1
|
Markovic A, Rusterholz T, Achermann P, Kaess M, Tarokh L. Genetic contribution to sleep homeostasis in early adolescence. Eur J Neurosci 2024. [PMID: 39387212 DOI: 10.1111/ejn.16568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
The sleep homeostatic process in adults is moderately stable over time and unique to an individual. Work in transgenic mice has suggested a role of genes in sleep homeostasis. The current study quantified the genetic contribution to sleep homeostasis in adolescence. We use slow wave energy (SWE) as a metric for sleep pressure dissipation during sleep. This measure reflects both sleep intensity and duration. High-density (58 derivations) sleep electroencephalogram (EEG) was recorded in 14 monozygotic and 12 dizygotic adolescent twin pairs (mean age = 13.2 years; standard deviation [SD] = 1.1; 20 females). SWE at the end of sleep was quantified as the cumulative delta power (1-4.6 Hz) over the night. We also examined the time constant of the decay and the level of slow wave activity (SWA) at the beginning of the sleep episode. Structural equation modelling was used to quantify the amount of variance in SWE and the dissipation of sleep pressure due to genes. We found that most (mean = 76% across EEG derivations) of the variance in SWE was due to genes. In contrast, genes had a small (mean = 33%) influence on the rate of dissipation of sleep pressure, and this measure was largely (mean = 67%) driven by environmental factors unique to each twin. Our results show that the amount of dissipated sleep pressure is largely under genetic control; however, the rate of sleep pressure dissipation is largely due to unique environmental factors. Our findings are in line with research in animals and suggest that the heritability of the rate of sleep pressure dissipation is limited.
Collapse
Affiliation(s)
- Andjela Markovic
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Rusterholz
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Schoch SF, Jaramillo V, Markovic A, Huber R, Kohler M, Jenni OG, Lustenberger C, Kurth S. Bedtime to the brain: how infants' sleep behaviours intertwine with non-rapid eye movement sleep electroencephalography features. J Sleep Res 2024; 33:e13936. [PMID: 37217191 DOI: 10.1111/jsr.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Adequate sleep is critical for development and facilitates the maturation of the neurophysiological circuitries at the basis of cognitive and behavioural function. Observational research has associated early life sleep problems with worse later cognitive, psychosocial, and somatic health outcomes. Yet, the extent to which day-to-day sleep behaviours (e.g., duration, regularity) in early life relate to non-rapid eye movement (NREM) neurophysiology-acutely and the long-term-remains to be studied. We measured sleep behaviours in 32 healthy 6-month-olds assessed with actimetry and neurophysiology with high-density electroencephalography (EEG) to investigate the association between NREM sleep and habitual sleep behaviours. Our study revealed four findings: first, daytime sleep behaviours are related to EEG slow-wave activity (SWA). Second, night-time movement and awakenings from sleep are connected with spindle density. Third, habitual sleep timing is linked to neurophysiological connectivity quantified as delta coherence. And lastly, delta coherence at 6 months predicts night-time sleep duration at 12 months. These novel findings widen our understanding that infants' sleep behaviours are closely intertwined with three particular levels of neurophysiology: sleep pressure (determined by SWA), the maturation of the thalamocortical system (spindles), and the maturation of cortical connectivity (coherence). The crucial next step is to extend this concept to clinical groups to objectively characterise infants' sleep behaviours 'at risk' that foster later neurodevelopmental problems.
Collapse
Affiliation(s)
- Sarah F Schoch
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Valeria Jaramillo
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, UK
| | - Andjela Markovic
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Reto Huber
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, University of Zürich (UZH), Zürich, Switzerland
| | - Caroline Lustenberger
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Salome Kurth
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
The Feature of Sleep Spindle Deficits in Patients With Schizophrenia With and Without Auditory Verbal Hallucinations. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:331-342. [PMID: 34380082 DOI: 10.1016/j.bpsc.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous sleep electroencephalography studies have detected abnormalities in sleep architecture and sleep spindle deficits in schizophrenia (SCZ), but the consistency of these results was not robust, which might be due to the small sample size and the influence of clinical factors such as the various medication therapies and symptom heterogeneity. This study aimed to regard auditory verbal hallucinations (AVHs) as a pointcut to downscale the heterogeneity of SCZ and explore whether some sleep architecture and spindle parameters were more severely impaired in SCZ patients with AVHs compared with those without AVHs. METHODS A total of 90 SCZ patients with AVHs, 92 SCZ patients without AVHs, and 91 healthy control subjects were recruited, and parameters of sleep architecture and spindle activities were compared between groups. The correlation between significant sleep parameters and clinical indicators was analyzed. RESULTS Deficits of sleep spindle activities at prefrontal electrodes and intrahemispheric spindle coherence were observed in both AVH and non-AVH groups, several of which were more serious in the AVH group. In addition, deficits of spindle activities at central and occipital electrodes and interhemispheric spindle coherence mainly manifested accompanying AVH symptoms, most of which were retained in the medication-naive first-episode patients, and were associated with Auditory Hallucination Rating Scale scores. CONCLUSIONS Our results suggest that the underlying mechanism of spindle deficits might be different between SCZ patients with and without AVHs. In the future, the sleep feature of SCZ patients with different symptoms and the influence of clinical factors, such as medication therapy, should be further illustrated.
Collapse
|
4
|
Markovic A, Schoch SF, Huber R, Kohler M, Kurth S. The sleeping brain's connectivity and family environment: characterizing sleep EEG coherence in an infant cohort. Sci Rep 2023; 13:2055. [PMID: 36739318 PMCID: PMC9899221 DOI: 10.1038/s41598-023-29129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
Brain connectivity closely reflects brain function and behavior. Sleep EEG coherence, a measure of brain's connectivity during sleep, undergoes pronounced changes across development under the influence of environmental factors. Yet, the determinants of the developing brain's sleep EEG coherence from the child's family environment remain unknown. After characterizing high-density sleep EEG coherence in 31 healthy 6-month-old infants by detecting strongly synchronized clusters through a data-driven approach, we examined the association of sleep EEG coherence from these clusters with factors from the infant's family environment. Clusters with greatest coherence were observed over the frontal lobe. Higher delta coherence over the left frontal cortex was found in infants sleeping in their parents' room, while infants sleeping in a room shared with their sibling(s) showed greater delta coherence over the central parts of the frontal cortex, suggesting a link between local brain connectivity and co-sleeping. Finally, lower occipital delta coherence was associated with maternal anxiety regarding their infant's sleep. These interesting links between sleep EEG coherence and family factors have the potential to serve in early health interventions as a new set of targets from the child's immediate environment.
Collapse
Affiliation(s)
- Andjela Markovic
- Department of Psychology, University of Fribourg, Fribourg, Switzerland. .,Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland. .,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Sarah F Schoch
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Reto Huber
- Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland.,Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Anastasiades PG, de Vivo L, Bellesi M, Jones MW. Adolescent sleep and the foundations of prefrontal cortical development and dysfunction. Prog Neurobiol 2022; 218:102338. [PMID: 35963360 PMCID: PMC7616212 DOI: 10.1016/j.pneurobio.2022.102338] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Modern life poses many threats to good-quality sleep, challenging brain health across the lifespan. Curtailed or fragmented sleep may be particularly damaging during adolescence, when sleep disruption by delayed chronotypes and societal pressures coincides with our brains preparing for adult life via intense refinement of neural connectivity. These vulnerabilities converge on the prefrontal cortex, one of the last brain regions to mature and a central hub of the limbic-cortical circuits underpinning decision-making, reward processing, social interactions and emotion. Even subtle disruption of prefrontal cortical development during adolescence may therefore have enduring impact. In this review, we integrate synaptic and circuit mechanisms, glial biology, sleep neurophysiology and epidemiology, to frame a hypothesis highlighting the implications of adolescent sleep disruption for the neural circuitry of the prefrontal cortex. Convergent evidence underscores the importance of acknowledging, quantifying and optimizing adolescent sleep's contributions to normative brain development and to lifelong mental health.
Collapse
Affiliation(s)
- Paul G Anastasiades
- University of Bristol, Translational Health Sciences, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Luisa de Vivo
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK; University of Camerino, School of Pharmacy, via Gentile III Da Varano, Camerino 62032, Italy
| | - Michele Bellesi
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK; University of Camerino, School of Bioscience and Veterinary Medicine, via Gentile III Da Varano, Camerino 62032, Italy
| | - Matt W Jones
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
6
|
Heritability of REM sleep neurophysiology in adolescence. Transl Psychiatry 2022; 12:399. [PMID: 36130941 PMCID: PMC9492899 DOI: 10.1038/s41398-022-02106-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Alterations of rapid eye movement (REM) sleep have long been observed in patients with psychiatric disorders and proposed as an endophenotype-a link between behavior and genes. Recent experimental work has shown that REM sleep plays an important role in the emotional processing of memories, emotion regulation, and is altered in the presence of stress, suggesting a mechanism by which REM sleep may impact psychiatric illness. REM sleep shows a developmental progression and increases during adolescence-a period of rapid maturation of the emotional centers of the brain. This study uses a behavioral genetics approach to understand the relative contribution of genes, shared environmental and unique environmental factors to REM sleep neurophysiology in adolescents. Eighteen monozygotic (MZ; n = 36; 18 females) and 12 dizygotic (DZ; n = 24; 12 females) same-sex twin pairs (mean age = 12.46; SD = 1.36) underwent whole-night high-density sleep EEG recordings. We find a significant genetic contribution to REM sleep EEG power across frequency bands, explaining, on average, between 75 to 88% of the variance in power, dependent on the frequency band. In the lower frequency bands between delta and sigma, however, we find an additional impact of shared environmental factors over prescribed regions. We hypothesize that these regions may reflect the contribution of familial and environmental stress shared amongst the twins. The observed strong genetic contribution to REM sleep EEG power in early adolescence establish REM sleep neurophysiology as a potentially strong endophenotype, even in adolescence-a period marked by significant brain maturation.
Collapse
|
7
|
Lokhandwala S, Spencer RMC. Relations between sleep patterns early in life and brain development: A review. Dev Cogn Neurosci 2022; 56:101130. [PMID: 35779333 PMCID: PMC9254005 DOI: 10.1016/j.dcn.2022.101130] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Sleep supports healthy cognitive functioning in adults. Over the past decade, research has emerged advancing our understanding of sleep's role in cognition during development. Infancy and early childhood are marked by unique changes in sleep physiology and sleep patterns as children transition from biphasic to monophasic sleep. Growing evidence suggests that, during development, there are parallel changes in sleep and the brain and that sleep may modulate brain structure and activity and vice versa. In this review, we survey studies of sleep and brain development across childhood. By summarizing these findings, we provide a unique understanding of the importance of healthy sleep for healthy brain and cognitive development. Moreover, we discuss gaps in our understanding, which will inform future research.
Collapse
Affiliation(s)
- Sanna Lokhandwala
- Department of Psychological & Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States; Developmental Sciences Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rebecca M C Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States; Developmental Sciences Program, University of Massachusetts Amherst, Amherst, MA, United States; Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States; Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
8
|
Castiglione-Fontanellaz CEG, Timmers TT, Lerch S, Hamann C, Kaess M, Tarokh L. Sleep and physical activity: results from a long-term actigraphy study in adolescents. BMC Public Health 2022; 22:1328. [PMID: 35820897 PMCID: PMC9275054 DOI: 10.1186/s12889-022-13657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Research to date suggests that physical activity is associated with improved sleep, but studies have predominantly relied on self-report measures and have not accounted for school day/free day variability. To address these gaps in the literature, the aim of the present study was to (a) quantify physical activity in adolescents using long-term daily actigraphy measurement and (b) to examine the association between actigraphically assessed steps and sleep behavior in a sample of healthy adolescents. To be able to capture intra- and inter-individual differences in the daily physical activity of adolescents, we examined within as well as between subjects effects and its association with sleep. METHODS Fifty adolescents between 10 and 14 years of age were included in the present study. In total 5989 days of actigraphy measurement (average of 119 ± 40 days per participant; range = 39-195 days) were analyzed. We use multilevel modeling to disentangle the within and between subject effects of physical activity on sleep. In this way, we examine within an individual, the association between steps during the day and subsequent sleep on a day-to-day basis. On the other hand, our between subjects' analysis allows us to ascertain whether individuals with more overall physical activity have better sleep. RESULTS Within a subject more steps on school and free days were associated with later bed times on school and free days as well as later rise times on school days only. On the other hand, comparing between subjects' effects, more steps were associated with lower sleep efficiency on free and school days. No other significant associations were found for the other sleep variables. CONCLUSION Our results obtained through objective and long-term measurement of both sleep and number of steps suggest weak or non-significant associations between these measures for most sleep variables. We emphasize the importance of the methodology and the separation of within subject from between subject features when examining the relationship between physical activity and sleep.
Collapse
Affiliation(s)
- Chiara E G Castiglione-Fontanellaz
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland.,Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Tammy T Timmers
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
| | - Stefan Lerch
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
| | - Christoph Hamann
- Department of Child and Adolescent Psychiatry and Psychosomatic Medicine, University Children's Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland.,Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland. .,Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Lewis KJS, Gregory AM. Heritability of Sleep and Its Disorders in Childhood and Adolescence. CURRENT SLEEP MEDICINE REPORTS 2021; 7:155-166. [PMID: 34840933 PMCID: PMC8607788 DOI: 10.1007/s40675-021-00216-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent literature on the heritability of sleep and sleep disorders in childhood and adolescence. We also identify gaps in the literature and priorities for future research. RECENT FINDINGS Findings indicate that age, measurement method, reporter, and timing of sleep measurements can influence heritability estimates. Recent genome-wide association studies (GWAS) have identified differences in the heritability of sleep problems when ancestral differences are considered, but sample sizes are small compared to adult GWAS. Most studies focus on sleep variables in the full range rather than on disorder. Studies using objective measures of sleep typically comprised small samples. SUMMARY Current evidence demonstrates a wide range of heritability estimates across sleep phenotypes in childhood and adolescence, but research in larger samples, particularly using objective sleep measures and GWAS, is needed. Further understanding of environmental mechanisms and the interaction between genes and environment is key for future research.
Collapse
Affiliation(s)
- Katie J. S. Lewis
- Division of Psychological Medicine & Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK
| | - Alice M. Gregory
- Department of Psychology, Goldsmiths, University of London, London, UK
| |
Collapse
|
10
|
Gender differences in adolescent sleep neurophysiology: a high-density sleep EEG study. Sci Rep 2020; 10:15935. [PMID: 32985555 PMCID: PMC7522718 DOI: 10.1038/s41598-020-72802-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
During adolescence, differences between males and females in physiology, behavior and risk for psychopathology are accentuated. The goal of the current study was to examine gender differences in sleep neurophysiology using high-density sleep EEG in early adolescence. We examined gender differences in sleep EEG power and coherence across frequency bands for both NREM and REM sleep in a sample of 61 adolescents (31 girls and 30 boys; mean age = 12.48; SD = 1.34). In addition, sleep spindles were individually detected and characterized. Compared to boys, girls had significantly greater spindle activity, as reflected in higher NREM sigma power, spindle amplitude, spindle frequency and spindle density over widespread regions. Furthermore, power in higher frequency bands (16.2–44 Hz) was larger in girls than boys in a state independent manner. Oscillatory activity across frequency bands and sleep states was generally more coherent in females as compared to males, suggesting greater connectivity in females. An exception to this finding was the alpha band during NREM and REM sleep, where coherence was higher (NREM) or not different (REM) in boys compared to girls. Sleep spindles are generated through thalamocortical circuits, and thus, the greater spindle activity across regions in females may represent a stronger thalamocortical circuit in adolescent females as compared to males. Moreover, greater global connectivity in females may reflect functional brain differences with implications for cognition and mental health. Given the pronounced gender differences, our study highlights the importance of taking gender into account when designing and interpreting studies of sleep neurophysiology.
Collapse
|