1
|
Madhusudhan U, Hage N, Kalpana M, Vidya G, Gaur A, Singaravelu V, Pyati A, Nitin AJ, Taranikanti M, Patil P. An Evaluation of Cognitive Abilities in Vestibular Disorders. MAEDICA 2024; 19:543-550. [PMID: 39553373 PMCID: PMC11565146 DOI: 10.26574/maedica.2024.19.3.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND Research evidence suggests the role of the vestibular system in cognitive functions like visuospatial memory, objective memory, spatial navigation, etc. Vestibular cortices send projection to the hippocampus and to the medial entorhinal cortex (MEC); the latter houses place cells, grid cells, and head direction cells, which play a major role in the formation of a cognitive map based on inputs from the vestibular apparatus. So, the present study aimed to assess cognitive functions in vestibular disorder patients. MATERIALS AND METHODS All patients with vestibular disorders were included after bedside tests like the Dix Hallpike test, head impulse test, Romberg test on foam with eyes closed/the clinical test of sensory interaction and balance (CTSIB) and timed up and go test. After that, a dizziness handicap inventory (DHI) was used to assess the severity of the vestibular dysfunction. Patients with diagnosed neurological disorders were excluded from the study. Cognitive function assessment was done using the trail making test (TMT) and the digit symbol substitution test (DSST). The assessment results were correlated with the severity of the vestibular dysfunction using Pearson correlation. RESULTS AND DISCUSSIONS Out of a total of 40 patients, 26 (62.5%) were males and 14 (37.5%) females. The results of TMT part A and part B were 86.14±11.00 and 247.07±39.0, respectively, in mild handicap score patients, and 102.7±10.69 and 290.0±10.35 in moderate handicap score patients, which was significantly (p<0.05) higher when compared to mild handicap patients. Even DSST scores in moderately handicapped subjects were significantly (p<0.05) lower than those with a mild handicap. CONCLUSION Patients with vestibular dysfunction have significant cognitive decline, and cognition is decreasing with the severity of the vestibular dysfunction.
Collapse
Affiliation(s)
- Umesh Madhusudhan
- Assistant Professor, Department of Physiology, AIIMS (All India Institute of Medical Sciences), Bibinagar, Hyderabad 508126, Telangana, India
| | - Neemu Hage
- Assistant Professor, Department of ENT, AIIMS (All India Institute of Medical Sciences), Bibinagar, Hyderabad 508126, Telangana, India
| | - M Kalpana
- Associate Professor, Department of Physiology, AIIMS (All India Institute of Medical Sciences), Bibinagar, Hyderabad 508126, Telangana, India
| | - G Vidya
- Assistant Professor, Department of Physiology, AIIMS (All India Institute of Medical Sciences), Bibinagar, Hyderabad 508126, Telangana, India
| | - Archana Gaur
- Assistant Professor, Department of Physiology, AIIMS (All India Institute of Medical Sciences), Bibinagar, Hyderabad 508126, Telangana, India
| | - Vidya Singaravelu
- Professor, Department of Pediatrics, Malla Reddy Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Ananad Pyati
- Associate Professor, Department of Biochemistry, AIIMS (All India Institute of Medical Sciences), Bibinagar, Hyderabad 508126, Telangana, India
| | - Ashok John Nitin
- Professor & Head, Department of Physiology, AIIMS (All India Institute of Medical Sciences), Bibinagar, Hyderabad 508126, Telangana, India
| | - Madhuri Taranikanti
- Additional Professor, Department of Physiology, AIIMS (All India Institute of Medical Sciences), Bibinagar, Hyderabad 508126, Telangana, India
| | - Parag Patil
- Assistant Professor, Department of Pathology, AIIMS (All India Institute of Medical Sciences), Bibinagar, Hyderabad 508126, Telangana, India
| |
Collapse
|
2
|
Xavier F, Chouin E, Tighilet B, Chabbert C, Besnard S. Innovative approaches for managing patients with chronic vestibular disorders: follow-up indicators and predictive markers for studying the vestibular error signal. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1414198. [PMID: 39220608 PMCID: PMC11362045 DOI: 10.3389/fresc.2024.1414198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Introduction Despite significant advancements in understanding the biochemical, anatomical, and functional impacts of vestibular lesions, developing standardized and effective rehabilitation strategies for patients unresponsive to conventional therapies remains a challenge. Chronic vestibular disorders, characterized by permanent or recurrent imbalances and blurred vision or oscillopsia, present significant complexity in non-pharmacological management. The complex interaction between peripheral vestibular damage and its impact on the central nervous system (CNS) raises questions about neuroplasticity and vestibular compensation capacity. Although fundamental research has examined the consequences of lesions on the vestibular system, the effect of a chronic peripheral vestibular error signal (VES) on the CNS remains underexplored. The VES refers to the discrepancy between sensory expectations and perceptions of the vestibular system has been clarified through recent engineering studies. This deeper understanding of VES is crucial not only for vestibular physiology and pathology but also for designing effective measures and methods of vestibular rehabilitation, shedding light on the importance of compensation mechanisms and sensory integration. Methods This retrospective study, targeting patients with chronic unilateral peripheral vestibulopathy unresponsive to standard treatments, sought to exclude any interference from pre-existing conditions. Participants were evaluated before and after a integrative vestibular exploratory and rehabilitation program through questionnaires, posturographic tests, and videonystagmography. Results The results indicate significant improvements in postural stability and quality of life, demonstrating positive modulation of the CNS and an improvement of vestibular compensation. Discussion Successful vestibular rehabilitation likely requires a multifaceted approach that incorporates the latest insights into neuroplasticity and sensory integration, tailored to the specific needs and clinical progression of each patient. Focusing on compensating for the VES and enhancing sensory-perceptual-motor integration, this approach aims not just to tailor interventions but also to reinforce coherence among the vestibular, visual, and neurological systems, thereby improving the quality of life for individuals with chronic vestibular disorders.
Collapse
Affiliation(s)
- Frédéric Xavier
- Sensory and Cognitive Neuroscience Unit LNC UMR 7231 CNRS, Aix-Marseille University, Marseille, France
- Pathophysiology and Therapy of Vestibular Disorders Unit GDR 2074, Aix-Marseille University, Marseille, France
| | - Emmanuelle Chouin
- Pathophysiology and Therapy of Vestibular Disorders Unit GDR 2074, Aix-Marseille University, Marseille, France
| | - Brahim Tighilet
- Sensory and Cognitive Neuroscience Unit LNC UMR 7231 CNRS, Aix-Marseille University, Marseille, France
- Pathophysiology and Therapy of Vestibular Disorders Unit GDR 2074, Aix-Marseille University, Marseille, France
| | - Christian Chabbert
- Sensory and Cognitive Neuroscience Unit LNC UMR 7231 CNRS, Aix-Marseille University, Marseille, France
- Pathophysiology and Therapy of Vestibular Disorders Unit GDR 2074, Aix-Marseille University, Marseille, France
| | - Stéphane Besnard
- Pathophysiology and Therapy of Vestibular Disorders Unit GDR 2074, Aix-Marseille University, Marseille, France
- UNICAEN, INSERM U1075, COMETE, Normandie Université, Caen, France
| |
Collapse
|
3
|
Tays GD, Hupfeld KE, McGregor HR, Beltran NE, De Dios YE, Mulder E, Bloomberg JJ, Mulavara AP, Wood SJ, Seidler RD. Daily artificial gravity partially mitigates vestibular processing changes associated with head-down tilt bedrest. NPJ Microgravity 2024; 10:27. [PMID: 38472244 PMCID: PMC10933323 DOI: 10.1038/s41526-024-00367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Microgravity alters vestibular signaling and reduces body loading, driving sensory reweighting. The unloading effects can be modelled using head-down tilt bedrest (HDT). Artificial gravity (AG) has been hypothesized to serve as an integrated countermeasure for the declines associated with HDT and spaceflight. Here, we examined the efficacy of 30 min of daily AG to counteract brain and behavior changes from 60 days of HDT. Two groups received 30 min of AG delivered via short-arm centrifuge daily (n = 8 per condition), either in one continuous bout, or in 6 bouts of 5 min. To improve statistical power, we combined these groups (AG; n = 16). Another group served as controls in HDT with no AG (CTRL; n = 8). We examined how HDT and AG affect vestibular processing by collecting fMRI scans during vestibular stimulation. We collected these data prior to, during, and post-HDT. We assessed brain activation initially in 12 regions of interest (ROIs) and then conducted an exploratory whole brain analysis. The AG group showed no changes in activation during vestibular stimulation in a cerebellar ROI, whereas the CTRL group showed decreased activation specific to HDT. Those that received AG and showed little pre- to post-HDT changes in left vestibular cortex activation had better post-HDT balance performance. Whole brain analyses identified increased pre- to during-HDT activation in CTRLs in the right precentral gyrus and right inferior frontal gyrus, whereas AG maintained pre-HDT activation levels. These results indicate that AG could mitigate activation changes in vestibular processing that is associated with better balance performance.
Collapse
Affiliation(s)
- G D Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - H R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | | | - E Mulder
- German Aerospace Center (DLR), Cologne, Germany
| | | | | | - S J Wood
- NASA Johnson Space Center, Houston, TX, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Electrical stimulation of the peripheral and central vestibular system using noninvasive (galvanic vestibular stimulation, GVS) or invasive (intracranial electrical brain stimulation, iEBS) approaches have a long history of use in studying self-motion perception and balance control. The aim of this review is to summarize recent electrophysiological studies of the effects of GVS, and functional mapping of the central vestibular system using iEBS in awake patients. RECENT FINDINGS The use of GVS has become increasingly common in the assessment and treatment of a wide range of clinical disorders including vestibulopathy and Parkinson's disease. The results of recent single unit recording studies have provided new insight into the neural mechanisms underlying GVS-evoked improvements in perceptual and motor responses. Furthermore, the application of iEBS in patients with epilepsy or during awake brain surgery has provided causal evidence of vestibular information processing in mostly the middle cingulate cortex, posterior insula, inferior parietal lobule, amygdala, precuneus, and superior temporal gyrus. SUMMARY Recent studies have established that GVS evokes robust and parallel activation of both canal and otolith afferents that is significantly different from that evoked by natural head motion stimulation. Furthermore, there is evidence that GVS can induce beneficial neural plasticity in the central pathways of patients with vestibular loss. In addition, iEBS studies highlighted an underestimated contribution of areas in the medial part of the cerebral hemispheres to the cortical vestibular network.
Collapse
Affiliation(s)
- Christophe Lopez
- Aix Marseille Univ, CNRS, Laboratory of Cognitive Neuroscience (LNC), FR3C, Marseille, France
| | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University
- Department of Neuroscience, Johns Hopkins University
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore 21205 MD, USA
| |
Collapse
|
5
|
Smith LJ, Wilkinson D, Bodani M, Surenthiran SS. Cognition in vestibular disorders: state of the field, challenges, and priorities for the future. Front Neurol 2024; 15:1159174. [PMID: 38304077 PMCID: PMC10830645 DOI: 10.3389/fneur.2024.1159174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Vestibular disorders are prevalent and debilitating conditions of the inner ear and brain which affect balance, coordination, and the integration of multisensory inputs. A growing body of research has linked vestibular disorders to cognitive problems, most notably attention, visuospatial perception, spatial memory, and executive function. However, the mechanistic bases of these cognitive sequelae remain poorly defined, and there is a gap between our theoretical understanding of vestibular cognitive dysfunction, and how best to identify and manage this within clinical practice. This article takes stock of these shortcomings and provides recommendations and priorities for healthcare professionals who assess and treat vestibular disorders, and for researchers developing cognitive models and rehabilitation interventions. We highlight the importance of multidisciplinary collaboration for developing and evaluating clinically relevant theoretical models of vestibular cognition, to advance research and treatment.
Collapse
Affiliation(s)
- Laura J. Smith
- Centre for Preventative Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - David Wilkinson
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - Mayur Bodani
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | | |
Collapse
|
6
|
Arvaniti CK, Brotis AG, Paschalis T, Kapsalaki EZ, Fountas KN. Localization of Vestibular Cortex Using Electrical Cortical Stimulation: A Systematic Literature Review. Brain Sci 2024; 14:75. [PMID: 38248290 PMCID: PMC10813901 DOI: 10.3390/brainsci14010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The vestibular system plays a fundamental role in body orientation, posture control, and spatial and body motion perception, as well as in gaze and eye movements. We aimed to review the current knowledge regarding the location of the cortical and subcortical areas, implicated in the processing of vestibular stimuli. The search was performed in PubMed and Scopus. We focused on studies reporting on vestibular manifestations after electrical cortical stimulation. A total of 16 studies were finally included. Two main types of vestibular responses were elicited, including vertigo and perception of body movement. The latter could be either rotatory or translational. Electrical stimulation of the temporal structures elicited mainly vertigo, while stimulation of the parietal lobe was associated with perceptions of body movement. Stimulation of the occipital lobe produced vertigo with visual manifestations. There was evidence that the vestibular responses became more robust with increasing current intensity. Low-frequency stimulation proved to be more effective than high-frequency in eliciting vestibular responses. Numerous non-vestibular responses were recorded after stimulation of the vestibular cortex, including somatosensory, viscero-sensory, and emotional manifestations. Newer imaging modalities such as functional MRI (fMRI), Positron Emission Tomography (PET), SPECT, and near infra-red spectroscopy (NIRS) can provide useful information regarding localization of the vestibular cortex.
Collapse
Affiliation(s)
- Christina K. Arvaniti
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.K.A.); (A.G.B.)
| | - Alexandros G. Brotis
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.K.A.); (A.G.B.)
| | - Thanasis Paschalis
- Department of Neuro-Oncology, Cambridge University Hospital, Cambridge CB4 1GN, UK;
| | - Eftychia Z. Kapsalaki
- Department of Diagnostic Radiology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larisa, Greece;
- Advanced Diagnostic Institute Euromedica-Encephalos, 15233 Athens, Greece
| | - Kostas N. Fountas
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.K.A.); (A.G.B.)
- Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| |
Collapse
|
7
|
Cheng Q, Ren A, Han J, Jin X, Pylypenko D, Yu D, Wang X. Assessment of functional and structural brain abnormalities with resting-state functional MRI in patients with vestibular neuronitis. Acta Radiol 2023; 64:3024-3031. [PMID: 37807650 DOI: 10.1177/02841851231203569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Vestibular neuritis (VN) is a disorder manifesting as acute, isolated, spontaneous vertigo. There are few comprehensive studies on the changes in related functional and structural brain regions. PURPOSE To evaluate alterations in spontaneous neural activity, functional connectivity (FC), and gray matter volume (GMV) in patients with VN. MATERIAL AND METHODS A total of 24 patients with VN and 22 age- and sex-matched healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI) and three-dimensional T1-weighted anatomical imaging. We calculated the amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality (DC) to discern local brain abnormalities. The most abnormal brain region was selected as the region of interest (ROI) for FC analysis based on ALFF and ReHo values after Bonferroni correction. Voxel-based morphometry (VBM) was used to assess differences in GMV. RESULTS Patients with VN, compared to healthy controls, showed increased ALFF (P < 0.001), ReHo values (P = 0.002, <0.001), and DC (P = 0.013) in the left lingual gyrus and right postcentral gyrus. FC analysis demonstrated enhanced connectivity between the left lingual gyrus and the left superior frontal gyrus, and decreased connectivity with the right insula gyrus, right and left supramarginal gyrus (P = 0.012, 0.004, <0.001, 0.014). In addition, GMV was reduced in the bilateral caudate (P = 0.022, 0.014). CONCLUSIONS Patients with VN exhibit abnormal spontaneous neural activity and changes in ALFF, ReHo, DC, GMV, and FC. Understanding these functional and structural brain abnormalities may elucidate the underlying mechanisms of VN.
Collapse
Affiliation(s)
- QiChao Cheng
- Qilu Hospital of Shandong University, JiNan, Shandong Province, PR China
| | - AnLi Ren
- Affiliated Hospital of Shandong University of traditional Chinese Medicine, JiNan, Shandong Province, PR China
| | - JingYang Han
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - XinJuan Jin
- Qilu Hospital of Shandong University, JiNan, Shandong Province, PR China
| | | | - DeXin Yu
- Qilu Hospital of Shandong University, JiNan, Shandong Province, PR China
| | - XiZhen Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| |
Collapse
|
8
|
McCarthy B, Datta S, Sesa-Ashton G, Wong R, Henderson LA, Dawood T, Macefield VG. Top-down control of vestibular inputs by the dorsolateral prefrontal cortex. Exp Brain Res 2023; 241:2845-2853. [PMID: 37902866 PMCID: PMC10635918 DOI: 10.1007/s00221-023-06722-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
The vestibular apparatus provides spatial information on the position of the head in space and with respect to gravity. Low-frequency sinusoidal galvanic vestibular stimulation (sGVS), a means of selectively changing the firing of vestibular afferents, induces a frequency-dependent perception of sway and, in some individuals, induces nausea. Given that vestibular afferents project to the insular cortex-which forms part of the vestibular cortex-and that the insula receives inputs from the dorsolateral prefrontal cortex (dlPFC), we tested the hypothesis that electrical stimulation of the dlPFC can modulate vestibular inputs. Sinusoidal electrical stimulation (± 2 mA, 0.08 Hz, 100 cycles) was delivered via surface electrodes over (1) the mastoid processes alone (sGVS), (2) electroencephalogram (EEG) site F4 (right dlPFC) and the nasion or (3) to each site concurrently (sGVS + dlPFC) in 23 participants. The same stimulation protocol was used in a separate study to investigate EEG site F3 (left dlPFC) instead of F4 in 13 participants. During sGVS, all participants reported perceptions of sway and 13 participants also reported nausea, neither sensation of which occurred as a result of dlPFC stimulation. Interestingly, when sGVS and dlPFC stimulations were delivered concurrently, vestibular perceptions and sensations of nausea were almost completely abolished. We conclude that the dlPFC provides top-down control of vestibular inputs and further suggests that dlPFC stimulation may provide a novel means of controlling nausea.
Collapse
Affiliation(s)
- Brendan McCarthy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sudipta Datta
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Rebecca Wong
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
9
|
Awosika OO, Garver A, Drury C, Sucharew HJ, Boyne P, Schwab SM, Wasik E, Earnest M, Dunning K, Bhattacharya A, Khatri P, Kissela BM. Insufficiencies in sensory systems reweighting is associated with walking impairment severity in chronic stroke: an observational cohort study. Front Neurol 2023; 14:1244657. [PMID: 38020645 PMCID: PMC10656616 DOI: 10.3389/fneur.2023.1244657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background Walking and balance impairment are common sequelae of stroke and significantly impact functional independence, morbidity, and mortality. Adequate postural stability is needed for walking, which requires sufficient integration of sensory information between the visual, somatosensory, and vestibular centers. "Sensory reweighting" describes the normal physiologic response needed to maintain postural stability in the absence of sufficient visual or somatosensory information and is believed to play a critical role in preserving postural stability after stroke. However, the extent to which sensory reweighting successfully maintains postural stability in the chronic stages of stroke and its potential impact on walking function remains understudied. Methods In this cross-sectional study, fifty-eight community-dwelling ambulatory chronic stroke survivors underwent baseline postural stability testing during quiet stance using the modified Clinical test of Sensory Interaction in Balance (mCTSIB) and assessment of spatiotemporal gait parameters. Results Seventy-six percent (45/58) of participants showed sufficient sensory reweighting with visual and somatosensory deprivation for maintaining postural stability, albeit with greater postural sway velocity indices than normative data. In contrast, survivors with insufficient reweighting demonstrated markedly slower overground walking speeds, greater spatiotemporal asymmetry, and limited acceleration potential. Conclusion Adequate sensory system reweighting is essential for chronic stroke survivors' postural stability and walking independence. Greater emphasis should be placed on rehabilitation strategies incorporating multisensory system integration testing and strengthening as part of walking rehabilitation protocols. Given its potential impact on outcomes, walking rehabilitation trials may benefit from incorporating formal postural stability testing in design and group stratification.
Collapse
Affiliation(s)
- Oluwole O. Awosika
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Amanda Garver
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Colin Drury
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Heidi J. Sucharew
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Pierce Boyne
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Sarah M. Schwab
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Emily Wasik
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Melinda Earnest
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Kari Dunning
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Amit Bhattacharya
- EDDI Lab—Early Detection of Degenerative Disorders and Innovative Solutions, Department of Environmental Health, University of Cincinnati, Cincinnati, OH, United States
| | - Pooja Khatri
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Brett M. Kissela
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
10
|
Seidler R, Tays G, Hupfeld K, McGregor H, Beltran N, de Dios Y, Mulder E, Bloomberg J, Mulavara A, Wood S. Daily Artificial Gravity Partially Mitigates Vestibular Processing Changes Associated with Head-down Tilt Bedrest. RESEARCH SQUARE 2023:rs.3.rs-3157785. [PMID: 37502989 PMCID: PMC10371135 DOI: 10.21203/rs.3.rs-3157785/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Microgravity alters vestibular signaling and reduces body loading, driving sensory reweighting and adaptation. The unloading effects can be modelled using head down tilt bedrest (HDT). Artificial gravity (AG) has been hypothesized to serve as an integrated countermeasure for the physiological declines associated with HDT and spaceflight. Here, we examined the efficacy of 30 minutes of daily AG to counteract brain and behavior changes that arise from 60 days of HDT. One group of participants received 30 minutes of AG daily (AG; n = 16) while in HDT, and another group served as controls, spending 60 days in HDT bedrest with no AG (CTRL; n = 8). We examined how HDT and AG affect vestibular processing by collecting fMRI scans from participants as they received vestibular stimulation. We collected these data prior to, during (2x), and post HDT. We assessed brain activation initially in 10 regions of interest (ROIs) and then conducted an exploratory whole brain analysis. The AG group showed no changes in brain activation during vestibular stimulation in a cerebellar ROI, whereas the CTRL group showed decreased cerebellar activation specific to the HDT phase. Additionally, those that received AG and showed little pre- to post-bed rest changes in left OP2 activation during HDT had better post-HDT balance performance. Exploratory whole brain analyses identified increased pre- to during-HDT activation in the CTRL group in the right precentral gyrus and the right inferior frontal gyrus specific to HDT, where the AG group maintained pre-HDT activation levels. Together, these results indicate that AG could mitigate brain activation changes in vestibular processing in a manner that is associated with better balance performance after HDT.
Collapse
|
11
|
Ibitoye RT, Castro P, Ellmers TJ, Kaski DN, Bronstein AM. Vestibular loss disrupts visual reactivity in the alpha EEG rhythm. Neuroimage Clin 2023; 39:103469. [PMID: 37459699 PMCID: PMC10368920 DOI: 10.1016/j.nicl.2023.103469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/11/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
The alpha rhythm is a dominant electroencephalographic oscillation relevant to sensory-motor and cognitive function. Alpha oscillations are reactive, being for example enhanced by eye closure, and suppressed following eye opening. The determinants of inter-individual variability in reactivity in the alpha rhythm (e.g. changes with amplitude following eye closure) are not fully understood despite the physiological and clinical applicability of this phenomenon, as indicated by the fact that ageing and neurodegeneration reduce reactivity. Strong interactions between visual and vestibular systems raise the theoretical possibility that the vestibular system plays a role in alpha reactivity. To test this hypothesis, we applied electroencephalography in sitting and standing postures in 15 participants with reduced vestibular function (bilateral vestibulopathy, median age = 70 years, interquartile range = 51-77 years) and 15 age-matched controls. We found participants with reduced vestibular function showed less enhancement of alpha electroencephalography power on eye closure in frontoparietal areas, compared to controls. In participants with reduced vestibular function, video head impulse test gain - as a measure of residual vestibulo-ocular reflex function - correlated with reactivity in alpha power across most of the head. Greater reliance on visual input for spatial orientation ('visual dependence', measured with the rod-and-disc test) correlated with less alpha enhancement on eye closure only in participants with reduced vestibular function, and this was partially moderated by video head impulse test gain. Our results demonstrate for the first time that vestibular function influences alpha reactivity. The results are partly explained by the lack of ascending peripheral vestibular input but also by central reorganisation of processing relevant to visuo-vestibular judgements.
Collapse
Affiliation(s)
- Richard T Ibitoye
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London W6 8RP, United Kingdom; Department of Neurology, Gloucestershire Hospital NHS Foundation Trust, Gloucester GL1 3NN, United Kingdom; Department of Clinical and Motor Neurosciences, Centre for Vestibular and Behavioural Neurosciences, University College London, London WC1N 3BG, United Kingdom
| | - Patricia Castro
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London W6 8RP, United Kingdom; Universidad del Desarrollo, Escuela de Fonoaudiología, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - Toby J Ellmers
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London W6 8RP, United Kingdom
| | - Diego N Kaski
- Universidad del Desarrollo, Escuela de Fonoaudiología, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - Adolfo M Bronstein
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London W6 8RP, United Kingdom.
| |
Collapse
|
12
|
Smith JL, Ahluwalia V, Gore RK, Allen JW. Eagle-449: A volumetric, whole-brain compilation of brain atlases for vestibular functional MRI research. Sci Data 2023; 10:29. [PMID: 36641517 PMCID: PMC9840609 DOI: 10.1038/s41597-023-01938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Human vestibular processing involves distributed networks of cortical and subcortical regions which perform sensory and multimodal integrative functions. These functional hubs are also interconnected with areas subserving cognitive, affective, and body-representative domains. Analysis of these diverse components of the vestibular and vestibular-associated networks, and synthesis of their holistic functioning, is therefore vital to our understanding of the genesis of vestibular dysfunctions and aid treatment development. Novel neuroimaging methodologies, including functional and structural connectivity analyses, have provided important contributions in this area, but often require the use of atlases which are comprised of well-defined a priori regions of interest. Investigating vestibular dysfunction requires a more detailed atlas that encompasses cortical, subcortical, cerebellar, and brainstem regions. The present paper represents an effort to establish a compilation of existing, peer-reviewed brain atlases which collectively afford comprehensive coverage of these regions while explicitly focusing on vestibular substrates. It is expected that this compilation will be iteratively improved with additional contributions from researchers in the field.
Collapse
Affiliation(s)
- Jeremy L Smith
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vishwadeep Ahluwalia
- Georgia Institute of Technology, Atlanta, Georgia, USA
- GSU/GT Center for Advanced Brain Imaging, Atlanta, Georgia, USA
| | - Russell K Gore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Shepherd Center, Atlanta, Georgia, USA
| | - Jason W Allen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
13
|
Taylor RL, Wise KJ, Taylor D, Chaudhary S, Thorne PR. Patterns of vestibular dysfunction in chronic traumatic brain injury. Front Neurol 2022; 13:942349. [DOI: 10.3389/fneur.2022.942349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
BackgroundDizziness and imbalance are common following traumatic brain injury (TBI). While these symptoms are often attributed to vestibular dysfunction, the relative contribution of peripheral vs. central mechanisms is unclear. This study investigated the prevalence of semicircular canal and otolith abnormalities in a cohort of patients with chronic TBI and symptoms of dizziness or imbalance. The relationship between vestibular, oculomotor and posturography results was further explored.MethodsClinical records of patients attending the New Zealand Dizziness and Balance Centre from January 2015 to December 2019 were reviewed for consideration in the study. Inclusion required: an age of 18–80 years, a diagnosed TBI, and vestibular assessment using three-dimensional video head impulses (vHIT), cervical and ocular vestibular-evoked myogenic potentials (c and o VEMPs, respectively) and caloric testing. Severe TBI, pre-existing vestibular diagnoses, and incomplete test results were excluded. Rates of abnormalities were determined for each test and compared with results of oculomotor function testing and postural control, measured using the sensory organization test (SOT).ResultsOf 158 reviewed records, 99 patients aged 49 ± 15 years (59 female) fulfilled criteria for inclusion in the study. The median time between the head injury and the clinical assessment was 12 (IQR 6–21) months. Abnormalities involving one or more components of the vestibular labyrinth and/or nerve divisions were identified in 33 of 99 patients (33.3%). The horizontal semicircular canal was most frequently affected (18.2%), followed by the saccule (14.1%), utricle (8.1%), posterior (7.1%) and anterior (2.0%) semicircular canals. Vestibular test abnormalities were associated with skull-base fractures, superior canal dehiscence, and focal ear trauma. Oculomotor dysfunction and postural instability were recorded in 41.1 and 75.5% of patients, respectively. Postural instability correlated with abnormal oculomotor function (p = 0.008) but not peripheral vestibular hypofunction (p = 0.336).ConclusionsDizziness and/or imbalance in chronic TBI was associated with impaired postural stability for tasks requiring high levels of use of vestibular and visual input for balance. Vestibular hypofunction identified through vHIT, VEMP and caloric testing was recorded but was less common, except when the injury involved a fractured skull-base. There was no specific pattern of end-organ or nerve involvement which characterized this group of patients.
Collapse
|
14
|
Kearney BE, Lanius RA. The brain-body disconnect: A somatic sensory basis for trauma-related disorders. Front Neurosci 2022; 16:1015749. [PMID: 36478879 PMCID: PMC9720153 DOI: 10.3389/fnins.2022.1015749] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023] Open
Abstract
Although the manifestation of trauma in the body is a phenomenon well-endorsed by clinicians and traumatized individuals, the neurobiological underpinnings of this manifestation remain unclear. The notion of somatic sensory processing, which encompasses vestibular and somatosensory processing and relates to the sensory systems concerned with how the physical body exists in and relates to physical space, is introduced as a major contributor to overall regulatory, social-emotional, and self-referential functioning. From a phylogenetically and ontogenetically informed perspective, trauma-related symptomology is conceptualized to be grounded in brainstem-level somatic sensory processing dysfunction and its cascading influences on physiological arousal modulation, affect regulation, and higher-order capacities. Lastly, we introduce a novel hierarchical model bridging somatic sensory processes with limbic and neocortical mechanisms regulating an individual's emotional experience and sense of a relational, agentive self. This model provides a working framework for the neurobiologically informed assessment and treatment of trauma-related conditions from a somatic sensory processing perspective.
Collapse
Affiliation(s)
- Breanne E. Kearney
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
15
|
Huang Y, Zhang Y, He Z, Manyande A, Wu D, Feng M, Xiang H. The connectome from the cerebral cortex to skeletal muscle using viral transneuronal tracers: a review. Am J Transl Res 2022; 14:4864-4879. [PMID: 35958450 PMCID: PMC9360884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Connectomics has developed from an initial observation under an electron microscope to the present well-known medical imaging research approach. The emergence of the most popular transneuronal tracers has further advanced connectomics research. Researchers use the virus trans-nerve tracing method to trace the whole brain, mark the brain nerve circuit and nerve connection structure, and construct a complete nerve conduction pathway. This review assesses current methods of studying cortical to muscle connections using viral neuronal tracers and demonstrates their application in disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Yan Huang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, P. R. China
| | - Yunhua Zhang
- Hubei Provincial Hospital of Traditional Chinese MedicineWuhan 430061, Hubei, P. R. China
- Clinical Medical College of Hubei University of Chinese MedicineWuhan 430061, Hubei, P. R. China
- Hubei Province Academy of Traditional Chinese MedicineWuhan 430061, Hubei, P. R. China
| | - Zhigang He
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Anne Manyande
- School of Human and Social Sciences, University of West LondonLondon, UK
| | - Duozhi Wu
- Department of Anesthesiology, Hainan General HospitalHaikou 570311, Hainan, P. R. China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study CenterWuhan 430071, Hubei, P. R. China
| | - Hongbing Xiang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| |
Collapse
|
16
|
Ibitoye RT, Castro P, Cooke J, Allum J, Arshad Q, Murdin L, Wardlaw J, Kaski D, Sharp DJ, Bronstein AM. A link between frontal white matter integrity and dizziness in cerebral small vessel disease. Neuroimage Clin 2022; 35:103098. [PMID: 35772195 PMCID: PMC9253455 DOI: 10.1016/j.nicl.2022.103098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Idiopathic dizziness in older people is associated with more vascular risk. Idiopathic dizziness is also associated with impaired balance and cognition. These findings co-occur with more frontal markers of cerebral small vessel disease. Small vessel disease may contribute to dizziness through its effects on balance.
One in three older people (>60 years) complain of dizziness which often remains unexplained despite specialist assessment. We investigated if dizziness was associated with vascular injury to white matter tracts relevant to balance or vestibular self-motion perception in sporadic cerebral small vessel disease (age-related microangiopathy). We prospectively recruited 38 vestibular clinic patients with idiopathic (unexplained) dizziness and 36 age-matched asymptomatic controls who underwent clinical, cognitive, balance, gait and vestibular assessments, and structural and diffusion brain MRI. Patients had more vascular risk factors, worse balance, worse executive cognitive function, and worse ankle vibration thresholds in association with greater white matter hyperintensity in frontal deep white matter, and lower fractional anisotropy in the genu of the corpus callosum and the right inferior longitudinal fasciculus. A large bihemispheric white matter network had less structural connectivity in patients. Reflex and perceptual vestibular function was similar in patients and controls. Our results suggest cerebral small vessel disease is involved in the genesis of dizziness through its effect on balance.
Collapse
Affiliation(s)
- Richard T Ibitoye
- Neuro-otology Unit, Imperial College London, London, UK; The Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL), Imperial College London, London, UK
| | | | - Josie Cooke
- Neuro-otology Unit, Imperial College London, London, UK
| | - John Allum
- Department of Otorhinolaryngology (ORL), University Hospital Basel, Basel, Switzerland
| | - Qadeer Arshad
- inAmind Laboratory, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Louisa Murdin
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, UK
| | - Diego Kaski
- Neuro-otology Unit, Imperial College London, London, UK; Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - David J Sharp
- The Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL), Imperial College London, London, UK
| | | |
Collapse
|