1
|
Dioli C, Patrício P, Pinto LG, Marie C, Morais M, Vyas S, Bessa JM, Pinto L, Sotiropoulos I. Adult neurogenic process in the subventricular zone-olfactory bulb system is regulated by Tau protein under prolonged stress. Cell Prolif 2021; 54:e13027. [PMID: 33988263 PMCID: PMC8249793 DOI: 10.1111/cpr.13027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives The area of the subventricular zone (SVZ) in the adult brain exhibits the highest number of proliferative cells, which, together with the olfactory bulb (OB), maintains constant brain plasticity through the generation, migration and integration of newly born neurons. Despite Tau and its malfunction is increasingly related to deficits of adult hippocampal neurogenesis and brain plasticity under pathological conditions [e.g. in Alzheimer's disease (AD)], it remains unknown whether Tau plays a role in the neurogenic process of the SVZ and OB system under conditions of chronic stress, a well‐known sculptor of brain and risk factor for AD. Materials and methods Different types of newly born cells in SVZ and OB were analysed in animals that lack Tau gene (Tau‐KO) and their wild‐type littermates (WT) under control or chronic stress conditions. Results We demonstrate that chronic stress reduced the number of proliferating cells and neuroblasts in the SVZ leading to decreased number of newborn neurons in the OB of adult WT, but not Tau‐KO, mice. Interestingly, while stress‐evoked changes were not detected in OB granular cell layer, Tau‐KO exhibited increased number of mature neurons in this layer indicating altered neuronal migration due to Tau loss. Conclusions Our findings suggest the critical involvement of Tau in the neurogenesis suppression of SVZ and OB neurogenic niche under stressful conditions highlighting the role of Tau protein as an essential regulator of stress‐driven plasticity deficits.
Collapse
Affiliation(s)
- Chrysoula Dioli
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Institute of Biology Paris Seine, Team Gene Regulation and Adaptive Behaviors, Department of Neurosciences Paris Seine, Sorbonne Université, CNRS UMR 8246, INSERM U1130, Paris, France
| | - Patrícia Patrício
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucilia-Goreti Pinto
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Clemence Marie
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mónica Morais
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sheela Vyas
- Institute of Biology Paris Seine, Team Gene Regulation and Adaptive Behaviors, Department of Neurosciences Paris Seine, Sorbonne Université, CNRS UMR 8246, INSERM U1130, Paris, France
| | - João M Bessa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luisa Pinto
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Bellou E, Stevenson-Hoare J, Escott-Price V. Polygenic risk and pleiotropy in neurodegenerative diseases. Neurobiol Dis 2020; 142:104953. [PMID: 32445791 PMCID: PMC7378564 DOI: 10.1016/j.nbd.2020.104953] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
In this paper we explore the phenomenon of pleiotropy in neurodegenerative diseases, focusing on Alzheimer's disease (AD). We summarize the various techniques developed to investigate pleiotropy among traits, elaborating in the polygenic risk scores (PRS) analysis. PRS was designed to assess a cumulative effect of a large number of SNPs for association with a disease and, later for disease risk prediction. Since genetic predictions rely on heritability, we discuss SNP-based heritability from genome-wide association studies and its contribution to the prediction accuracy of PRS. We review work examining pleiotropy in neurodegenerative diseases and related phenotypes and biomarkers. We conclude that the exploitation of pleiotropy may aid in the identification of novel genes and provide further insights in the disease mechanisms, and along with PRS analysis, may be advantageous for precision medicine.
Collapse
|
3
|
The puzzle of preserved cognition in the oldest old. Neurol Sci 2019; 41:441-447. [PMID: 31713754 DOI: 10.1007/s10072-019-04111-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Although epidemiological studies predict an exponential increase in the prevalence of dementia with age, recent studies have demonstrated that the oldest old are actually less frequently affected by dementia than the younger elderly. To explain this, I suggest a parallel between brain ageing and Alzheimer's disease (AD) and assume that theories concerning the brain's vulnerability to AD and its individual variability may also explain why some of the oldest old remain cognitively efficient. Some theories argue that AD is due to the continuing presence of the immature neurones vulnerable to amyloid beta protein (Aß) that are normally involved in brain development and then removed as a result of cell selection by the proteins associated with both brain development and AD. If a dysfunction in cell selection allows these immature neurones to survive, they degenerate early as a result of the neurotoxic action of Aß accumulation, which their mature counterparts can withstand. Consequently, age at the time of onset of AD and its clinical presentations depend on the number and location of such immature cells. I speculate that the same mechanism is responsible for the variability of normal brain ageing: the oldest old with well-preserved cognitive function are people genetically programmed for extreme ageing who have benefited from better cell selection during prenatal and neonatal life and therefore have fewer surviving neurones vulnerable to amyloid-promoted degeneration, whereas the process of early life cell selection was less successful in the oldest old who develop dementia.
Collapse
|
4
|
Drange OK, Smeland OB, Shadrin AA, Finseth PI, Witoelar A, Frei O, Wang Y, Hassani S, Djurovic S, Dale AM, Andreassen OA. Genetic Overlap Between Alzheimer's Disease and Bipolar Disorder Implicates the MARK2 and VAC14 Genes. Front Neurosci 2019; 13:220. [PMID: 30930738 PMCID: PMC6425305 DOI: 10.3389/fnins.2019.00220] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Alzheimer's disease (AD) and bipolar disorder (BIP) are complex traits influenced by numerous common genetic variants, most of which remain to be detected. Clinical and epidemiological evidence suggest that AD and BIP are related. However, it is not established if this relation is of genetic origin. Here, we applied statistical methods based on the conditional false discovery rate (FDR) framework to detect genetic overlap between AD and BIP and utilized this overlap to increase the power to identify common genetic variants associated with either or both traits. Methods: We obtained genome wide association studies data from the International Genomics of Alzheimer's Project part 1 (17,008 AD cases and 37,154 controls) and the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases and 31,358 controls). We used conditional QQ-plots to assess overlap in common genetic variants between AD and BIP. We exploited the genetic overlap to re-rank test-statistics for AD and BIP and improve detection of genetic variants using the conditional FDR framework. Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP. Using conditional FDR, we identified one novel genomic locus associated with AD, and nine novel loci associated with BIP. Further, we identified two novel loci jointly associated with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional FDR = 0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476, conjunctional FDR = 0.022, opposite direction of effect). Conclusion: We found polygenic overlap between AD and BIP and identified novel loci for each trait and two jointly associated loci. Further studies should examine if the shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared and distinct features of AD and BIP.
Collapse
Affiliation(s)
- Ole Kristian Drange
- Department of Research and Development, Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Olav Bjerkehagen Smeland
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Alexey A. Shadrin
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Ivar Finseth
- Department of Brøset, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Aree Witoelar
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sahar Hassani
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Epigenetic and Neurological Impairments Associated with Early Life Exposure to Persistent Organic Pollutants. Int J Genomics 2019; 2019:2085496. [PMID: 30733955 PMCID: PMC6348822 DOI: 10.1155/2019/2085496] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
The incidence of neurodevelopmental and neurodegenerative diseases worldwide has dramatically increased over the last decades. Although the aetiology remains uncertain, evidence is now growing that exposure to persistent organic pollutants during sensitive neurodevelopmental periods such as early life may be a strong risk factor, predisposing the individual to disease development later in life. Epidemiological studies have associated environmentally persistent organic pollutant exposure to brain disorders including neuropathies, cognitive, motor, and sensory impairments; neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD); and neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). In many ways, this expands the classical “Developmental Origins of Health and Disease” paradigm to include exposure to pollutants. This model has been refined over the years to give the current “three-hit” model that considers the individual's genetic factors as a first “hit.” It has an immediate interaction with the early-life exposome (including persistent organic pollutants) that can be considered to be a second “hit.” Together, these first two “hits” produce a quiescent or latent phenotype, most probably encoded in the epigenome, which has become susceptible to a third environmental “hit” in later life. It is only after the third “hit” that the increased risk of disease symptoms is crystallised. However, if the individual is exposed to a different environment in later life, they would be expected to remain healthy. In this review, we examine the effect of exposure to persistent organic pollutants and particulate matters in early life and the relationship to subsequent neurodevelopmental and neurodegenerative disorders. The roles of those environmental factors which may affect epigenetic DNA methylation and therefore influence normal neurodevelopment are then evaluated.
Collapse
|
6
|
Schang AL, Sabéran-Djoneidi D, Mezger V. The impact of epigenomic next-generation sequencing approaches on our understanding of neuropsychiatric disorders. Clin Genet 2017; 93:467-480. [DOI: 10.1111/cge.13097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/31/2022]
Affiliation(s)
- A.-L. Schang
- CNRS; UMR7216 Épigénétique et Destin Cellulaire; F-75205 Paris Cedex 13 France
- Univ Paris Diderot; Sorbonne Paris Cité, F-75205 Paris Cedex 13 France
- Département Hospitalo-Universitaire PROTECT; Paris France
| | - D. Sabéran-Djoneidi
- CNRS; UMR7216 Épigénétique et Destin Cellulaire; F-75205 Paris Cedex 13 France
- Univ Paris Diderot; Sorbonne Paris Cité, F-75205 Paris Cedex 13 France
| | - V. Mezger
- CNRS; UMR7216 Épigénétique et Destin Cellulaire; F-75205 Paris Cedex 13 France
- Univ Paris Diderot; Sorbonne Paris Cité, F-75205 Paris Cedex 13 France
| |
Collapse
|
7
|
Seifan A, Schelke M, Obeng-Aduasare Y, Isaacson R. Early Life Epidemiology of Alzheimer's Disease--A Critical Review. Neuroepidemiology 2015; 45:237-54. [PMID: 26501691 DOI: 10.1159/000439568] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND As adult brain structure is primarily established in early life, genetic and environmental exposures in infancy and childhood influence the risk for Alzheimer disease (AD). In this systematic review, we identified several early life risk factors and discussed the evidence and underlying mechanism for each. SUMMARY Early risk factors for AD may alter brain anatomy, causing vulnerability to AD-related dementia later in life. In the perinatal period, both genes and learning disabilities have been associated with the development of distinct AD phenotypes. During early childhood, education and intellect, as well as body growth, may predispose to AD through alterations in cognitive and brain reserve, though the specific mediators of neural injury are disputed. Childhood socioeconomic status (SES) may predispose to AD by influencing adult SES and cognition. Association of these risk factors with underlying AD pathology (rather than just clinical diagnosis) has not been sufficiently examined. KEY MESSAGES Factors that impede or alter brain growth during early life could render certain brain regions or networks selectively vulnerable to the onset, accumulation or spread of AD-related pathology during later life. Careful life-course epidemiology could provide clues as to why the brain systematically degenerates during AD.
Collapse
Affiliation(s)
- Alon Seifan
- Alzheimer Prevention Clinic and Memory Disorders Program, Department of Neurology Weill Cornell Medical College, New York, N.Y., USA
| | | | | | | |
Collapse
|
8
|
Reiner O. LIS1 and DCX: Implications for Brain Development and Human Disease in Relation to Microtubules. SCIENTIFICA 2013; 2013:393975. [PMID: 24278775 PMCID: PMC3820303 DOI: 10.1155/2013/393975] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/07/2013] [Indexed: 05/29/2023]
Abstract
Proper lamination of the cerebral cortex requires the orchestrated motility of neurons from their place of birth to their final destination. Improper neuronal migration may result in a wide range of diseases, including brain malformations, such as lissencephaly, mental retardation, schizophrenia, and autism. Ours and other studies have implicated that microtubules and microtubule-associated proteins play an important role in the regulation of neuronal polarization and neuronal migration. Here, we will review normal processes of brain development and neuronal migration, describe neuronal migration diseases, and will focus on the microtubule-associated functions of LIS1 and DCX, which participate in the regulation of neuronal migration and are involved in the human developmental brain disease, lissencephaly.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
9
|
Sapir T, Frotscher M, Levy T, Mandelkow EM, Reiner O. Tau's role in the developing brain: implications for intellectual disability. Hum Mol Genet 2011; 21:1681-92. [PMID: 22194194 DOI: 10.1093/hmg/ddr603] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microdeletions encompassing the MAPT (Tau) locus resulting in intellectual disability raised the hypothesis that Tau may regulate early functions in the developing brain. Our results indicate that neuronal migration was inhibited in mouse brains following Tau reduction. In addition, the leading edge of radially migrating neurons was aberrant in spite of normal morphology of radial glia. Furthermore, intracellular mitochondrial transport and morphology were affected. In early postnatal brains, a portion of Tau knocked down neurons reached the cortical plate. Nevertheless, they exhibited far less developed dendrites and a striking reduction in connectivity evident by the size of boutons. Our novel results strongly implicate MAPT as a dosage-sensitive gene in this locus involved in intellectual disability. Furthermore, our results are likely to impact our understanding of other diseases involving Tau.
Collapse
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | |
Collapse
|
10
|
Hanein Y, Tadmor O, Anava S, Ayali A. Neuronal soma migration is determined by neurite tension. Neuroscience 2011; 172:572-9. [DOI: 10.1016/j.neuroscience.2010.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/22/2010] [Accepted: 10/11/2010] [Indexed: 12/19/2022]
|
11
|
Rogers D, Schor NF. The child is father to the man: developmental roles for proteins of importance for neurodegenerative disease. Ann Neurol 2010; 67:151-8. [PMID: 20225270 DOI: 10.1002/ana.21841] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although Alzheimer's and Parkinson's diseases predominately affect elderly adults, the proteins that play a role in the pathogenesis of these diseases are expressed throughout life. In fact, many of the proteins hypothesized to be important in the progression of neurodegeneration play direct or indirect roles in the development of the central nervous system. The systems affected by these proteins include neural stem cell fate decisions, neuronal differentiation, cellular migration, protection from oxidative stress, and programmed cell death. Insights into the developmental roles of these proteins may ultimately impact the understanding of neurodegenerative diseases and lead to the discovery of novel treatments.
Collapse
Affiliation(s)
- Danny Rogers
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|