1
|
Li D, Zhang Y, Lai L, Hao J, Wang X, Zhao Z, Cui X, Xiang J, Wang B. The impact of indirect structure on functional connectivity in schizophrenia using a multiplex brain network. J Psychiatr Res 2024; 179:257-265. [PMID: 39321524 DOI: 10.1016/j.jpsychires.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
It is known that abnormal functional connectivity (FC) in schizophrenia (SZ) is closely related to structural connectivity (SC). We speculate that indirect SC also have an impact on FC in SZ patients. Conventional single-layer network has limitations for studying the relationship between indirect SC and FC. Thus, this study constructed a multiplex network based on structural connectivity and functional connectivity (SC-FC). The SC-FC bandwidth and SC-FC cost are used to analyze the impact of indirect SC on FC. Moreover, this paper proposed mediation ability, mediation cost, mediated strength and mediated cost to quantify the effects of mediator nodes and mediated nodes on indirect SC. The results show that SZ patients exhibit lower SC-FC bandwidth and SC-FC cost compared to healthy controls (HC), which could be caused by the limbic and subcortical network (LSN), default mode network (DMN) and visual network (VN). The mediator and mediated nodes in indirect SC of SZ patients also showed diminished effects. These findings suggest that functional communication ability and cost in SZ patients are influenced by indirect SC. This study provides new perspectives for understanding the relationship between indirect SC and FC, and provides strong evidence for interpreting the physiological mechanisms of SZ patients.
Collapse
Affiliation(s)
- Dandan Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yating Zhang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Luyao Lai
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jianchao Hao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xuedong Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhenyu Zhao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaohong Cui
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
2
|
Yao G, Pan J, Zou T, Li J, Li J, He X, Zhang F, Xu Y. Structure-function coupling changes in first-episode, treatment-naïve schizophrenia correlate with cell type-specific transcriptional signature. BMC Med 2024; 22:491. [PMID: 39443976 PMCID: PMC11515592 DOI: 10.1186/s12916-024-03714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND First-episode schizophrenia (FES) is a complex and progressive psychiatric disorder. The etiology of FES involves genetic, environmental, and neurobiological factors. This study investigates the association between alterations in structural-functional (SC-FC) coupling and transcriptional expression in FES. METHODS This study encompassed a cohort of 214 participants, comprising 111 FES patients and 103 healthy controls (HC). Furthermore, we examined the abnormalities within SC-FC coupling in FES and their correlations with meta-analytic cognitive terms, neurotransmitters, and transcriptional patterns through partial least squares regression (PLS), involving similarity with other psychiatric disorders or psychiatric-related diseases, functional enrichments, special cell types, peripheral inflammation, and cortical layers. RESULTS FES patients exhibited lower SC-FC coupling in the visual, sensorimotor, and ventral attention networks compared to controls. Furthermore, case-control t-maps revealed a negative correlation with neurotransmitters such as serotonin and dopamine, while showing a positive correlation with opioids. Positive t-maps were associated with cognitive functions, including reasoning, judgment, and action, whereas negative t-maps correlated with cognitive functions such as learning, stress, and mood. Moreover, there was a significant overlap between genes linked to abnormalities in SC-FC coupling and those dysregulated in inflammatory bowel diseases. PLS2- genes linked to SC-FC coupling demonstrated significant enrichment in pathways related to immunity and inflammation, as well as in cortical layers I and V. Conversely, PLS2 + genes were primarily enriched in synaptic signaling processes, specific excitatory neurons, and layers II and IV. Additionally, changes in SC-FC coupling were negatively associated with gene expression related to antipsychotics and lymphocytes. CONCLUSIONS These findings offer a new perspective on the complex interplay between SC-FC coupling abnormalities and transcriptional expression in the initial phases of schizophrenia.
Collapse
Affiliation(s)
- Guanqun Yao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jingjing Pan
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, 310051, China
| | - Ting Zou
- School of Life Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- College of Humanities and Social Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Juan Li
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453638, China
| | - Xiao He
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Yong Xu
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennan Middle Road, Futian District, Shenzhen City, Guangdong Province, 518031, China.
| |
Collapse
|
3
|
Long H, Chen Z, Xu X, Zhou Q, Fang Z, Lv M, Yang XH, Xiao J, Sun H, Fan M. Elucidating genetic and molecular basis of altered higher-order brain structure-function coupling in major depressive disorder. Neuroimage 2024; 297:120722. [PMID: 38971483 DOI: 10.1016/j.neuroimage.2024.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
Previous studies have shown that major depressive disorder (MDD) patients exhibit structural and functional impairments, but few studies have investigated changes in higher-order coupling between structure and function. Here, we systematically investigated the effect of MDD on higher-order coupling between structural connectivity (SC) and functional connectivity (FC). Each brain region was mapped into embedding vector by the node2vec algorithm. We used support vector machine (SVM) with the brain region embedding vector to distinguish MDD patients from health controls (HCs) and identify the most discriminative brain regions. Our study revealed that MDD patients had decreased higher-order coupling in connections between the most discriminative brain regions and local connections in rich-club organization and increased higher-order coupling in connections between the ventral attentional network and limbic network compared with HCs. Interestingly, transcriptome-neuroimaging association analysis demonstrated the correlations between regional rSC-FC coupling variations between MDD patients and HCs and α/β-hydrolase domain-containing 6 (ABHD6), β 1,3-N-acetylglucosaminyltransferase-9(β3GNT9), transmembrane protein 45B (TMEM45B), the correlation between regional dSC-FC coupling variations and retinoic acid early transcript 1E antisense RNA 1(RAET1E-AS1), and the correlations between regional iSC-FC coupling variations and ABHD6, β3GNT9, katanin-like 2 protein (KATNAL2). In addition, correlation analysis with neurotransmitter receptor/transporter maps found that the rSC-FC and iSC-FC coupling variations were both correlated with neuroendocrine transporter (NET) expression, and the dSC-FC coupling variations were correlated with metabotropic glutamate receptor 5 (mGluR5). Further mediation analysis explored the relationship between genes, neurotransmitter receptor/transporter and MDD related higher-order coupling variations. These findings indicate that specific genetic and molecular factors underpin the observed disparities in higher-order SC-FC coupling between MDD patients and HCs. Our study confirmed that higher-order coupling between SC and FC plays an important role in diagnosing MDD. The identification of new biological evidence for MDD etiology holds promise for the development of innovative antidepressant therapies.
Collapse
Affiliation(s)
- Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zihao Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xinli Xu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qianwei Zhou
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhaolin Fang
- Network Information Center, Zhejiang University of Technology, Hangzhou 310023, China
| | - Mingqi Lv
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jie Xiao
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Liang J, Yan T, Huang Y, Li T, Rao S, Yang H, Lu J, Niu Y, Li D, Xiang J, Wang B. Continuous Dictionary of Nodes Model and Bilinear-Diffusion Representation Learning for Brain Disease Analysis. Brain Sci 2024; 14:810. [PMID: 39199501 PMCID: PMC11352990 DOI: 10.3390/brainsci14080810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Brain networks based on functional magnetic resonance imaging (fMRI) provide a crucial perspective for diagnosing brain diseases. Representation learning has recently attracted tremendous attention due to its strong representation capability, which can be naturally applied to brain disease analysis. However, traditional representation learning only considers direct and local node interactions in original brain networks, posing challenges in constructing higher-order brain networks to represent indirect and extensive node interactions. To address this problem, we propose the Continuous Dictionary of Nodes model and Bilinear-Diffusion (CDON-BD) network for brain disease analysis. The CDON model is innovatively used to learn the original brain network, with its encoder weights directly regarded as latent features. To fully integrate latent features, we further utilize Bilinear Pooling to construct higher-order brain networks. The Diffusion Module is designed to capture extensive node interactions in higher-order brain networks. Compared to state-of-the-art methods, CDON-BD demonstrates competitive classification performance on two real datasets. Moreover, the higher-order representations learned by our method reveal brain regions relevant to the diseases, contributing to a better understanding of the pathology of brain diseases.
Collapse
Affiliation(s)
- Jiarui Liang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China;
| | - Yin Huang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Ting Li
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Songhui Rao
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongye Yang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiayu Lu
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Niu
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Dandan Li
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Xiang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Bin Wang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
5
|
Xie Y, Li C, Guan M, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. Low-frequency rTMS induces modifications in cortical structural connectivity - functional connectivity coupling in schizophrenia patients with auditory verbal hallucinations. Hum Brain Mapp 2024; 45:e26614. [PMID: 38375980 PMCID: PMC10878014 DOI: 10.1002/hbm.26614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Auditory verbal hallucinations (AVH) are distinctive clinical manifestations of schizophrenia. While low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated potential in mitigating AVH, the precise mechanisms by which it operates remain obscure. This study aimed to investigate alternations in structural connectivity and functional connectivity (SC-FC) coupling among schizophrenia patients with AVH prior to and following treatment with 1 Hz rTMS that specifically targets the left temporoparietal junction. Initially, patients exhibited significantly reduced macroscopic whole brain level SC-FC coupling compared to healthy controls. Notably, SC-FC coupling increased significantly across multiple networks, including the somatomotor, dorsal attention, ventral attention, frontoparietal control, and default mode networks, following rTMS treatment. Significant alternations in SC-FC coupling were noted in critical nodes comprising the somatomotor network and the default mode network, such as the precentral gyrus and the ventromedial prefrontal cortex, respectively. The alternations in SC-FC coupling exhibited a correlation with the amelioration of clinical symptom. The results of our study illuminate the intricate relationship between white matter structures and neuronal activity in patients who are receiving low-frequency rTMS. This advances our understanding of the foundational mechanisms underlying rTMS treatment for AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
- Department of Radiology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chenxi Li
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Muzhen Guan
- Department of Mental HealthXi'an Medical CollegeXi'anChina
| | - Tian Zhang
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Chaozong Ma
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Zhongheng Wang
- Department of Psychiatry, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhujing Ma
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Huaning Wang
- Department of Psychiatry, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Peng Fang
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent PerceptionXi'anChina
| |
Collapse
|
6
|
Li J, Zou Y, Kong X, Leng Y, Yang F, Zhou G, Liu B, Fan W. Exploring functional connectivity alterations in sudden sensorineural hearing loss: A multilevel analysis. Brain Res 2024; 1824:148677. [PMID: 37979604 DOI: 10.1016/j.brainres.2023.148677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Sudden sensorineural hearing loss (SSNHL) constitutes an urgent otologic emergency, marked by a rapid decline of at least 30 dB across three consecutive frequencies within 72 h. While previous studies have noted brain region alterations encompassing both auditory and non-auditory areas, this research examines functional connectivity changes across integrity, network, and edge levels in SSNHL. The cohort included 184 participants: 107 SSNHL patients and 77 age- and sex-matched healthy controls. Our investigation comprises: (1) characterization of overall functional connectivity degree across 55 nodes in nine networks (p < 0.05, corrected for false discovery rate), exposing integrity level changes; (2) identification of reduced intranetwork connectivity strength within sensory and attention networks (somatomotor network, auditory network, ventral attention network, dorsal attention network) in SSNHL individuals (p < 0.05, Bonferroni corrected), and reduced internetwork connectivity across twelve distinct subnetwork pairs (p < 0.05, FDR corrected); (3) revelation of increased internetwork connectivity in SSNHL patients, primarily spanning dorsal attention network, fronto parietal network, default mode network, and limbic network, alongside widespread reductions in connectivity patterns among the nine distinct resting-state brain networks. The study further uncovers negative correlations between SSNHL duration and intranetwork connectivity of the auditory network (p < 0.001, R = -0.474), and between Tinnitus Handicap Inventory (THI) scores and internetwork connections linking auditory network and dorsal attention network (p < 0.001, R = -0.331). These observed alterations provide crucial insights into the neural mechanisms underpinning SSNHL and extend our comprehension of the brain's network-level responses to sensory loss. By unveiling the intricate interplay between sensory deprivation, adaptation, and cognitive processes, this study lays the groundwork for future research targeting enhanced diagnosis, treatment, and rehabilitation approaches for individuals afflicted by SSNHL.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Yan Zou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Yangming Leng
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Bo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
7
|
Hong Y, Cornea E, Girault JB, Bagonis M, Foster M, Kim SH, Prieto JC, Chen H, Gao W, Styner MA, Gilmore JH. Structural and functional connectome relationships in early childhood. Dev Cogn Neurosci 2023; 64:101314. [PMID: 37898019 PMCID: PMC10630618 DOI: 10.1016/j.dcn.2023.101314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
There is strong evidence that the functional connectome is highly related to the white matter connectome in older children and adults, though little is known about structure-function relationships in early childhood. We investigated the development of cortical structure-function coupling in children longitudinally scanned at 1, 2, 4, and 6 years of age (N = 360) and in a comparison sample of adults (N = 89). We also applied a novel graph convolutional neural network-based deep learning model with a new loss function to better capture inter-subject heterogeneity and predict an individual's functional connectivity from the corresponding structural connectivity. We found regional patterns of structure-function coupling in early childhood that were consistent with adult patterns. In addition, our deep learning model improved the prediction of individual functional connectivity from its structural counterpart compared to existing models.
Collapse
Affiliation(s)
- Yoonmi Hong
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America.
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, United States of America
| | - Maria Bagonis
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Mark Foster
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Sun Hyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Juan Carlos Prieto
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Haitao Chen
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, United States of America
| | - Wei Gao
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, United States of America
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America; Department of Computer Science, University of North Carolina at Chapel Hill, United States of America
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
8
|
Castro Martínez JC, Santamaría-García H. Understanding mental health through computers: An introduction to computational psychiatry. Front Psychiatry 2023; 14:1092471. [PMID: 36824671 PMCID: PMC9941647 DOI: 10.3389/fpsyt.2023.1092471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Computational psychiatry recently established itself as a new tool in the study of mental disorders and problems. Integration of different levels of analysis is creating computational phenotypes with clinical and research values, and constructing a way to arrive at precision psychiatry are part of this new branch. It conceptualizes the brain as a computational organ that receives from the environment parameters to respond to challenges through calculations and algorithms in continuous feedback and feedforward loops with a permanent degree of uncertainty. Through this conception, one can seize an understanding of the cerebral and mental processes in the form of theories or hypotheses based on data. Using these approximations, a better understanding of the disorder and its different determinant factors facilitates the diagnostics and treatment by having an individual, ecologic, and holistic approach. It is a tool that can be used to homologate and integrate multiple sources of information given by several theoretical models. In conclusion, it helps psychiatry achieve precision and reproducibility, which can help the mental health field achieve significant advancement. This article is a narrative review of the basis of the functioning of computational psychiatry with a critical analysis of its concepts.
Collapse
Affiliation(s)
- Juan Camilo Castro Martínez
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Hernando Santamaría-García
- Ph.D. Programa de Neurociencias, Departamento de Psiquiatría y Salud Mental, Pontificia Universidad Javeriana, Bogotá, Colombia
- Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Global Brain Health Institute, University of California, San Francisco – Trinity College Dublin, San Francisco, CA, United States
| |
Collapse
|