate in OC patients is a challenging object. Therefore, having deep insights into the genetic and molecular mechanisms of OC recurrence can improve the target therapeutic procedures. This study aimed to discover crucial miRNAs for the detection of tumor recurrence in OC by artificial intelligence approaches. METHOD Through the ANOVA feature selection method, we selected 100 candidate miRNAs among 588 miRNAs. For their classification, a deep-learning model was employed to validate the significance of the candidate miRNAs. The accuracy, F1-score (high-risk), and AUC-ROC of classification test data based on the 100 miRNAs were 73%, 0.81, and 0.65, respectively. Association rule mining was used to discover hidden relations among the selected miRNAs. RESULT Five miRNAs, including miR-1914, miR-203, miR-135a-2, miR-149, and miR-9-1, were identified as the most frequent items among high-risk association rules. The identified miRNAs may target genes/proteins involved in epithelial-mesenchymal transition (EMT), resistance to therapy, and cancer stem cells; being responsible for the heterogeneity and plasticity of the tumor. Our conclusion presents mir-1914 as the significant candidate miRNA and the most frequent item. Current knowledge indicates that the dysregulated miR-1914 may function as a tumor suppressor or oncogene in the development of cancer. CONCLUSION These candidate miRNAs can be considered a powerful tool in the diagnosis of OC recurrence. We hypothesize that mir-1914 might open a new line of research in the realm of managing the recurrence of OC and could be a significant factor in triggering OC recurrence.
Collapse
Affiliation(s)
- Reyhaneh Aghayousefi
- Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Seyed Mahdi Hosseiniyan Khatibi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Milad Bastami
- Non-Communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Teshnehlab
- Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
6
|
Xiong Q, Zhang Y, Li J, Zhu Q. Small Non-Coding RNAs in Human Cancer. Genes (Basel) 2022; 13:genes13112072. [PMID: 36360311 PMCID: PMC9690286 DOI: 10.3390/genes13112072] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Small non-coding RNAs are widespread in the biological world and have been extensively explored over the past decades. Their fundamental roles in human health and disease are increasingly appreciated. Furthermore, a growing number of studies have investigated the functions of small non-coding RNAs in cancer initiation and progression. In this review, we provide an overview of the biogenesis of small non-coding RNAs with a focus on microRNAs, PIWI-interacting RNAs, and a new class of tRNA-derived small RNAs. We discuss their biological functions in human cancer and highlight their clinical application as molecular biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junjun Li
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
7
|
Chen M, Lei N, Tian W, Li Y, Chang L. Recent advances of non-coding RNAs in ovarian cancer prognosis and therapeutics. Ther Adv Med Oncol 2022; 14:17588359221118010. [PMID: 35983027 PMCID: PMC9379276 DOI: 10.1177/17588359221118010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological malignancy with the highest mortality worldwide. OC is usually diagnosed at an advanced stage, and the standard treatment is surgery combined with platinum or paclitaxel chemotherapy. However, chemoresistance inevitably appears coupled with the easy recurrence and poor prognosis. Thus, early diagnosis, predicting prognosis, and reducing chemoresistance are of great significance for controlling the progression and improving treatment effects of OC. Recently, much insight has been gained into the non-coding RNA (ncRNA) that is employed for RNAs but does not encode a protein, and many types of ncRNAs have been characterized including long-chain non-coding RNAs, microRNAs, and circular RNAs. Accumulating evidence indicates these ncRNAs play very active roles in OC progression and metastasis. In this review, we briefly discuss the ncRNAs as biomarkers for OC prognosis. We focus on the recent advances of ncRNAs as therapeutic targets in preventing OC metastasis, chemoresistance, immune escape, and metabolism. The novel strategies for ncRNAs-targeted therapy are also exploited for improving the survival of OC patients.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Level 2, Research and Education Centre, 4-10 South Street, Kogarah, NSW 2217, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| |
Collapse
|
8
|
tRNA GlyGCC-Derived Internal Fragment (i-tRF-GlyGCC) in Ovarian Cancer Treatment Outcome and Progression. Cancers (Basel) 2021; 14:cancers14010024. [PMID: 35008188 PMCID: PMC8750938 DOI: 10.3390/cancers14010024] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) remains a highly-lethal gynecological malignancy, characterized by frequent recurrence, chemotherapy resistance and poor 5-year survival. Identifying novel predictive molecular markers remains an overdue challenge in the disease's clinical management. Herein, in silico analysis of TCGA-OV highlighted the tRNA-derived internal fragment (i-tRF-GlyGCC) among the most abundant tRFs in ovarian tumors, while target prediction and gene ontology (GO) enrichment analysis predicted its implication in key biological processes. Thereafter, i-tRF-GlyGCC levels were quantified in a screening EOC (n = 98) and an institutionally-independent serous ovarian cancer (SOC) validation cohort (n = 100, OVCAD multicenter study). Disease progression and patient death were used as clinical endpoints for the survival analysis. Internal validation was performed by bootstrap analysis and the clinical net benefit was estimated by decision curve analysis. The analysis highlighted the significant association of i-tRF-GlyGCC with advanced FIGO stages, suboptimal debulking and most importantly, with early progression and poor overall survival of EOC patients. The OVCAD validation cohort corroborated the unfavorable predictive value of i-tRF-GlyGCC in EOC. Ultimately, evaluation of i-tRF-GlyGCC with the established/clinically used prognostic markers offered superior patient risk-stratification and enhanced clinical benefit in EOC prognosis. In conclusion, i-tRF-GlyGCC assessment could aid towards personalized prognosis and support precision medicine decisions in EOC.
Collapse
|
9
|
Shaosheng W, Shaochuang W, Lichun F, Na X, Xiaohong Z. ITPKA induces cell senescence, inhibits ovarian cancer tumorigenesis and can be downregulated by miR-203. Aging (Albany NY) 2021; 13:11822-11832. [PMID: 33879633 PMCID: PMC8109125 DOI: 10.18632/aging.202880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/14/2021] [Indexed: 01/26/2023]
Abstract
Overcoming senescence is a feature of ovarian cancer cells; however, the mechanisms underlying senescence regulation in ovarian cancer cells remain largely unknown. In this study, we found that ITPKA was downregulated in ovarian cancer samples, and the lower expression correlated with poor survival. Overexpression of ITPKA inhibited the anchorage-independent growth of ovarian cancer cells and induced senescence. However, knockdown of ITPKA promoted the anchorage-independent growth of ovarian cancer cells and inhibited senescence. Mechanistically, ITPKA was found to interact with MDM2, which stabilized P53, an essential regulator of senescence. Moreover, ITPKA was negatively regulated by miR-203, a microRNA that has been previously reported to be upregulated in ovarian cancer. Taken together, the results of this study demonstrated the tumor suppressive roles of ITPKA in ovarian cancer and provided a good explanation for the oncogenic roles of miR-203.
Collapse
Affiliation(s)
- Wang Shaosheng
- Maternity Service Center of Pengzhou Maternal & Children Health Care Hospital, Chengdu, Sichuan Province 611930, People’s Republic of China
| | - Wang Shaochuang
- Department of Hepatobiliary and Pancreatic Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu Province, People’s Republic of China
| | - Fan Lichun
- Hainan Maternal and Children’s Medical Center, Haikou 570206, Hainan Province, People’s Republic of China
| | - Xie Na
- Department of Pathology, The Affiliated Hospital of Hainan Medical University, Haikou 571101, Hainan Province, People’s Republic of China
| | - Zhao Xiaohong
- Hainan Maternal and Children’s Medical Center, Haikou 570206, Hainan Province, People’s Republic of China
| |
Collapse
|
10
|
Panoutsopoulou K, Avgeris M, Magkou P, Mavridis K, Dreyer T, Dorn J, Obermayr E, Reinthaller A, Michaelidou K, Mahner S, Vergote I, Loverix L, Braicu I, Sehouli J, Zeillinger R, Magdolen V, Scorilas A. miR-181a overexpression predicts the poor treatment response and early-progression of serous ovarian cancer patients. Int J Cancer 2020; 147:3560-3573. [PMID: 32621752 DOI: 10.1002/ijc.33182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023]
Abstract
Ovarian cancer (OC) remains a leading cause of gynecological cancer-related death worldwide, characterized by poor 5-year survival. Molecular markers could serve as crucial tools of personalized prognosis and therapy. Herein, we present miR-181a as novel predictor of OC prognosis, using five independent OC cohorts. In particular, a screening (n = 81) and an institutionally independent validation (n = 100, OVCAD multicenter study) serous OC (SOC) cohorts were analyzed. Bagnoli et al (2016) OC179 (n = 124) to OC133 (n = 100) and TCGA (n = 489) served as external validation cohorts. Patients' survival and disease progression were assessed as clinical endpoint events. Bootstrap analysis was performed for internal validation and decision curve analysis was utilized to evaluate clinical benefit. miR-181a overexpression was unveiled as powerful and independent molecular predictor of patients' poor survival and higher risk for disease progression after debulking surgery and platinum-based chemotherapy. Analysis of the OVCAD institutionally independent cohort, as well as of Bagnoli et al. and TCGA external cohorts further confirmed the unfavorable prognostic nature of miR-181a overexpression in SOC. Strikingly, multivariate prognostic models incorporating miR-181a with established disease markers clearly improved patients' risk-stratification and offered superior clinical benefit in OC prognostication. Conclusively, miR-181a evaluation could augment prognostic accuracy and support precision medicine decisions in OC.
Collapse
Affiliation(s)
- Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Magkou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Mavridis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Alexander Reinthaller
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Kleita Michaelidou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ignace Vergote
- Department of Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Liselore Loverix
- Department of Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Ioana Braicu
- Department of Gynecology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Fahim SA, Abdullah MS, Espinoza-Sánchez NA, Hassan H, Ibrahim AM, Ahmed SH, Shakir G, Badawy MA, Zakhary NI, Greve B, El-Shinawi M, Götte M, Ibrahim SA. Inflammatory Breast Carcinoma: Elevated microRNA miR-181b-5p and Reduced miR-200b-3p, miR-200c-3p, and miR-203a-3p Expression as Potential Biomarkers with Diagnostic Value. Biomolecules 2020; 10:E1059. [PMID: 32708601 PMCID: PMC7407124 DOI: 10.3390/biom10071059] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare yet aggressive breast cancer variant, associated with a poor prognosis. The major challenge for IBC is misdiagnosis due to the lack of molecular biomarkers. We profiled dysregulated expression of microRNAs (miRNAs) in primary samples of IBC and non-IBC tumors using human breast cancer miRNA PCR array. We discovered that 28 miRNAs were dysregulated (10 were upregulated, while 18 were underexpressed) in IBC vs. non-IBC tumors. We identified 128 hub genes, which are putative targets of the differentially expressed miRNAs and modulate important cancer biological processes. Furthermore, our qPCR analysis independently verified a significantly upregulated expression of miR-181b-5p, whereas a significant downregulation of miR-200b-3p, miR-200c-3p, and miR-203a-3p was detected in IBC tumors. Receiver operating characteristic (ROC) curves implied that the four miRNAs individually had a diagnostic accuracy in discriminating patients with IBC from non-IBC and that miR-203a-3p had the highest diagnostic value with an AUC of 0.821. Interestingly, a combination of miR-181b-5p, miR-200b-3p, and miR-200c-3p robustly improved the diagnostic accuracy, with an area under the curve (AUC) of 0.897. Intriguingly, qPCR revealed that the expression of zinc finger E box-binding homeobox 2 (ZEB2) mRNA, the putative target of miR-200b-3p, miR-200c-3p, and miR-203a-3p, was upregulated in IBC tumors. Overall, this study identified a set of miRNAs serving as potential biomarkers with diagnostic relevance for IBC.
Collapse
Affiliation(s)
- Sarah Atef Fahim
- Biochemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mahmoud Salah Abdullah
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
| | | | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| | - Ayman M. Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| | - Sarah Hamdy Ahmed
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
| | - George Shakir
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Mohamed A. Badawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Nadia I. Zakhary
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Burkhard Greve
- Department of Radiotherapy–Radiooncology, University Hospital Münster, 48149 Münster, Germany;
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany;
| | - Sherif Abdelaziz Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| |
Collapse
|