1
|
Kim SJ, Babola TA, Lee K, Matney CJ, Spiegel AC, Liew MH, Schulteis EM, Coye AE, Proskurin M, Kang H, Kim JA, Chevée M, Lee K, Kanold PO, Goff LA, Kim J, Brown SP. A consensus definition for deep layer 6 excitatory neurons in mouse neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621933. [PMID: 39574572 PMCID: PMC11580952 DOI: 10.1101/2024.11.04.621933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
To understand neocortical function, we must first define its cell types. Recent studies indicate that neurons in the deepest cortical layer play roles in mediating thalamocortical interactions and modulating brain state and are implicated in neuropsychiatric disease. However, understanding the functions of deep layer 6 (L6b) neurons has been hampered by the lack of agreed upon definitions for these cell types. We compared commonly used methods for defining L6b neurons, including molecular, transcriptional and morphological approaches as well as transgenic mouse lines, and identified a core population of L6b neurons. This population does not innervate sensory thalamus, unlike layer 6 corticothalamic neurons (L6CThNs) in more superficial layer 6. Rather, single L6b neurons project ipsilaterally between cortical areas. Although L6b neurons undergo early developmental changes, we found that their intrinsic electrophysiological properties were stable after the first postnatal week. Our results provide a consensus definition for L6b neurons, enabling comparisons across studies.
Collapse
|
2
|
Intskirveli I, Gil S, Lazar R, Metherate R. Alpha-2 nicotinic acetylcholine receptors regulate spectral integration in auditory cortex. Front Neural Circuits 2024; 18:1492452. [PMID: 39553292 PMCID: PMC11563825 DOI: 10.3389/fncir.2024.1492452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction In primary auditory cortex (A1), nicotinic acetylcholine receptors (nAChRs) containing α2 subunits are expressed in layer 5 Martinotti cells (MCs)-inhibitory interneurons that send a main axon to superficial layers to inhibit distal apical dendrites of pyramidal cells (PCs). MCs also contact interneurons in supragranular layers that, in turn, inhibit PCs. Thus, MCs may regulate PCs via inhibition and disinhibition, respectively, of distal and proximal apical dendrites. Auditory inputs to PCs include thalamocortical inputs to middle layers relaying information about characteristic frequency (CF) and near-CF stimuli, and intracortical long-distance ("horizontal") projections to multiple layers carrying information about spectrally distant ("nonCF") stimuli. CF and nonCF inputs integrate to create broad frequency receptive fields (RFs). Systemic administration of nicotine activates nAChRs to "sharpen" RFs-to increase gain within a narrowed RF-resulting in enhanced responses to CF stimuli and reduced responses to nonCF stimuli. While nicotinic mechanisms to increase gain have been identified, the mechanism underlying RF narrowing is unknown. Methods Here, we examine the role of α2 nAChRs in mice with α2 nAChR-expressing neurons labeled fluorescently, and in mice with α2 nAChRs genetically deleted. Results The distribution of fluorescent neurons in auditory cortex was consistent with previous studies demonstrating α2 nAChRs in layer 5 MCs, including nonpyramidal somata in layer 5 and dense processes in layer 1. We also observed label in subcortical auditory regions, including processes, but no somata, in the medial geniculate body, and both fibers and somata in the inferior colliculus. Using electrophysiological (current-source density) recordings in α2 nAChR knock-out mice, we found that systemic nicotine failed to enhance CF-evoked inputs to layer 4, suggesting a role for subcortical α2 nAChRs, and failed to reduce nonCF-evoked responses, suggesting that α2 nAChRs regulate horizontal projections to produce RF narrowing. Discussion The results support the hypothesis that α2 nAChRs function to simultaneously enhance RF gain and narrow RF breadth in A1. Notably, a similar neural circuit may recur throughout cortex and hippocampus, suggesting widespread conserved functions regulated by α2 nAChRs.
Collapse
Affiliation(s)
| | | | | | - Raju Metherate
- Department of Neurobiology and Behavior, Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Iannone AF, Akgül G, Zhang R, Wacks S, Hussein N, Macias CG, Donatelle A, Bauriedel JMJ, Wright C, Abramov D, Johnson MA, Govek EE, Burré J, Milner TA, De Marco García NV. The chemokine Cxcl14 regulates interneuron differentiation in layer I of the somatosensory cortex. Cell Rep 2024; 43:114531. [PMID: 39058591 PMCID: PMC11373301 DOI: 10.1016/j.celrep.2024.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Spontaneous and sensory-evoked activity sculpts developing circuits. Yet, how these activity patterns intersect with cellular programs regulating the differentiation of neuronal subtypes is not well understood. Through electrophysiological and in vivo longitudinal analyses, we show that C-X-C motif chemokine ligand 14 (Cxcl14), a gene previously characterized for its association with tumor invasion, is expressed by single-bouquet cells (SBCs) in layer I (LI) of the somatosensory cortex during development. Sensory deprivation at neonatal stages markedly decreases Cxcl14 expression. Additionally, we report that loss of function of this gene leads to increased intrinsic excitability of SBCs-but not LI neurogliaform cells-and augments neuronal complexity. Furthermore, Cxcl14 loss impairs sensory map formation and compromises the in vivo recruitment of superficial interneurons by sensory inputs. These results indicate that Cxcl14 is required for LI differentiation and demonstrate the emergent role of chemokines as key players in cortical network development.
Collapse
Affiliation(s)
- Andrew F Iannone
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Gülcan Akgül
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robin Zhang
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sam Wacks
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nisma Hussein
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carmen Ginelly Macias
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Donatelle
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julia M J Bauriedel
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cora Wright
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Debra Abramov
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA; Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
4
|
Vattino LG, MacGregor CP, Liu CJ, Sweeney CG, Takesian AE. Primary auditory thalamus relays directly to cortical layer 1 interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603741. [PMID: 39071266 PMCID: PMC11275971 DOI: 10.1101/2024.07.16.603741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Inhibitory interneurons within cortical layer 1 (L1-INs) integrate inputs from diverse brain regions to modulate sensory processing and plasticity, but the sensory inputs that recruit these interneurons have not been identified. Here we used monosynaptic retrograde tracing and whole-cell electrophysiology to characterize the thalamic inputs onto two major subpopulations of L1-INs in the mouse auditory cortex. We find that the vast majority of auditory thalamic inputs to these L1-INs unexpectedly arise from the ventral subdivision of the medial geniculate body (MGBv), the tonotopically-organized primary auditory thalamus. Moreover, these interneurons receive robust functional monosynaptic MGBv inputs that are comparable to those recorded in the L4 excitatory pyramidal neurons. Our findings identify a direct pathway from the primary auditory thalamus to the L1-INs, suggesting that these interneurons are uniquely positioned to integrate thalamic inputs conveying precise sensory information with top-down inputs carrying information about brain states and learned associations.
Collapse
Affiliation(s)
- Lucas G. Vattino
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Cathryn P. MacGregor
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- These authors contributed equally to this work
| | - Christine Junhui Liu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Graduate Program in Speech and Hearing and Bioscience and Technologies, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| | - Carolyn G. Sweeney
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Anne E. Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Zolnik TA, Bronec A, Ross A, Staab M, Sachdev RNS, Molnár Z, Eickholt BJ, Larkum ME. Layer 6b controls brain state via apical dendrites and the higher-order thalamocortical system. Neuron 2024; 112:805-820.e4. [PMID: 38101395 DOI: 10.1016/j.neuron.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/11/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023]
Abstract
The deepest layer of the cortex (layer 6b [L6b]) contains relatively few neurons, but it is the only cortical layer responsive to the potent wake-promoting neuropeptide orexin/hypocretin. Can these few neurons significantly influence brain state? Here, we show that L6b-photoactivation causes a surprisingly robust enhancement of attention-associated high-gamma oscillations and population spiking while abolishing slow waves in sleep-deprived mice. To explain this powerful impact on brain state, we investigated L6b's synaptic output using optogenetics, electrophysiology, and monoCaTChR ex vivo. We found powerful output in the higher-order thalamus and apical dendrites of L5 pyramidal neurons, via L1a and L5a, as well as in superior colliculus and L6 interneurons. L6b subpopulations with distinct morphologies and short- and long-term plasticities project to these diverse targets. The L1a-targeting subpopulation triggered powerful NMDA-receptor-dependent spikes that elicited burst firing in L5. We conclude that orexin/hypocretin-activated cortical neurons form a multifaceted, fine-tuned circuit for the sustained control of the higher-order thalamocortical system.
Collapse
Affiliation(s)
- Timothy Adam Zolnik
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany.
| | - Anna Bronec
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Annemarie Ross
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Marcel Staab
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Robert N S Sachdev
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Zoltán Molnár
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Physiology, Anatomy, and Genetics, University of Oxford, Parks Road, Sherrington Building, Oxford OX1 3PT, UK
| | | | - Matthew Evan Larkum
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany.
| |
Collapse
|