1
|
Pereira DJ, Morais S, Sayal A, Pereira J, Meneses S, Areias G, Direito B, Macedo A, Castelo-Branco M. Neurofeedback training of executive function in autism spectrum disorder: distinct effects on brain activity levels and compensatory connectivity changes. J Neurodev Disord 2024; 16:14. [PMID: 38605323 PMCID: PMC11008042 DOI: 10.1186/s11689-024-09531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Deficits in executive function (EF) are consistently reported in autism spectrum disorders (ASD). Tailored cognitive training tools, such as neurofeedback, focused on executive function enhancement might have a significant impact on the daily life functioning of individuals with ASD. We report the first real-time fMRI neurofeedback (rt-fMRI NF) study targeting the left dorsolateral prefrontal cortex (DLPFC) in ASD. METHODS Thirteen individuals with autism without intellectual disability and seventeen neurotypical individuals completed a rt-fMRI working memory NF paradigm, consisting of subvocal backward recitation of self-generated numeric sequences. We performed a region-of-interest analysis of the DLPFC, whole-brain comparisons between groups and, DLPFC-based functional connectivity. RESULTS The ASD and control groups were able to modulate DLPFC activity in 84% and 98% of the runs. Activity in the target region was persistently lower in the ASD group, particularly in runs without neurofeedback. Moreover, the ASD group showed lower activity in premotor/motor areas during pre-neurofeedback run than controls, but not in transfer runs, where it was seemingly balanced by higher connectivity between the DLPFC and the motor cortex. Group comparison in the transfer run also showed significant differences in DLPFC-based connectivity between groups, including higher connectivity with areas integrated into the multidemand network (MDN) and the visual cortex. CONCLUSIONS Neurofeedback seems to induce a higher between-group similarity of the whole-brain activity levels (including the target ROI) which might be promoted by changes in connectivity between the DLPFC and both high and low-level areas, including motor, visual and MDN regions.
Collapse
Affiliation(s)
- Daniela Jardim Pereira
- Neurorradiology Functional Area, Imaging Department, Coimbra Hospital and University Center, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Morais
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Siemens Healthineers Portugal, Lisboa, Portugal
| | - João Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Sofia Meneses
- Psychology Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Graça Areias
- Psychology Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Bruno Direito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- IATV-Instituto do Ambiente, Tecnologia e Vida (IATV), Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Siemens Healthineers Portugal, Lisboa, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Choi EJ, Vandewouw MM, Taylor MJ, Stevenson RA, Arnold PD, Brian J, Crosbie J, Kelley E, Liu X, Jones J, Lai MC, Schachar RJ, Lerch JP, Anagnostou E. Dorsal Striatal Functional Connectivity and Repetitive Behavior Dimensions in Children and Youths With Neurodevelopmental Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:387-397. [PMID: 38000717 DOI: 10.1016/j.bpsc.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Impairing repetitive behaviors are one of the core diagnostic symptoms in autism spectrum disorder and obsessive-compulsive disorder, but they also manifest in attention-deficit/hyperactivity disorder. Although the dorsal striatal circuit has been implicated in repetitive behaviors, extensive heterogeneity in and cross-diagnostic manifestations of these behaviors have suggested phenotypic and likely neurobiological heterogeneity across neurodevelopmental disorders (NDDs). METHODS Intrinsic dorsal striatal functional connectivity was examined in 3 NDDs (autism spectrum disorder, obsessive-compulsive disorder, and attention-deficit/hyperactivity disorder) and typically developing control participants in a large single-cohort sample (N = 412). To learn how diagnostic labels and overlapping behaviors manifest in dorsal striatal functional connectivity measured with functional magnetic resonance imaging, the main and interaction effects of diagnosis and behavior were examined in 8 models (2 seed functional connectivity [caudate and putamen] × 4 sub-behavioral domains [sameness/ritualistic, self-injury, stereotypy, and compulsions]). RESULTS The obsessive-compulsive disorder group demonstrated distinctive patterns in visual and visuomotor coordination regions compared with the other diagnostic groups. Lower-order repetitive behaviors (self-injury and stereotypy) manifesting across all participants were implicated in regions involved in motor and cognitive control, although the findings did not survive effects of multiple comparisons, suggesting heterogeneity in these behavioral domains. An interaction between self-injurious behavior and an attention-deficit/hyperactivity disorder diagnosis were observed on caudate-cerebellum functional connectivity. CONCLUSIONS These findings confirmed high heterogeneity and overlapping behavioral manifestations in NDDs and their complex underlying neural mechanisms. A call for diagnosis-free symptom measures that can capture not only observable symptoms and severity across NDDs but also the underlying functions and motivations of such behaviors across diagnoses is needed.
Collapse
Affiliation(s)
- Eun Jung Choi
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada.
| | - Marlee M Vandewouw
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Margot J Taylor
- Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Departments of Psychology and Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Ryan A Stevenson
- Department of Psychology, Western University, London, Ontario, Canada; Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Paul D Arnold
- Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Brian
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Crosbie
- Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Kelley
- Department of Psychology and Centre for Neuroscience Studies, Queens' University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Xudong Liu
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Jessica Jones
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Meng-Chuan Lai
- Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Azrieli Adult Neurodevelopmental Centre, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Russell J Schachar
- Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Wilkes BJ, Archer DB, Farmer AL, Bass C, Korah H, Vaillancourt DE, Lewis MH. Cortico-basal ganglia white matter microstructure is linked to restricted repetitive behavior in autism spectrum disorder. Mol Autism 2024; 15:6. [PMID: 38254158 PMCID: PMC10804694 DOI: 10.1186/s13229-023-00581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Restricted repetitive behavior (RRB) is one of two behavioral domains required for the diagnosis of autism spectrum disorder (ASD). Neuroimaging is widely used to study brain alterations associated with ASD and the domain of social and communication deficits, but there has been less work regarding brain alterations linked to RRB. METHODS We utilized neuroimaging data from the National Institute of Mental Health Data Archive to assess basal ganglia and cerebellum structure in a cohort of children and adolescents with ASD compared to typically developing (TD) controls. We evaluated regional gray matter volumes from T1-weighted anatomical scans and assessed diffusion-weighted scans to quantify white matter microstructure with free-water imaging. We also investigated the interaction of biological sex and ASD diagnosis on these measures, and their correlation with clinical scales of RRB. RESULTS Individuals with ASD had significantly lower free-water corrected fractional anisotropy (FAT) and higher free-water (FW) in cortico-basal ganglia white matter tracts. These microstructural differences did not interact with biological sex. Moreover, both FAT and FW in basal ganglia white matter tracts significantly correlated with measures of RRB. In contrast, we found no significant difference in basal ganglia or cerebellar gray matter volumes. LIMITATIONS The basal ganglia and cerebellar regions in this study were selected due to their hypothesized relevance to RRB. Differences between ASD and TD individuals that may occur outside the basal ganglia and cerebellum, and their potential relationship to RRB, were not evaluated. CONCLUSIONS These new findings demonstrate that cortico-basal ganglia white matter microstructure is altered in ASD and linked to RRB. FW in cortico-basal ganglia and intra-basal ganglia white matter was more sensitive to group differences in ASD, whereas cortico-basal ganglia FAT was more closely linked to RRB. In contrast, basal ganglia and cerebellar volumes did not differ in ASD. There was no interaction between ASD diagnosis and sex-related differences in brain structure. Future diffusion imaging investigations in ASD may benefit from free-water estimation and correction in order to better understand how white matter is affected in ASD, and how such measures are linked to RRB.
Collapse
Affiliation(s)
- Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, P.O. Box 118205, Gainesville, FL, 32611, USA.
| | - Derek B Archer
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt School of Medicine, Nashville, TN, USA
- Department of Neurology, Vanderbilt Genetics Institute, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Anna L Farmer
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Carly Bass
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Hannah Korah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, P.O. Box 118205, Gainesville, FL, 32611, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Neurology, Fixel Center for Neurological Diseases, Program in Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Lin W, Chan YH, Kiing JSH, Lim TSH, Chong SC, Kang YQ, Aishworiya R, Mulay KV, Tan MY. Restricted and repetitive behaviors and association with cognition and adaptive functioning in children with autism spectrum disorder in Singapore. Front Psychiatry 2023; 14:1249071. [PMID: 38034929 PMCID: PMC10687550 DOI: 10.3389/fpsyt.2023.1249071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background One of the core features of autism spectrum disorder (ASD) is restricted, repetitive patterns of behavior, interests and activities (RRBs). RRBs are known to adversely affect cognition and adaptive functioning. We explored the relationship of RRBs with cognition and adaptive functioning in children with ASD in an Asian setting. Methods This cross-sectional study was conducted at a tertiary developmental pediatrics center in Singapore from September 2019 to October 2021. Parent-child dyads (parents and their children ≤7 years old diagnosed with ASD) were recruited. Parents completed the Repetitive Behavior Questionnaire-2 (RBQ-2), which reports total score and two subscales - Motor/Sensory Behaviors (RBQ-2 MS) and Rigidity/Routines/Preoccupation with Restricted Interests (RBQ-2 RRPRI). Standardized assessments included Mullen Scales of Early Learning (MSEL) and Vineland Adaptive Behavior Scales (VABS-II). Data analysis utilized descriptive statistics and Pearson's correlation. Results Parents of 113 children [75.2% male, mean (SD) age 5.0 (1.2) years] participated. Median (IQR) RBQ-2 score was 29.0 (11.0). Significant negative correlations (adjusted for age, gender and family history of ASD) were observed for total RBQ-2 scores with MSEL ELC scores (r = -0.248, n = 101, p = 0.014) and VABS-II ABC scores (r = -0.281, n = 88, p = 0.009). Specifically, these correlations of fair strength were seen only with the RBQ-2 MS subscale for both ELC (r = -0.321, n = 101, p = 0.001) and ABC (r = -0.3478, n = 88, p = 0.001). Conclusion In children with ASD, severity of RRBs correlated with adverse cognition and adaptive functioning measures in our study, consistent with Western literature. While our study does not show causality, it adds to literature serving as a foundation for further research for both clinicians and researchers to target RRBs in improving outcomes with children in ASD.
Collapse
Affiliation(s)
- Wanyun Lin
- Child Development Unit, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jennifer S. H. Kiing
- Child Development Unit, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tammy S. H. Lim
- Child Development Unit, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shang Chee Chong
- Child Development Unit, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ying Qi Kang
- Child Development Unit, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ramkumar Aishworiya
- Child Development Unit, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kalyani Vijayakumar Mulay
- Child Development Unit, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mae Yue Tan
- Child Development Unit, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Fears NE, Sherrod GM, Templin TN, Bugnariu NL, Patterson RM, Miller HL. Community-based postural control assessment in autistic individuals indicates a similar but delayed trajectory compared to neurotypical individuals. Autism Res 2023; 16:543-557. [PMID: 36627838 PMCID: PMC10023334 DOI: 10.1002/aur.2889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023]
Abstract
Autistic individuals exhibit significant sensorimotor differences. Postural stability and control are foundational motor skills for successfully performing many activities of daily living. In neurotypical development, postural stability and control develop throughout childhood and adolescence. In autistic development, previous studies have focused primarily on individual age groups (e.g., childhood, adolescence, adulthood) or only controlled for age using age-matching. Here, we examined the age trajectories of postural stability and control in autism from childhood through adolescents using standardized clinical assessments. In study 1, we tested the postural stability of autistic (n = 27) and neurotypical (n = 41) children, adolescents, and young adults aged 7-20 years during quiet standing on a force plate in three visual conditions: eyes open (EO), eyes closed (EC), and eyes open with the head in a translucent dome (Dome). Postural sway variability decreased as age increased for both groups, but autistic participants showed greater variability than neurotypical participants across age. In study 2, we tested autistic (n = 21) and neurotypical (n = 32) children and adolescents aged 7-16 years during a dynamic postural control task with nine targets. Postural control efficiency increased as age increased for both groups, but autistic participants were less efficient compared to neurotypical participants across age. Together, these results indicate that autistic individuals have a similar age trajectory for postural stability and control compared to neurotypical individuals, but have lower postural stability and control overall.
Collapse
Affiliation(s)
- Nicholas E. Fears
- University of Michigan, 830 N. University Ave., Ann Arbor, Michigan, 48170, USA
- University of North Texas Health Science Center, School of Health Professions, 3500 Camp Bowie Blvd., Fort Worth, TX, 76109, USA
- Louisiana State University, 50 Fieldhouse Dr. Baton Rouge, Louisiana, 70802, USA
| | - Gabriela M. Sherrod
- University of North Texas Health Science Center, School of Health Professions, 3500 Camp Bowie Blvd., Fort Worth, TX, 76109, USA
- University of Alabama at Birmingham, 1720 University Blvd., Birmingham, AL, 35294, USA
| | - Tylan N. Templin
- University of North Texas Health Science Center, School of Health Professions, 3500 Camp Bowie Blvd., Fort Worth, TX, 76109, USA
- Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX, 78238, USA
| | - Nicoleta L. Bugnariu
- University of North Texas Health Science Center, School of Health Professions, 3500 Camp Bowie Blvd., Fort Worth, TX, 76109, USA
- University of the Pacific, School of Health Sciences, 155 Fifth St., San Francisco, CA, 94103, USA
| | - Rita M. Patterson
- University of North Texas Health Science Center, Texas College of Osteopathic Medicine, 3500 Camp Bowie Blvd., Fort Worth, TX, 76109, USA
| | - Haylie L. Miller
- University of Michigan, 830 N. University Ave., Ann Arbor, Michigan, 48170, USA
- University of North Texas Health Science Center, School of Health Professions, 3500 Camp Bowie Blvd., Fort Worth, TX, 76109, USA
| |
Collapse
|
6
|
Hadders‐Algra M. Emerging signs of autism spectrum disorder in infancy: Putative neural substrate. Dev Med Child Neurol 2022; 64:1344-1350. [PMID: 35801808 PMCID: PMC9796067 DOI: 10.1111/dmcn.15333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by altered development of the social brain with prominent atypical features in the fronto-temporo-parietal cortex and cerebellum. Early signs of ASD emerge between 6 and 12 months: reduced social communication, slightly less advanced motor development, and repetitive behaviour. The fronto-temporo-parietal cortex and cerebellum play a prominent role in the development of social communication, whereas fronto-parietal-cerebellar networks are involved in the planning of movements, that is, movement selection. Atypical sensory responsivity, a core feature of ASD, may result in impaired development of social communication and motor skills and/or selection of atypical repetitive behaviour. In the first postnatal year, the brain areas involved are characterized by gradual dissolution of temporary structures: the fronto-temporo-parietal cortical subplate and cerebellar external granular layer. It is hypothesized that altered dissolution of the transient structures opens the window for the expression of early signs of ASD arising in the impaired developing permanent networks. WHAT THIS PAPER ADDS: The early social and motor signs of autism spectrum disorder emerge between the ages of 6 and 12 months. Altered dissolution of transient brain structures in the fronto-temporo-parietal cortex and cerebellum may underlie the emergence of these early signs.
Collapse
Affiliation(s)
- Mijna Hadders‐Algra
- University of Groningen, University Medical Center GroningenDepartment of Paediatrics, Section of Developmental NeurologyGroningenthe Netherlands,University of Groningen, Faculty of Theology and Religious StudiesGroningenthe Netherlands
| |
Collapse
|
7
|
Yeh CH, Tseng RY, Ni HC, Cocchi L, Chang JC, Hsu MY, Tu EN, Wu YY, Chou TL, Gau SSF, Lin HY. White matter microstructural and morphometric alterations in autism: implications for intellectual capabilities. Mol Autism 2022; 13:21. [PMID: 35585645 PMCID: PMC9118608 DOI: 10.1186/s13229-022-00499-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
Background Neuroimage literature of autism spectrum disorder (ASD) has a moderate-to-high risk of bias, partially because those combined with intellectual impairment (II) and/or minimally verbal (MV) status are generally ignored. We aimed to provide more comprehensive insights into white matter alterations of ASD, inclusive of individuals with II (ASD-II-Only) or MV expression (ASD-MV). Methods Sixty-five participants with ASD (ASD-Whole; 16.6 ± 5.9 years; comprising 34 intellectually able youth, ASD-IA, and 31 intellectually impaired youth, ASD-II, including 24 ASD-II-Only plus 7 ASD-MV) and 38 demographic-matched typically developing controls (TDC; 17.3 ± 5.6 years) were scanned in accelerated diffusion-weighted MRI. Fixel-based analysis was undertaken to investigate the categorical differences in fiber density (FD), fiber cross section (FC), and a combined index (FDC), and brain symptom/cognition associations. Results ASD-Whole had reduced FD in the anterior and posterior corpus callosum and left cerebellum Crus I, and smaller FDC in right cerebellum Crus II, compared to TDC. ASD-IA, relative to TDC, had no significant discrepancies, while ASD-II showed almost identical alterations to those from ASD-Whole vs. TDC. ASD-II-Only had greater FD/FDC in the isthmus splenium of callosum than ASD-MV. Autistic severity negatively correlated with FC in right Crus I. Nonverbal full-scale IQ positively correlated with FC/FDC in cerebellum VI. FD/FDC of the right dorsolateral prefrontal cortex showed a diagnosis-by-executive function interaction. Limitations We could not preclude the potential effects of age and sex from the ASD cohort, although statistical tests suggested that these factors were not influential. Our results could be confounded by variable psychiatric comorbidities and psychotropic medication uses in our ASD participants recruited from outpatient clinics, which is nevertheless closer to a real-world presentation of ASD. The outcomes related to ASD-MV were considered preliminaries due to the small sample size within this subgroup. Finally, our study design did not include intellectual impairment-only participants without ASD to disentangle the mixture of autistic and intellectual symptoms. Conclusions ASD-associated white matter alterations appear driven by individuals with II and potentially further by MV. Results suggest that changes in the corpus callosum and cerebellum are key for psychopathology and cognition associated with ASD. Our work highlights an essential to include understudied subpopulations on the spectrum in research. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00499-1.
Collapse
Affiliation(s)
- Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, 333, Taoyuan City, Taiwan. .,Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Rung-Yu Tseng
- Institute for Radiological Research, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, 333, Taoyuan City, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jung-Chi Chang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - En-Nien Tu
- Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | | | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan. .,Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, and Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, 1025 Queen St W - 3314, Toronto, ON, M6J 1H4, Canada. .,Department of Psychiatry and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Comparan-Meza M, Vargas de la Cruz I, Jauregui-Huerta F, Gonzalez-Castañeda RE, Gonzalez-Perez O, Galvez-Contreras AY. Biopsychological correlates of repetitive and restricted behaviors in autism spectrum disorders. Brain Behav 2021; 11:e2341. [PMID: 34472728 PMCID: PMC8553330 DOI: 10.1002/brb3.2341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is considered a neurodevelopmental condition that is characterized by alterations in social interaction and communication, as well as patterns of restrictive and repetitive behaviors (RRBs). RRBs are defined as broad behaviors that comprise stereotypies, insistence on sameness, and attachment to objects or routines. RRBs can be divided into lower-level behaviors (motor, sensory, and object-manipulation behaviors) and higher-level behaviors (restrictive interests, insistence on sameness, and repetitive language). According to the DSM-5, the grade of severity in ASD partially depends on the frequency of RRBs and their consequences for disrupting the life of patients, affecting their adaptive skills, and increasing the need for parental support. METHODS We conducted a systematic review to examine the biopsychological correlates of the symptomatic domains of RRBs according to the type of RRBs (lower- or higher-level). We searched for articles from the National Library of Medicine (PubMed) using the terms: autism spectrum disorders, ASD, and autism-related to executive functions, inhibitory control, inflexibility, cognitive flexibility, hyper or hypo connectivity, and behavioral approaches. For describing the pathophysiological mechanism of ASD, we also included animal models and followed PRISMA guidelines. RESULTS One hundred and thirty-one articles were analyzed to explain the etiology, continuance, and clinical evolution of these behaviors observed in ASD patients throughout life. CONCLUSIONS Biopsychological correlates involved in the origin of RRBs include alterations in a) neurotransmission system, b) brain volume, c) inadequate levels of growth factors, d) hypo- or hyper-neural connectivity, e) impairments in behavioral inhibition, cognitive flexibility, and monitoring and f) non-stimulating environments. Understanding these lower- and higher-level of RRBs can help professionals to improve or design novel therapeutic strategies.
Collapse
Affiliation(s)
- Miguel Comparan-Meza
- Maestría en Neuropsicología, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Ivette Vargas de la Cruz
- Unidad de Atención en Neurociencias, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Fernando Jauregui-Huerta
- Laboratorio de Microscopia de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Rocio E Gonzalez-Castañeda
- Laboratorio de Microscopia de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Oscar Gonzalez-Perez
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Colima, COL, Mexico
| | - Alma Y Galvez-Contreras
- Unidad de Atención en Neurociencias, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| |
Collapse
|