1
|
Hsu LM, Shih YYI. Neuromodulation in Small Animal fMRI. J Magn Reson Imaging 2025; 61:1597-1617. [PMID: 39279265 PMCID: PMC11903207 DOI: 10.1002/jmri.29575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
The integration of functional magnetic resonance imaging (fMRI) with advanced neuroscience technologies in experimental small animal models offers a unique path to interrogate the causal relationships between regional brain activity and brain-wide network measures-a goal challenging to accomplish in human subjects. This review traces the historical development of the neuromodulation techniques commonly used in rodents, such as electrical deep brain stimulation, optogenetics, and chemogenetics, and focuses on their application with fMRI. We discuss their advantageousness roles in uncovering the signaling architecture within the brain and the methodological considerations necessary when conducting these experiments. By presenting several rodent-based case studies, we aim to demonstrate the potential of the multimodal neuromodulation approach in shedding light on neurovascular coupling, the neural basis of brain network functions, and their connections to behaviors. Key findings highlight the cell-type and circuit-specific modulation of brain-wide activity patterns and their behavioral correlates. We also discuss several future directions and feature the use of mediation and moderation analytical models beyond the intuitive evoked response mapping, to better leverage the rich information available in fMRI data with neuromodulation. Using fMRI alongside neuromodulation techniques provide insights into the mesoscopic (relating to the intermediate scale between single neurons and large-scale brain networks) and macroscopic fMRI measures that correlate with specific neuronal events. This integration bridges the gap between different scales of neuroscience research, facilitating the exploration and testing of novel therapeutic strategies aimed at altering network-mediated behaviors. In conclusion, the combination of fMRI with neuromodulation techniques provides crucial insights into mesoscopic and macroscopic brain dynamics, advancing our understanding of brain function in health and disease. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
MacKinnon MJ, Song S, Chao THH, Hsu LM, Albert ST, Ma Y, Shnitko TA, Wang TWW, Nonneman RJ, Freeman CD, Ozarkar SS, Emir UE, Shen MD, Philpot BD, Hantman AW, Lee SH, Chang WT, Shih YYI. SORDINO for Silent, Sensitive, Specific, and Artifact-Resisting fMRI in awake behaving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642406. [PMID: 40161795 PMCID: PMC11952411 DOI: 10.1101/2025.03.10.642406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has revolutionized our understanding of the brain activity landscape, bridging circuit neuroscience in animal models with noninvasive brain mapping in humans. This immensely utilized technique, however, faces challenges such as acoustic noise, electromagnetic interference, motion artifacts, magnetic-field inhomogeneity, and limitations in sensitivity and specificity. Here, we introduce Steady-state On-the-Ramp Detection of INduction-decay with Oversampling (SORDINO), a transformative fMRI technique that addresses these challenges by maintaining a constant total gradient amplitude while acquiring data during continuously changing gradient direction. When benchmarked against conventional fMRI on a 9.4T system, SORDINO is silent, sensitive, specific, and resistant to motion and susceptibility artifacts. SORDINO offers superior compatibility with multimodal experiments and carries novel contrast mechanisms distinct from BOLD. It also enables brain-wide activity and connectivity mapping in awake, behaving mice, overcoming stress- and motion-related confounds that are among the most challenging barriers in current animal fMRI studies.
Collapse
Affiliation(s)
- Martin J. MacKinnon
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sheng Song
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott T. Albert
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuncong Ma
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tatiana A. Shnitko
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randy J. Nonneman
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Corey D. Freeman
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Siddhi S. Ozarkar
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Uzay E. Emir
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark D. Shen
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin D. Philpot
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam W. Hantman
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei-Tang Chang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Mandino F, Horien C, Shen X, Desrosiers-Grégoire G, Luo W, Markicevic M, Todd Constable R, Papademetris X, Chakravarty MM, Betzel RF, Lake EMR. Multimodal identification of the mouse brain using simultaneous Ca 2+ imaging and fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.24.594620. [PMID: 38826324 PMCID: PMC11142213 DOI: 10.1101/2024.05.24.594620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Individual differences in neuroimaging are of interest to clinical and cognitive neuroscientists based on their potential for guiding the personalized treatment of various heterogeneous neurological conditions and diseases. Despite many advantages, the workhorse in this arena, BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI) suffers from low spatiotemporal resolution and specificity as well as a propensity for noise and spurious signal corruption. To better understand individual differences in BOLD-fMRI data, we can use animal models where fMRI, alongside complementary but more invasive contrasts, can be accessed. Here, we apply simultaneous wide-field fluorescence calcium imaging and BOLD-fMRI in mice to interrogate individual differences using a connectome-based identification framework adopted from the human fMRI literature. This approach yields high spatiotemporal resolution cell-type specific signals (here, from glia, excitatory, as well as inhibitory interneurons) from the whole cortex. We found mouse multimodal connectome-based identification to be successful and explored various features of these data.
Collapse
|
4
|
Meyer-Baese L, Jaeger D, Keilholz S. Neurovascular coupling: a review of spontaneous neocortical dynamics linking neuronal activity to hemodynamics and what we have learned from the rodent brain. J Neurophysiol 2025; 133:644-660. [PMID: 39819035 DOI: 10.1152/jn.00418.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
The brain is a complex neural network whose functional dynamics offer valuable insights into behavioral performance and health. Advances in fMRI have provided a unique window into studying human brain networks, providing us with a powerful tool for clinical research. Yet many questions about the underlying correlates between spontaneous fMRI and neural activity remain poorly understood, limiting the impact of this research. Cross-species studies have proven essential in deepening our understanding of how neuronal activity is coupled to increases in local cerebral blood flow, changes in blood oxygenation, and the measured fMRI signal. In this article, we review some fundamental mechanisms implicated in neurovascular coupling. We then examine neurovascular coupling within the context of spontaneous cortical functional networks and their dynamics, summarizing key findings from mechanistic studies in rodents. In doing so, we highlight the nuances of the neurovascular coupling that ultimately influences the interpretation of derived hemodynamic functional networks, their dynamics, and the neural underpinnings they represent.
Collapse
Affiliation(s)
- Lisa Meyer-Baese
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Department of Biology, Emory University, Atlanta, Georgia, United States
| | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, Georgia, United States
| | - Shella Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| |
Collapse
|
5
|
Valjakka JS, Paasonen J, Salo RA, Paasonen E, Stenroos P, Gureviciene I, Kettunen M, Idiyatullin D, Tanila H, Michaeli S, Mangia S, Gröhn O. Correlation of zero echo time functional MRI with neuronal activity in rats. J Cereb Blood Flow Metab 2025:271678X251314682. [PMID: 39846159 PMCID: PMC11758440 DOI: 10.1177/0271678x251314682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined. Therefore, we aimed to derive a function to model the temporal dynamics of the zero-TE fMRI signal in response to neuronal activity. Furthermore, we examined the correlation of zero-TE fMRI with neuronal activity across stimulation frequencies. To these ends, we performed simultaneous electrophysiological recordings and zero-TE fMRI in rats subjected to whisker stimulation. The presented impulse response function provides a basis for the statistical modeling of neuronal activity-induced changes in the zero-TE fMRI signal. The temporal characteristics of the zero-TE fMRI response were found to be consistent with the previously postulated non-BOLD hemodynamic origin of the functional contrast. The zero-TE fMRI signal was well predicted by electrophysiological recordings, although systematic stimulation-dependent residuals were also observed, suggesting nonlinearities in neurovascular coupling. We conclude that zero-TE fMRI provides a robust proxy for neuronal activity.
Collapse
Affiliation(s)
- Juha S Valjakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Jaakko Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo A Salo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neurocenter, Kuopio University Hospital, Kuopio, Finland
| | - Petteri Stenroos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Irina Gureviciene
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Hike D, Liu X, Xie Z, Zhang B, Choi S, Zhou XA, Liu A, Murstein A, Jiang Y, Devor A, Yu X. High-resolution awake mouse fMRI at 14 tesla. eLife 2025; 13:RP95528. [PMID: 39786364 PMCID: PMC11717365 DOI: 10.7554/elife.95528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts. Using a 14 T scanner, high-resolution fMRI enabled brain-wide functional mapping of visual and vibrissa stimulation at 100 µm×100 µm×200 µm resolution with a 2 s per frame sampling rate. Besides activated ascending visual and vibrissa pathways, robust blood oxygen level-dependent (BOLD) responses were detected in the anterior cingulate cortex upon visual stimulation and spread through the ventral retrosplenial area (VRA) with vibrissa air-puff stimulation, demonstrating higher-order sensory processing in association cortices of awake mice. In particular, the rapid hemodynamic responses in VRA upon vibrissa stimulation showed a strong correlation with the hippocampus, thalamus, and prefrontal cortical areas. Cross-correlation analysis with designated VRA responses revealed early positive BOLD signals at the contralateral barrel cortex (BC) occurring 2 s prior to the air-puff in awake mice with repetitive stimulation, which was not detected using a randomized stimulation paradigm. This early BC activation indicated a learned anticipation through the vibrissa system and association cortices in awake mice under continuous exposure of repetitive air-puff stimulation. This work establishes a high-resolution awake mouse fMRI platform, enabling brain-wide functional mapping of sensory signal processing in higher association cortical areas.
Collapse
Affiliation(s)
- David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Zeping Xie
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Bei Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Andy Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
- Graduate Program in Neuroscience, Boston UniversityBostonUnited States
| | - Alyssa Murstein
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
- Graduate Program in Neuroscience, Boston UniversityBostonUnited States
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| |
Collapse
|
7
|
Li Y, Cardenas-Rivera A, Liu C, Lu Z, Anton J, Alfadhel M, Yaseen MA. Low-cost physiology and behavioral monitor for intravital imaging in small mammals. NEUROPHOTONICS 2025; 12:015004. [PMID: 39867131 PMCID: PMC11759666 DOI: 10.1117/1.nph.12.1.015004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025]
Abstract
Significance Functional brain imaging experiments in awake animals require meticulous monitoring of animal behavior to screen for spontaneous behavioral events. Although these events occur naturally, they can alter cell signaling and hemodynamic activity in the brain and confound functional brain imaging measurements. Aim We developed a centralized, user-friendly, and stand-alone platform that includes an animal fixation frame, compact peripheral sensors, and a portable data acquisition system. The affordable, integrated platform can benefit imaging experiments by monitoring animal behavior for motion detection and alertness levels as complementary readouts for brain activity measurements. Approach A custom acquisition system was designed using a powerful, inexpensive microcomputer. We customized an accelerometer and miniature camera modules for efficient, real-time monitoring of animal motion detection and pupil diameter. We then tested and validated the platform's performance with optical intrinsic signal imaging and GCaMP fluorescence calcium imaging in functional activation experiments in awake mice. Results The integrated platform shows promise for detecting spontaneous motion and pupil dilation while imaging. Stimulus-induced pupil dilation was found to initiate earlier than cortical hemodynamics with a slower rise time. Compared with neuronal calcium response, stimulus-induced pupil dilation initiated later with a slower rise time. Conclusions We developed an integrated platform to monitor animal motion and pupil dynamics. The device can be easily coupled and synchronized with optical brain imaging systems to monitor behavior, alertness, and spontaneous motion for awake animal studies.
Collapse
Affiliation(s)
- Yuntao Li
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | | | - Chang Liu
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Zhengyi Lu
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Jaime Anton
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Mohammed Alfadhel
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Mohammad A. Yaseen
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
8
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Identifying the bioimaging features of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. Nat Commun 2024; 15:9657. [PMID: 39511186 PMCID: PMC11543808 DOI: 10.1038/s41467-024-53878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients show potential as biomarkers for brain degeneration. To investigate AD-specific PLR and its underlying neuromodulatory sources, we combine high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction (P c ) and post-illumination pupil dilation recovery (amplitude,P d , and time, T). TheP c -driven differential analysis reveals altered visual signal processing and reduced thalamocortical activation in AD mice in comparison with wild-type (WT) control mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlights multiple brain areas associated with AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Additionally, the brain-wide functional connectivity analysis highlights the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work integrates non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on brain-wide functional changes, including neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
Affiliation(s)
- Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Weitao Man
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
9
|
Ahmed S, Polis B, Jamwal S, Sanganahalli BG, MacDowell Kaswan Z, Islam R, Kim D, Bowers C, Giuliano L, Biederer T, Hyder F, Kaffman A. Transient impairment in microglial function causes sex-specific deficits in synaptic maturity and hippocampal function in mice exposed to early adversity. Brain Behav Immun 2024; 122:95-109. [PMID: 39134183 PMCID: PMC11402597 DOI: 10.1016/j.bbi.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early-life adversity (ELA), with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of ELA, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower. Since the rodent hippocampus undergoes intense synaptic pruning during the second and third weeks of life, we investigated whether microglia are required for the synaptic and behavioral aberrations observed in adolescent LB mice. Indeed, transient ablation of microglia from P13-21 in normally developing mice caused sex-specific behavioral and synaptic abnormalities similar to those observed in adolescent LB mice. Furthermore, chemogenetic activation of microglia during the same period reversed the microglial-mediated phagocytic deficits at P17 and restored normal contextual fear conditioning and synaptic connectivity in adolescent LB male mice. Our data support an additional contribution of astrocytes in the sex-specific effects of LB, with increased expression of the membrane receptor MEGF10 and enhanced synaptic engulfment in hippocampal astrocytes of 17-day-old LB females, but not in LB male littermates. These findings suggest a potential compensatory mechanism that may explain the relative resilience of LB females. Collectively, our study highlights a novel role for glial cells in mediating sex-specific hippocampal deficits in a mouse model of ELA.
Collapse
Affiliation(s)
- Sahabuddin Ahmed
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Baruh Polis
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Basavaraju G Sanganahalli
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
| | - Zoe MacDowell Kaswan
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Rafiad Islam
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Dana Kim
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Christian Bowers
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Lauryn Giuliano
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, 100 College Street, New Haven, CT 06510, USA
| | - Fahmeed Hyder
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06519, USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA.
| |
Collapse
|
10
|
Chen X, Cramer SR, Chan DC, Han X, Zhang N. Sequential Deactivation Across the Hippocampus-Thalamus-mPFC Pathway During Loss of Consciousness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406320. [PMID: 39248326 PMCID: PMC11558098 DOI: 10.1002/advs.202406320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Indexed: 09/10/2024]
Abstract
How consciousness is lost in states such as sleep or anesthesia remains a mystery. To gain insight into this phenomenon, concurrent recordings of electrophysiology signals in the anterior cingulate cortex and whole-brain functional magnetic resonance imaging (fMRI) are conducted in rats exposed to graded propofol, undergoing the transition from consciousness to unconsciousness. The results reveal that upon the loss of consciousness (LOC), there is a sharp increase in low-frequency power of the electrophysiological signal. Additionally, fMRI signals exhibit a cascade of deactivation across a pathway including the hippocampus, thalamus, and medial prefrontal cortex (mPFC) surrounding the moment of LOC, followed by a broader increase in brain activity across the cortex during sustained unconsciousness. Furthermore, sliding window analysis demonstrates a temporary increase in synchrony of fMRI signals across the hippocampus-thalamus-mPFC pathway preceding LOC. These data suggest that LOC may be triggered by sequential activities in the hippocampus, thalamus, and mPFC, while wide-spread activity increases in other cortical regions commonly observed during anesthesia-induced unconsciousness may be a consequence, rather than a cause of LOC. Taken together, the study identifies a cascade of neural events unfolding as the brain transitions into unconsciousness, offering insight into the systems-level neural mechanisms underpinning LOC.
Collapse
Affiliation(s)
- Xiaoai Chen
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Samuel R. Cramer
- The Neuroscience Graduate ProgramThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Dennis C.Y. Chan
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xu Han
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nanyin Zhang
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- The Neuroscience Graduate ProgramThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neurotechnology in Mental Health ResearchThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
11
|
Mandino F, Shen X, Desrosiers-Grégoire G, O'Connor D, Mukherjee B, Owens A, Qu A, Onofrey J, Papademetris X, Chakravarty MM, Strittmatter SM, Lake EMR. Aging-dependent loss of functional connectivity in a mouse model of Alzheimer's disease and reversal by mGluR5 modulator. Mol Psychiatry 2024:10.1038/s41380-024-02779-z. [PMID: 39424929 DOI: 10.1038/s41380-024-02779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
Amyloid accumulation in Alzheimer's disease (AD) is associated with synaptic damage and altered connectivity in brain networks. While measures of amyloid accumulation and biochemical changes in mouse models have utility for translational studies of certain therapeutics, preclinical analysis of altered brain connectivity using clinically relevant fMRI measures has not been well developed for agents intended to improve neural networks. Here, we conduct a longitudinal study in a double knock-in mouse model for AD (AppNL-G-F/hMapt), monitoring brain connectivity by means of resting-state fMRI. While the 4-month-old AD mice are indistinguishable from wild-type controls (WT), decreased connectivity in the default-mode network is significant for the AD mice relative to WT mice by 6 months of age and is pronounced by 9 months of age. In a second cohort of 20-month-old mice with persistent functional connectivity deficits for AD relative to WT, we assess the impact of two-months of oral treatment with a silent allosteric modulator of mGluR5 (BMS-984923/ALX001) known to rescue synaptic density. Functional connectivity deficits in the aged AD mice are reversed by the mGluR5-directed treatment. The longitudinal application of fMRI has enabled us to define the preclinical time trajectory of AD-related changes in functional connectivity, and to demonstrate a translatable metric for monitoring disease emergence, progression, and response to synapse-rescuing treatment.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Gabriel Desrosiers-Grégoire
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
| | - David O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Bandhan Mukherjee
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ashley Owens
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale School of Medicine, New Haven, CT, 06520, USA
| | - An Qu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - John Onofrey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Urology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale School of Medicine, New Haven, CT, 06520, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
12
|
Chen X, Cramer SR, Chan DCY, Han X, Zhang N. Sequential deactivation across the thalamus-hippocampus-mPFC pathway during loss of consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594986. [PMID: 38826282 PMCID: PMC11142108 DOI: 10.1101/2024.05.20.594986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
How consciousness is lost in states such as sleep or anesthesia remains a mystery. To gain insight into this phenomenon, we conducted concurrent recordings of electrophysiology signals in the anterior cingulate cortex and whole-brain functional magnetic resonance imaging (fMRI) in rats exposed to graded propofol, undergoing the transition from consciousness to unconsciousness. Our results reveal that upon the loss of consciousness (LOC), as indicated by the loss of righting reflex, there is a sharp increase in low-frequency power of the electrophysiological signal. Additionally, simultaneously measured fMRI signals exhibit a cascade of deactivation across a pathway including the hippocampus, thalamus, and medial prefrontal cortex (mPFC) surrounding the moment of LOC, followed by a broader increase in brain activity across the cortex during sustained unconsciousness. Furthermore, sliding window analysis demonstrates a temporary increase in synchrony of fMRI signals across the hippocampus-thalamus-mPFC pathway preceding LOC. These data suggest that LOC might be triggered by sequential activities in the hippocampus, thalamus and mPFC, while wide-spread activity increases in other cortical regions commonly observed during anesthesia-induced unconsciousness might be a consequence, rather than a cause of LOC. Taken together, our study identifies a cascade of neural events unfolding as the brain transitions into unconsciousness, offering critical insight into the systems-level neural mechanisms underpinning LOC.
Collapse
|
13
|
Tiefenbach J, Shannon L, Lobosky M, Johnson S, Chan HH, Byram N, Machado AG, Androjna C, Baker KB. A novel restrainer device for acquistion of brain images in awake rats. Neuroimage 2024; 289:120556. [PMID: 38423263 PMCID: PMC10935597 DOI: 10.1016/j.neuroimage.2024.120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Functional neuroimaging methods like fMRI and PET are vital in neuroscience research, but require that subjects remain still throughout the scan. In animal research, anesthetic agents are typically applied to facilitate the acquisition of high-quality data with minimal motion artifact. However, anesthesia can have profound effects on brain metabolism, selectively altering dynamic neural networks and confounding the acquired data. To overcome the challenge, we have developed a novel head fixation device designed to support awake rat brain imaging. A validation experiment demonstrated that the device effectively minimizes animal motion throughout the scan, with mean absolute displacement and mean relative displacement of 0.0256 (SD: 0.001) and 0.009 (SD: 0.002), across eight evaluated subjects throughout fMRI image acquisition (total scanning time per subject: 31 min, 12 s). Furthermore, the awake scans did not induce discernable stress to the animals, with stable physiological parameters throughout the scan (Mean HR: 344, Mean RR: 56, Mean SpO2: 94 %) and unaltered serum corticosterone levels (p = 0.159). In conclusion, the device presented in this paper offers an effective and safe method of acquiring functional brain images in rats, allowing researchers to minimize the confounding effects of anesthetic use.
Collapse
Affiliation(s)
- Jakov Tiefenbach
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH 44195, USA.
| | - Logan Shannon
- Engineering Core, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Mark Lobosky
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Sadie Johnson
- Engineering Core, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Hugh H Chan
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Nicole Byram
- Cleveland Clinic Innovations, Cleveland Clinic, OH 44195, USA
| | - Andre G Machado
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Charlie Androjna
- Engineering Core, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Kenneth B Baker
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| |
Collapse
|
14
|
Grandjean J, Lake EMR, Pagani M, Mandino F. What N Is N-ough for MRI-Based Animal Neuroimaging? eNeuro 2024; 11:ENEURO.0531-23.2024. [PMID: 38499355 PMCID: PMC10950324 DOI: 10.1523/eneuro.0531-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Fueled by the recent and controversial brain-wide association studies in humans, the animal neuroimaging community has also begun questioning whether using larger sample sizes is necessary for ethical and effective scientific progress. In this opinion piece, we illustrate two opposing views on sample size extremes in MRI-based animal neuroimaging.
Collapse
Affiliation(s)
- Joanes Grandjean
- Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500HB, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Evelyn M R Lake
- Departments of Radiology and Biomedical Imaging, New Haven, Connecticut 06519
- Biomedical Engineering, Yale School of Medicine, New Haven, Connecticut 06519
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
- IMT School for Advanced Studies, Lucca 55100, Italy
| | - Francesca Mandino
- Departments of Radiology and Biomedical Imaging, New Haven, Connecticut 06519
| |
Collapse
|
15
|
Mandino F, Shen X, Desrosiers-Gregoire G, O'Connor D, Mukherjee B, Owens A, Qu A, Onofrey J, Papademetris X, Chakravarty MM, Strittmatter SM, Lake EM. Aging-Dependent Loss of Connectivity in Alzheimer's Model Mice with Rescue by mGluR5 Modulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.15.571715. [PMID: 38260465 PMCID: PMC10802481 DOI: 10.1101/2023.12.15.571715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Amyloid accumulation in Alzheimer's disease (AD) is associated with synaptic damage and altered connectivity in brain networks. While measures of amyloid accumulation and biochemical changes in mouse models have utility for translational studies of certain therapeutics, preclinical analysis of altered brain connectivity using clinically relevant fMRI measures has not been well developed for agents intended to improve neural networks. Here, we conduct a longitudinal study in a double knock-in mouse model for AD ( App NL-G-F /hMapt ), monitoring brain connectivity by means of resting-state fMRI. While the 4-month-old AD mice are indistinguishable from wild-type controls (WT), decreased connectivity in the default-mode network is significant for the AD mice relative to WT mice by 6 months of age and is pronounced by 9 months of age. In a second cohort of 20-month-old mice with persistent functional connectivity deficits for AD relative to WT, we assess the impact of two-months of oral treatment with a silent allosteric modulator of mGluR5 (BMS-984923) known to rescue synaptic density. Functional connectivity deficits in the aged AD mice are reversed by the mGluR5-directed treatment. The longitudinal application of fMRI has enabled us to define the preclinical time trajectory of AD-related changes in functional connectivity, and to demonstrate a translatable metric for monitoring disease emergence, progression, and response to synapse-rescuing treatment.
Collapse
|