1
|
Smerconish S, Schmitt JE. Neuroanatomical Correlates of Cognitive Dysfunction in 22q11.2 Deletion Syndrome. Genes (Basel) 2024; 15:440. [PMID: 38674375 PMCID: PMC11050060 DOI: 10.3390/genes15040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
22q11.2 Deletion Syndrome (22q11.2DS), the most common chromosomal microdeletion, presents as a heterogeneous phenotype characterized by an array of anatomical, behavioral, and cognitive abnormalities. Individuals with 22q11.2DS exhibit extensive cognitive deficits, both in overall intellectual capacity and focal challenges in executive functioning, attentional control, perceptual abilities, motor skills, verbal processing, as well as socioemotional operations. Heterogeneity is an intrinsic factor of the deletion's clinical manifestation in these cognitive domains. Structural imaging has identified significant changes in volume, thickness, and surface area. These alterations are closely linked and display region-specific variations with an overall increase in abnormalities following a rostral-caudal gradient. Despite the extensive literature developing around the neurocognitive and neuroanatomical profiles associated with 22q11.2DS, comparatively little research has addressed specific structure-function relationships between aberrant morphological features and deficient cognitive processes. The current review attempts to categorize these limited findings alongside comparisons to populations with phenotypic and structural similarities in order to answer to what degree structural findings can explain the characteristic neurocognitive deficits seen in individuals with 22q11.2DS. In integrating findings from structural neuroimaging and cognitive assessments, this review seeks to characterize structural changes associated with the broad neurocognitive challenges faced by individuals with 22q11.2DS.
Collapse
|
2
|
Gudbrandsen M, Daly E, Murphy CM, Blackmore CE, Rogdaki M, Mann C, Bletsch A, Kushan L, Bearden CE, Murphy DGM, Craig MC, Ecker C. Brain morphometry in 22q11.2 deletion syndrome: an exploration of differences in cortical thickness, surface area, and their contribution to cortical volume. Sci Rep 2020; 10:18845. [PMID: 33139857 PMCID: PMC7606591 DOI: 10.1038/s41598-020-75811-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023] Open
Abstract
22q11.2 Deletion Syndrome (22q11.2DS) is the most common microdeletion in humans, with a heterogenous clinical presentation including medical, behavioural and psychiatric conditions. Previous neuroimaging studies examining the neuroanatomical underpinnings of 22q11.2DS show alterations in cortical volume (CV), cortical thickness (CT) and surface area (SA). The aim of this study was to identify (1) the spatially distributed networks of differences in CT and SA in 22q11.2DS compared to controls, (2) their unique and spatial overlap, as well as (3) their relative contribution to observed differences in CV. Structural MRI scans were obtained from 62 individuals with 22q11.2DS and 57 age-and-gender-matched controls (aged 6-31). Using FreeSurfer, we examined differences in vertex-wise estimates of CV, CT and SA at each vertex, and compared the frequencies of vertices with a unique or overlapping difference for each morphometric feature. Our findings indicate that CT and SA make both common and unique contributions to volumetric differences in 22q11.2DS, and in some areas, their strong opposite effects mask differences in CV. By identifying the neuroanatomic variability in 22q11.2DS, and the separate contributions of CT and SA, we can start exploring the shared and distinct mechanisms that mediate neuropsychiatric symptoms across disorders, e.g. 22q11.2DS-related ASD and/or psychosis/schizophrenia.
Collapse
Affiliation(s)
- M Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - E Daly
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - C M Murphy
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Behavioural Genetics Clinic, Adult Autism and ADHD Services, Behavioural and Developmental Clinical Academic Group, South London and Maudsley Foundation, NHS, London, UK
| | - C E Blackmore
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Behavioural Genetics Clinic, Adult Autism and ADHD Services, Behavioural and Developmental Clinical Academic Group, South London and Maudsley Foundation, NHS, London, UK
| | - M Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - C Mann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - A Bletsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - L Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, CA, USA
| | - C E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California-Los Angeles, Los Angeles, CA, USA
| | - D G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - M C Craig
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- National Autism Unit, Bethlem Royal Hospital, London, UK
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany.
| |
Collapse
|
3
|
Jalbrzikowski M. Neuroimaging Phenotypes Associated With Risk and Resilience for Psychosis and Autism Spectrum Disorders in 22q11.2 Microdeletion Syndrome. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:211-224. [PMID: 33218931 DOI: 10.1016/j.bpsc.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/17/2023]
Abstract
Identification of biological risk factors that contribute to the development of complex neuropsychiatric disorders such as psychosis and autism spectrum disorder (ASD) is key for early intervention and detection. Furthermore, parsing the biological heterogeneity associated with these neuropsychiatric syndromes will help us understand the neural mechanisms underlying psychiatric symptom development. The 22q11.2 microdeletion syndrome (22q11DS) is caused by a recurrent genetic mutation that carries significantly increased risk for developing psychosis and/or ASD. In this review, I provide an brief introduction to 22q11DS and discuss common phenotyping strategies that are used to assess psychosis and ASD in this population. I then summarize neuroimaging phenotypes associated with psychosis and ASD in 22q11.DS. Next, I discuss challenges within the field and provide practical suggestions to overcome these obstacles. Finally, I discuss future directions for moving 22q11DS risk and resilience research forward.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|