1
|
Oliveira GVM, Hernandes PM, Santos FHD, Soares VPMN, Falconi-Sobrinho LL, Coimbra NC, Wotjak CT, Almada RC. Orexin mechanisms in the prelimbic cortex modulate the expression of contextual conditioned fear. Psychopharmacology (Berl) 2025; 242:521-532. [PMID: 39387863 DOI: 10.1007/s00213-024-06701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
RATIONALE Despite the existing anatomical and physiological evidence pointing to the involvement of orexinergic projections from the lateral hypothalamus (LH) in regulating fear-related responses, little is known regarding the contribution of the orexin system in the prelimbic cortex (PL) on contextual fear. OBJECTIVES We investigated the role of orexin-A (OrxA) and orexin type 1 receptors (Orx1R) in the PL during the expression of contextual conditioned fear in mice. METHODS Neural tract tracing of the LH-PL pathway and Orx1R immunoreactivity in the PL of C57BL/6 male mice were performed. In a pharmacological approach, the animals were treated with either the Orx1R selective antagonist SB 334,867 (3, 30, and 300 nM/0.1 µL) or OrxA (28, 70, and 140 pmol/0.1 µL) in the PL before the test session of contextual fear conditioning. RESULTS Neural tract tracing deposits in the LH showed some perikarya, mainly axons and terminal buttons in the PL, suggesting LH-PL reciprocate pathways. Furthermore, we showed a profuse network comprised of Orx1R-labeled thin varicose fibers widely distributed in the same field of LH-PL pathways projection. The selective blockade of Orx1R with SB 334,867 at 30 and 300 nM in the PL caused a decrease in freezing response, whereas the treatment with OrxA at 140 pmol promoted an increase in freezing response. CONCLUSION In summary, these data confirmed an anatomical link between LH and PL, established the presence of Orx1R in the PL, and a modulatory role of the orexin system in such structure, possibly mainly via Orx1R, during contextual fear conditioning.
Collapse
Affiliation(s)
- Gabriela V M Oliveira
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Paloma M Hernandes
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Fábio H Dos Santos
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Victor P M N Soares
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Die Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach Riss, Germany
| | - Rafael Carvalho Almada
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil.
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil.
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Doldur-Balli F, Smieszek SP, Keenan BT, Zimmerman AJ, Veatch OJ, Polymeropoulos CM, Birznieks G, Polymeropoulos MH. Screening effects of HCN channel blockers on sleep/wake behavior in zebrafish. Front Neurosci 2024; 18:1375484. [PMID: 38567282 PMCID: PMC10986788 DOI: 10.3389/fnins.2024.1375484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels generate electrical rhythmicity in various tissues although primarily heart, retina and brain. The HCN channel blocker compound, Ivabradine (Corlanor), is approved by the US Food and Drug Administration (FDA) as a medication to lower heart rate by blocking hyperpolarization activated inward current in the sinoatrial node. In addition, a growing body of evidence suggests a role for HCN channels in regulation of sleep/wake behavior. Zebrafish larvae are ideal model organisms for high throughput drug screening, drug repurposing and behavioral phenotyping studies. We leveraged this model system to investigate effects of three HCN channel blockers (Ivabradine, Zatebradine Hydrochloride and ZD7288) at multiple doses on sleep/wake behavior in wild type zebrafish. Results of interest included shorter latency to daytime sleep at 0.1 μM dose of Ivabradine (ANOVA, p: 0.02), moderate reduction in average activity at 30 μM dose of Zatebradine Hydrochloride (ANOVA, p: 0.024) in daytime, and increased nighttime sleep at 4.5 μM dose of ZD7288 (ANOVA, p: 0.036). Taken together, shorter latency to daytime sleep, decrease in daytime activity and increased nighttime sleep indicate that different HCN channel antagonists affected different parameters of sleep and activity.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Brendan T. Keenan
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amber J. Zimmerman
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, United States
| | | | - Gunther Birznieks
- Vanda Pharmaceuticals Inc., Pennsylvania, Washington, DC, United States
| | | |
Collapse
|
3
|
Piri F, Salmani ME, Sepehri H. Improvement of autistic-like behaviors in adult rats prenatally exposed to valproic acid through early suppression of orexin receptor. Ann Med Surg (Lond) 2024; 86:166-171. [PMID: 38222731 PMCID: PMC10783284 DOI: 10.1097/ms9.0000000000000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/28/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a disabling psychiatric disease characterized by impairments in communication and social skills. The pathophysiology of autism is complex and not fully known. Considering the incidence of sleep disorders in individuals with ASD and the important role of orexin in sleep, it is possible to hypothesize that an alteration of the orexinergic system could be implicated in the pathogenesis of autism symptoms. The present study was conducted to investigate the effect of suvorexant [dual orexin receptor antagonists (DORAs)] on autism-like behavior in prenatally valproic acid (VPA)-exposed rats]. Methods Wistar female rats were administered VPA [600 mg/kg, intraperitoneally (i.p.)] or normal saline (10 ml/kg, i.p.; vehicle control) on gestational day 12.5. Thirty-two male offspring were divided into four groups: Control, VPA, Suvorexant+VPA, and VPA+Risperidone. The pups were given suvorexant [20 ml/kg, by mouth/orally (p.o.)] or risperidone (1 ml/kg, p.o.) daily from postnatal day (PND) (40-54). The offspring were tested for repetitive behaviors and cognitive ability with a Y-maze task on PND 55, and social interaction was assessed by play behavior in the open field on PND 56. And anxiety with using the three-chamber social assay on PND 56. Results In the Y-maze apparatus, spontaneous alteration significantly decreased in the prenatal VPA-treated rats compared to control rats showing autistic-like behavior, and 2-week suvorexant increased the alternation, indicating the beneficial effect of suvorexant. Prenatal treatment with VPA, impaired play behavior (sniffing, grooming, and darting), and increased anxiety-related behavior. Suvorexant treatment attenuated the problems in male offspring's social behavior. Conclusion Our results showed that suvorexant improved ASD-associated behaviors in the VPA-treated rats, and the orexinergic system may be associated with the pathogenesis of autism symptoms.
Collapse
Affiliation(s)
| | | | - Hamid Sepehri
- Neuroscience Research Center, Department of Physiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Feldmeyer D. Structure and function of neocortical layer 6b. Front Cell Neurosci 2023; 17:1257803. [PMID: 37744882 PMCID: PMC10516558 DOI: 10.3389/fncel.2023.1257803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Cortical layer 6b is considered by many to be a remnant of the subplate that forms during early stages of neocortical development, but its role in the adult is not well understood. Its neuronal complement has only recently become the subject of systematic studies, and its axonal projections and synaptic input structures have remained largely unexplored despite decades of research into neocortical function. In recent years, however, layer 6b (L6b) has attracted increasing attention and its functional role is beginning to be elucidated. In this review, I will attempt to provide an overview of what is currently known about the excitatory and inhibitory neurons in this layer, their pre- and postsynaptic connectivity, and their functional implications. Similarities and differences between different cortical areas will be highlighted. Finally, layer 6b neurons are highly responsive to several neuropeptides such as orexin/hypocretin, neurotensin and cholecystokinin, in some cases exclusively. They are also strongly controlled by neurotransmitters such as acetylcholine and norepinephrine. The interaction of these neuromodulators with L6b microcircuitry and its functional consequences will also be discussed.
Collapse
Affiliation(s)
- Dirk Feldmeyer
- Research Centre Jülich, Institute of Neuroscience and Medicine 10 (INM-10), Jülich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
| |
Collapse
|
5
|
Ma C, Zhou N, Ma K, Niu J, Mi T, He Z, Wen Y, Liu C, He Z, Niu J. Neural pathways from hypothalamic orexin neurons to the ventrolateral preoptic area mediate sleep impairments induced by conditioned fear. Front Neurosci 2023; 17:1122803. [PMID: 36998723 PMCID: PMC10043189 DOI: 10.3389/fnins.2023.1122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionFear and sleep impairments common co-exist, but the underlying mechanisms remain unclear. Hypothalamic orexinergic neurons are involved in the regulation of sleep-wake and fear expression. The ventrolateral preoptic area (VLPO) is an essential brain region to promote sleep, and orexinergic axonal fibers projecting to the VLPO are involved in the maintenance of sleep-wake. Neural pathways from hypothalamic orexin neurons to the VLPO might mediate sleep impairments induced by conditioned fear.MethodsTo verify above hypothesis, electroencephalogram (EEG) and electromyogram (EMG) were recorded for analysis of sleep-wake states before and 24 h after conditioned fear training. The retrograde tracing technique and immunofluorescence staining was used to identify the projections from the hypothalamic orexin neurons to the VLPO and to observe their activation in mice with conditioned fear. Moreover, optogenetic activation or inhibition of hypothalamic orexin-VLPO pathways was performed to observe whether the sleep-wake can be regulated in mice with conditioned fear. Finally, orexin-A and orexin receptor antagonist was administered into the VLPO to certify the function of hypothalamic orexin-VLPO pathways on mediating sleep impairments induced by conditioned fear.ResultsIt was found that there was a significant decrease in the non-rapid eye movement (NREM) and rapid eye movement (REM) sleep time and a significant increase in the wakefulness time in mice with conditioned fear. The results of retrograde tracing technique and immunofluorescence staining showed that hypothalamic orexin neurons projected to the VLPO and observed the CTB labeled orexin neurons were significantly activated (c-Fos+) in the hypothalamus in mice with conditioned fear. Optogenetic activation of hypothalamic orexin to the VLPO neural pathways significantly decreased NREM and REM sleep time and increased wakefulness time in mice with conditioned fear. A significant decrease in NREM and REM sleep time and an increase in wakefulness time were observed after the injection of orexin-A into the VLPO, and the effects of orexin-A in the VLPO were blocked by a pre-administrated dual orexin antagonist (DORA).ConclusionThese findings suggest that the neural pathways from hypothalamic orexinergic neurons to the VLPO mediate sleep impairments induced by conditioned fear.
Collapse
Affiliation(s)
- Caifen Ma
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Ning Zhou
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Kang Ma
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Jiandong Niu
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Ting Mi
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Zhenquan He
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Yujun Wen
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Chunhong Liu
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhongyi He
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- *Correspondence: Zhongyi He,
| | - Jianguo Niu
- Department of Human Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
- Jianguo Niu,
| |
Collapse
|
6
|
Gao SH, Tao Y, Zhu Y, Huang H, Shen LL, Gao CY. Activation of Dopamine D2 Receptors Alleviates Neuronal Hyperexcitability in the Lateral Entorhinal Cortex via Inhibition of HCN Current in a Rat Model of Chronic Inflammatory Pain. Neurosci Bull 2022; 38:1041-1056. [PMID: 35705785 PMCID: PMC9468209 DOI: 10.1007/s12264-022-00892-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Functional changes in synaptic transmission from the lateral entorhinal cortex to the dentate gyrus (LEC-DG) are considered responsible for the chronification of pain. However, the underlying alterations in fan cells, which are the predominant neurons in the LEC that project to the DG, remain elusive. Here, we investigated possible mechanisms using a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain. We found a substantial increase in hyperpolarization-activated/cyclic nucleotide-gated currents (Ih), which led to the hyperexcitability of LEC fan cells of CFA slices. This phenomenon was attenuated in CFA slices by activating dopamine D2, but not D1, receptors. Chemogenetic activation of the ventral tegmental area -LEC projection had a D2 receptor-dependent analgesic effect. Intra-LEC microinjection of a D2 receptor agonist also suppressed CFA-induced behavioral hypersensitivity, and this effect was attenuated by pre-activation of the Ih. Our findings suggest that down-regulating the excitability of LEC fan cells through activation of the dopamine D2 receptor may be a strategy for treating chronic inflammatory pain.
Collapse
Affiliation(s)
- Shi-Hao Gao
- Department of Rehabilitation, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Army 953 Hospital, Army Medical University, Shigatse, 857000, China
| | - Yong Tao
- Department of Rehabilitation, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yang Zhu
- Department of Rehabilitation, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hao Huang
- Department of Rehabilitation, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lin-Lin Shen
- Department of Respiratory and Critical Care Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Chang-Yue Gao
- Department of Rehabilitation, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
7
|
Kessi M, Peng J, Duan H, He H, Chen B, Xiong J, Wang Y, Yang L, Wang G, Kiprotich K, Bamgbade OA, He F, Yin F. The Contribution of HCN Channelopathies in Different Epileptic Syndromes, Mechanisms, Modulators, and Potential Treatment Targets: A Systematic Review. Front Mol Neurosci 2022; 15:807202. [PMID: 35663267 PMCID: PMC9161305 DOI: 10.3389/fnmol.2022.807202] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hyperpolarization-activated cyclic nucleotide-gated (HCN) current reduces dendritic summation, suppresses dendritic calcium spikes, and enables inhibitory GABA-mediated postsynaptic potentials, thereby suppressing epilepsy. However, it is unclear whether increased HCN current can produce epilepsy. We hypothesized that gain-of-function (GOF) and loss-of-function (LOF) variants of HCN channel genes may cause epilepsy. Objectives This systematic review aims to summarize the role of HCN channelopathies in epilepsy, update genetic findings in patients, create genotype–phenotype correlations, and discuss animal models, GOF and LOF mechanisms, and potential treatment targets. Methods The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, for all years until August 2021. Results We identified pathogenic variants of HCN1 (n = 24), HCN2 (n = 8), HCN3 (n = 2), and HCN4 (n = 6) that were associated with epilepsy in 74 cases (43 HCN1, 20 HCN2, 2 HCN3, and 9 HCN4). Epilepsy was associated with GOF and LOF variants, and the mechanisms were indeterminate. Less than half of the cases became seizure-free and some developed drug-resistant epilepsy. Of the 74 cases, 12 (16.2%) died, comprising HCN1 (n = 4), HCN2 (n = 2), HCN3 (n = 2), and HCN4 (n = 4). Of the deceased cases, 10 (83%) had a sudden unexpected death in epilepsy (SUDEP) and 2 (16.7%) due to cardiopulmonary failure. SUDEP affected more adults (n = 10) than children (n = 2). HCN1 variants p.M234R, p.C329S, p.V414M, p.M153I, and p.M305L, as well as HCN2 variants p.S632W and delPPP (p.719–721), were associated with different phenotypes. HCN1 p.L157V and HCN4 p.R550C were associated with genetic generalized epilepsy. There are several HCN animal models, pharmacological targets, and modulators, but precise drugs have not been developed. Currently, there are no HCN channel openers. Conclusion We recommend clinicians to include HCN genes in epilepsy gene panels. Researchers should explore the possible underlying mechanisms for GOF and LOF variants by identifying the specific neuronal subtypes and neuroanatomical locations of each identified pathogenic variant. Researchers should identify specific HCN channel openers and blockers with high binding affinity. Such information will give clarity to the involvement of HCN channelopathies in epilepsy and provide the opportunity to develop targeted treatments.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Ying Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Guoli Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Karlmax Kiprotich
- Department of Epidemiology and Medical Statistics, School of Public Health, Moi University, Eldoret, Kenya
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin
| |
Collapse
|
8
|
Hasanpour Razmanjani N, Reisi P. Effects of selective orexin receptor-2 and cannabinoid receptor-1 antagonists on the response of medial prefrontal cortex neurons to tramadol. Synapse 2022; 76:e22232. [PMID: 35313383 DOI: 10.1002/syn.22232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 11/07/2022]
Abstract
Tramadol is widely used to control pain in various diseases, but the relevant mechanisms are less known despite the severe risks of abuse. The medial prefrontal cortex (mPFC) is one of the critical centers of the reward system. Studies have shown that orexins and endocannabinoids are likely to play an important role in addiction. In this study, the effect of orexin receptor-2 (OX2R) and endocannabinoid receptor-1 (CB1R) blockade on the neuronal activity of mPFC was investigated in response to tramadol in male rats. Tramadol was injected intraperitoneally, and its effects on the firing of mPFC pyramidal neurons were investigated using in vivo extracellular single-unit recording. Tramadol affected the pyramidal neuronal activity of the mPFC. AM251 (18 nmol/4 μl), as a selective CB1R antagonist, and TCS-OX2-29 (50 nmol/4 μl), as a selective OX2R antagonist, individually or simultaneously were microinjected into the lateral ventricle of the brain (intracerebroventricular, ICV). The results showed that the ratio of neurons with the excitatory/inhibitory or no responses was significantly changed by tramadol (p < .05). These changes were prevented by blockade of CB1Rs alone or blockade of OX2Rs and CB1Rs simultaneously (p < .05). However, blockade of these receptors in the vehicle group had no significant effect on neuronal activity. The findings of this study indicate the potential role of orexin and endocannabinoid systems in mediating the effects of tramadol in mPFC and the possible interaction between the two systems via OX2 and CB1 receptors. However, further studies are needed to identify these effects by examining intracellular signaling.
Collapse
Affiliation(s)
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Han D, Shi Y, Han F. The effects of orexin-A and orexin receptors on anxiety- and depression-related behaviors in a male rat model of post-traumatic stress disorder. J Comp Neurol 2021; 530:592-606. [PMID: 34387361 DOI: 10.1002/cne.25231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orexin neurons play an important role in stress-related mental disorders including post-traumatic stress disorder (PTSD). Anxiety- and depression-related symptoms commonly occur in combination with PTSD. However, the role of the orexin system in mediating alterations in these affective symptoms remains unclear. The medial prefrontal cortex (mPFC) is implicated in both cognitive and emotional processing. In the present study, we investigated anxiety- and depression-related behavioral changes using the elevated plus maze, the sucrose preference test, and the open field test in male rats with single prolonged stress (SPS) induced-PTSD. The expression of orexin-A in the hypothalamus and orexin receptors (OX1R and OX2R) in the mPFC was detected and quantified by immunohistochemistry, western blotting, and real-time polymerase chain reaction. We found that the SPS rats exhibited enhanced levels of anxiety, reduced exploratory activities, and anhedonia. Furthermore, SPS resulted in reductions in the expression of orexin-A in the hypothalamus and the increased the expression of OX1R in the mPFC. The intracerebroventricular administration of orexin-A alleviated behavioral changes in SPS rats and partly restored the increased levels of OX1R in the mPFC. These results suggest that the orexin system plays a role in the anxiety- and depression-related symptoms observed in PTSD.
Collapse
Affiliation(s)
- Dan Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China.,Department of Neonatology, The First Hospital of China Medical University, Shenyang, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
11
|
Khairuddin S, Aquili L, Heng BC, Hoo TLC, Wong KH, Lim LW. Dysregulation of the orexinergic system: A potential neuropeptide target in depression. Neurosci Biobehav Rev 2020; 118:384-396. [DOI: 10.1016/j.neubiorev.2020.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
|
12
|
Hao XM, Xu R, Chen AQ, Sun FJ, Wang Y, Liu HX, Chen H, Xue Y, Chen L. Endogenous HCN Channels Modulate the Firing Activity of Globus Pallidus Neurons in Parkinsonian Animals. Front Aging Neurosci 2019; 11:190. [PMID: 31402860 PMCID: PMC6670024 DOI: 10.3389/fnagi.2019.00190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
The globus pallidus occupies a critical position in the indirect pathway of the basal ganglia motor control system. Hyperpolarization-activated cyclic-nucleotide gated (HCN) channels play an important role in the modulation of neuronal excitability. In vivo extracellular single unit recording, behavioral test and immunohistochemistry were performed to explore the possible modulation of endogenous HCN channels in the globus pallidus under parkinsonian states. In MPTP parkinsonian mice, micro-pressure application of the selective HCN channel antagonist, ZD7288, decreased the firing rate in 10 out of the 28 pallidal neurons, while increased the firing rate in another 15 out of the 28 neurons. In 6-OHDA parkinsonian rats, ZD7288 also bidirectionally regulated the spontaneous firing activity of the globus pallidus neurons. The proportion of pallidal neurons with ZD7288-induced slowing of firing rate tended to reduce in both parkinsonian animals. Morphological studies revealed a weaker staining of HCN channels in the globus pallidus under parkinsonian state. Finally, behavioral study demonstrated that intrapallidal microinjection of ZD7288 alleviated locomotor deficits in MPTP parkinsonian mice. These results suggest that endogenous HCN channels modulate the activities of pallidal neurons under parkinsonian states.
Collapse
Affiliation(s)
- Xiao-Meng Hao
- Department of Physiology, Qingdao University, Qingdao, China
| | - Rong Xu
- Department of Physiology, Qingdao University, Qingdao, China
| | - An-Qi Chen
- Department of Physiology, Qingdao University, Qingdao, China
| | - Feng-Jiao Sun
- Department of Physiology, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Physiology, Qingdao University, Qingdao, China
| | - Hong-Xia Liu
- Department of Physiology, Qingdao University, Qingdao, China
| | - Hua Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Yan Xue
- Department of Physiology, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Wang L, Gu Y, Zhang J, Gong L. Effects of Sleep Deprivation (SD) on Rats via ERK1/2 Signaling Pathway. Med Sci Monit 2019; 25:2886-2895. [PMID: 31002658 PMCID: PMC6486800 DOI: 10.12659/msm.913839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Sleep deprivation (SD) is common in humans, and sleep loss has a significant influence on health and produces related diseases. Orexin-A has been demonstrated to play a role in physiological processes, including feeding, sleep/wake cycle, and energy metabolism. The aim of this study was to investigate the effect of SD on rats and to define the underlying mechanism. Material/Methods We constructed an SD rat model. The Morris water maze test was used to assess rat learning and memory. Imaging of hippocampus and hippocampal tissue in rats were captured by magnetic resonance imaging or electron microscopy. We used the CCK-8 kit to assess cell viability. The level of protein was measured using Western blot analysis, and qRT-PCR was used to evaluate mRNA level. Results SD rats had poorer learning and memory and had damage to the hippocampus. SD resulted in shrinkage of hippocampal volume and encephalocele size. SD increased the expression of Orexin-A, OX1R, OX2R, and PARP-1, and decreased the expression of ERK1/2 and p-ERK1/2. Orexin-A (0–10 μM) improved neuron viability, whereas orexin-A (10–100 μM) attenuated neuron viability. SB334867 treatment reduced the viability of neurons treated with orexin-A. NU1025 treatment increased cell viability, especially in neurons treated with orexin-A. SB334867 treatment decreased the p-ERK1/2 levels in neurons treated with orexin-A. NU1025 increased the expression of p-ERK1/2 in neurons treated with orexin-A. Conclusions SD decreases learning and memory through damage to the hippocampus. Higher concentrations of orexin-A had a major negative effect on hippocampal neurons via OX1R and PARP-1 through inhibition of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland).,Department of Integration of Chinese and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Youyi Gu
- Department of Integration of Chinese and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Jingjing Zhang
- Department of Integration of Chinese and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Li Gong
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| |
Collapse
|
14
|
Asadi S, Roohbakhsh A, Shamsizadeh A, Fereidoni M, Kordijaz E, Moghimi A. The effect of intracerebroventricular administration of orexin receptor type 2 antagonist on pentylenetetrazol-induced kindled seizures and anxiety in rats. BMC Neurosci 2018; 19:49. [PMID: 30103703 PMCID: PMC6090721 DOI: 10.1186/s12868-018-0445-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/17/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Current antiepileptic drugs are not able to prevent recurrent seizures in all patients. Orexins are excitatory hypothalamic neuropeptides that their receptors (Orx1R and Orx2R) are found almost in all major regions of the brain. Pentylenetetrazol (PTZ)-induced kindling is a known experimental model for epileptic seizures. The purpose of this study was to evaluate the effect of Orx2 receptor antagonist (TCS OX2 29) on seizures and anxiety of PTZ-kindled rats. RESULTS Our results revealed that similar to valproate, administration of 7 µg/rat of TCS OX2 29 increased the latency period and decreased the duration time of 3rd and 4th stages of epileptiform seizures. Besides, it significantly decreased mean of seizure scores. However, TCS OX2 29 did not modulate anxiety induced by repeated PTZ administration. CONCLUSION This study showed that blockade of Orx2 receptor reduced seizure-related behaviors without any significant effect on PTZ-induced anxiety.
Collapse
Affiliation(s)
- Saeedeh Asadi
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Masoud Fereidoni
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Elham Kordijaz
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Ali Moghimi
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran.
| |
Collapse
|
15
|
Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences. J Neurosci 2018; 38:5441-5455. [PMID: 29798890 DOI: 10.1523/jneurosci.0150-18.2018] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022] Open
Abstract
Neocortical pyramidal neurons with somata in layers 5 and 6 are among the most visually striking and enigmatic neurons in the brain. These deep-layer pyramidal neurons (DLPNs) integrate a plethora of cortical and extracortical synaptic inputs along their impressive dendritic arbors. The pattern of cortical output to both local and long-distance targets is sculpted by the unique physiological properties of specific DLPN subpopulations. Here we revisit two broad DLPN subpopulations: those that send their axons within the telencephalon (intratelencephalic neurons) and those that project to additional target areas outside the telencephalon (extratelencephalic neurons). While neuroscientists across many subdisciplines have characterized the intrinsic and synaptic physiological properties of DLPN subpopulations, our increasing ability to selectively target and manipulate these output neuron subtypes advances our understanding of their distinct functional contributions. This Viewpoints article summarizes our current knowledge about DLPNs and highlights recent work elucidating the functional differences between DLPN subpopulations.
Collapse
|
16
|
Radnikow G, Feldmeyer D. Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex. Front Neuroanat 2018; 12:1. [PMID: 29440997 PMCID: PMC5797542 DOI: 10.3389/fnana.2018.00001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
From an anatomical point of view the neocortex is subdivided into up to six layers depending on the cortical area. This subdivision has been described already by Meynert and Brodmann in the late 19/early 20. century and is mainly based on cytoarchitectonic features such as the size and location of the pyramidal cell bodies. Hence, cortical lamination is originally an anatomical concept based on the distribution of excitatory neuron. However, it has become apparent in recent years that apart from the layer-specific differences in morphological features, many functional properties of neurons are also dependent on cortical layer or cell type. Such functional differences include changes in neuronal excitability and synaptic activity by neuromodulatory transmitters. Many of these neuromodulators are released from axonal afferents from subcortical brain regions while others are released intrinsically. In this review we aim to describe layer- and cell-type specific differences in the effects of neuromodulator receptors in excitatory neurons in layers 2–6 of different cortical areas. We will focus on the neuromodulator systems using adenosine, acetylcholine, dopamine, and orexin/hypocretin as examples because these neuromodulator systems show important differences in receptor type and distribution, mode of release and functional mechanisms and effects. We try to summarize how layer- and cell type-specific neuromodulation may affect synaptic signaling in cortical microcircuits.
Collapse
Affiliation(s)
- Gabriele Radnikow
- Research Centre Jülich, Institute of Neuroscience and Medicine, INM-10, Jülich, Germany
| | - Dirk Feldmeyer
- Research Centre Jülich, Institute of Neuroscience and Medicine, INM-10, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance - Translational Brain Medicine, Jülich, Germany
| |
Collapse
|
17
|
Dang R, Chen Q, Song J, He C, Zhang J, Xia J, Hu Z. Orexin knockout mice exhibit impaired spatial working memory. Neurosci Lett 2018; 668:92-97. [PMID: 29325715 DOI: 10.1016/j.neulet.2018.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 11/15/2022]
Abstract
Orexins play a crucial role in the maintenance of arousal and are involved in the modulation of diverse physiological process, including cognitive function. Recent data have suggested that orexins are involved in learning and memory processes. The purpose of this study was to assess the effects of orexin deficiency on working memory. A delayed non-matching-to-place T-maze task was used to evaluate spatial working memory in mice lacking orexin prepro-peptide (orexin knockout; KO) and wild-type controls. We demonstrated that the number of correct choices in the orexin KO mice became lower than that of the controls over training. In an object exploration task, the controls explored the displaced object more than the mutants did, whereas this difference was not observed for the nondisplaced objects in either group. The orexin KO mice showed locomotor activity comparable to the control mice in terms of total distance traveled across training in both the object exploration task and the open field test. These findings indicate that the orexin system plays an important role in working memory of spatial cues.
Collapse
Affiliation(s)
- Ruozhi Dang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China
| | - Qiuhan Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China
| | - Jie Song
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China
| | - Chao He
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China
| | - Jun Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China
| | - Jianxia Xia
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China.
| | - Zhian Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
18
|
Grzelka K, Kurowski P, Gawlak M, Szulczyk P. Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β 1-Adrenergic Receptors and HCN Channels. Front Cell Neurosci 2017; 11:341. [PMID: 29209170 PMCID: PMC5701640 DOI: 10.3389/fncel.2017.00341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022] Open
Abstract
The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer's disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β1- and not α1- or α2-adrenergic receptor stimulation. Activation of β1-adrenergic receptors led to an increase in inward Na+ current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na+/K+ current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β1-adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β1-adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the βγ subunit.
Collapse
Affiliation(s)
- Katarzyna Grzelka
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Paweł Szulczyk
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Reversible inactivation of the lateral hypothalamus reversed high reward choices in cost-benefit decision-making in rats. Neurobiol Learn Mem 2017; 145:135-142. [PMID: 28986299 DOI: 10.1016/j.nlm.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/11/2017] [Accepted: 10/02/2017] [Indexed: 11/20/2022]
Abstract
The Lateral hypothalamus (LH) is an important component of the networks underlying the control of feeding and other motivated behaviors. Cost-benefit decision-making is mediated largely by the prefrontal cortex (PFC) which strongly innervates the LH. Therefore, in the current study, we conducted a series of experiments to elucidate the role of the perifornical area of the lateral hypothalamus (PeF-LH) in effort and/or delay-based decision-making. We trained different groups of rats in a delay-based and/or an effort-based form of cost-benefit T-maze decision- making task in which they could either choose to pay the cost to obtain a high reward in one arm or could obtain a low reward in the other arm with no cost. During test days, the rats received local injections of either vehicle or lidocaine4% (0.5 μl/side), in the PeF-LH. In an effort-based decision task, PeF-LH inactivation led to decrease in high reward choice. Similarly, in a delay-based decision task animals' preference changed to a low but immediately available reward. This was not caused by a spatial memory or motor deficit. PeF-LH inactivation modified decision behavior. The results imply that PeF-LH is important for allowing the animal to pay a cost to acquire greater rewards.
Collapse
|
20
|
Aitta-Aho T, Pappa E, Burdakov D, Apergis-Schoute J. Cellular activation of hypothalamic hypocretin/orexin neurons facilitates short-term spatial memory in mice. Neurobiol Learn Mem 2016; 136:183-188. [PMID: 27746379 PMCID: PMC5139982 DOI: 10.1016/j.nlm.2016.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
The hypothalamic hypocretin/orexin (HO) system holds a central role in the regulation of several physiological functions critical for food-seeking behavior including mnemonic processes for effective foraging behavior. It is unclear however whether physiological increases in HO neuronal activity can support such processes. Using a designer rM3Ds receptor activation approach increasing HO neuronal activity resulted in improved short-term memory for novel locations. When tested on a non-spatial novelty object recognition task no significant difference was detected between groups indicating that hypothalamic HO neuronal activation can selectively facilitate short-term spatial memory for potentially supporting memory for locations during active exploration.
Collapse
Affiliation(s)
- Teemu Aitta-Aho
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Elpiniki Pappa
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Denis Burdakov
- Division of Neurophysiology, MRC National Institute for Medical Research, London NW7 1AA, UK; MRC Centre for Developmental Neurobiology, King's College London, London WC2R 2LS, UK
| | - John Apergis-Schoute
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK; Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
21
|
Gao SH, Wen HZ, Shen LL, Zhao YD, Ruan HZ. Activation of mGluR1 contributes to neuronal hyperexcitability in the rat anterior cingulate cortex via inhibition of HCN channels. Neuropharmacology 2016; 105:361-377. [DOI: 10.1016/j.neuropharm.2016.01.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 01/14/2023]
|
22
|
Brown RM, Kim AK, Khoo SYS, Kim JH, Jupp B, Lawrence AJ. Orexin-1 receptor signalling in the prelimbic cortex and ventral tegmental area regulates cue-induced reinstatement of ethanol-seeking in iP rats. Addict Biol 2016; 21:603-12. [PMID: 25899624 DOI: 10.1111/adb.12251] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Orexins (hypocretins) are hypothalamic neuropeptides that innervate the entire neuraxis, including the prelimbic cortex and ventral tegmental area and have been implicated in ethanol-seeking behaviour. The present study aimed to use the orexin-1 (OX1 ) receptor antagonist SB-334867 to examine the role of prelimbic cortex and ventral tegmental area OX1 receptors in cue-induced reinstatement of ethanol-seeking. Ethanol-preferring rats (iP) rats were trained to self-administer ethanol (10 percent v/v, FR3) or sucrose (0.2-1 percent w/v, FR3) in the presence of reward-associated cues before being implanted with indwelling guide cannulae. Rats then underwent extinction training for 11 days. On test days, rats were given a microinjection of vehicle or SB-334867 (3 μg/side) and presented with reward-associated cues to precipitate reinstatement. Results show SB-334867 infused into the prelimbic cortex attenuated cue-induced reinstatement of ethanol-seeking, but not sucrose-seeking. OX1 antagonism in the ventral tegmental area also attenuated cue-induced reinstatement of ethanol-seeking. These findings suggest that OX1 receptors located in the prelimbic cortex and ventral tegmental area are part of a circuit driving cue-mediated ethanol-seeking behaviour.
Collapse
Affiliation(s)
- Robyn Mary Brown
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Andrezza K. Kim
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
- Departamento de Psicobiologia; Universidade Federal de São Paulo; Brazil
| | - Shaun Yon-Seng Khoo
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
- School of Psychology; University of New South Wales; Australia
| | - Jee Hyun Kim
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Bianca Jupp
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
- Experimental Psychology; University of Cambridge; UK
| | - Andrew John Lawrence
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| |
Collapse
|
23
|
Jin J, Chen Q, Qiao Q, Yang L, Xiong J, Xia J, Hu Z, Chen F. Orexin neurons in the lateral hypothalamus project to the medial prefrontal cortex with a rostro-caudal gradient. Neurosci Lett 2016; 621:9-14. [PMID: 27048712 DOI: 10.1016/j.neulet.2016.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 12/26/2022]
Abstract
Orexin neurons in the lateral hypothalamus (LH) play an important role in arousal, guaranteeing the execution of medial prefrontal cortex (mPFC)-related higher cognitive functions. The mPFC is anatomically and functionally a rostro-caudal hierarchy. Little is known about the innervation pattern, especially in the rostro-caudal model, from the arousal-promoting orexin system in the LH to the mPFC subregions, including the anterior cingulate cortex (AC), prelimbic cortex (PL) and infralimbic cortex (IL). Here, we used an anterograde tracing method and immunohistochemistry and found that the density of the LH, as well as orexinergic, fibers increased from the rostral part to the caudal part of the mPFC, regardless of AC, PL or IL. Similarly, the distribution of type 1 orexin receptors in the mPFC follows a rostro-caudal increasing gradient hierarchy. These data suggest a rostro-caudal hierarchy of LH orexinergic innervation to the mPFC. We hope to provide anatomical and morphological evidence for the regulation pattern of the arousal-promoting orexin system on the cognition-related mPFC system.
Collapse
Affiliation(s)
- Jiehua Jin
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, China
| | - Quanhui Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, China
| | - Qicheng Qiao
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, China
| | - Li Yang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, China
| | - Jiaxiang Xiong
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, China
| | - Jianxia Xia
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, China
| | - Zhian Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, China.
| | - Fang Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
24
|
Palus K, Chrobok L, Lewandowski M. Orexins/hypocretins modulate the activity of NPY-positive and -negative neurons in the rat intergeniculate leaflet via OX1 and OX2 receptors. Neuroscience 2015; 300:370-80. [DOI: 10.1016/j.neuroscience.2015.05.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 01/11/2023]
|
25
|
Williams AD, Jung S, Poolos NP. Protein kinase C bidirectionally modulates Ih and hyperpolarization-activated cyclic nucleotide-gated (HCN) channel surface expression in hippocampal pyramidal neurons. J Physiol 2015; 593:2779-92. [PMID: 25820761 PMCID: PMC4506181 DOI: 10.1113/jp270453] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/25/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, particularly that of the HCN1 isoform, are enriched in the distal dendrites of hippocampal CA1 pyramidal neurons; these channels have physiological functions with respect to decreasing neuronal excitability. In the present study, we aimed to investigate phosphorylation as a mechanism controlling Ih amplitude and HCN1 surface expression in hippocampal principal neurons under normal physiological conditions. Tyrosine phosphorylation decreased Ih amplitude at maximal activation (maximal Ih ), without altering HCN1 surface expression, in two classes of hippocampal principal neurons. Inhibition of serine/threonine protein phosphatases 1 and 2A decreased maximal Ih and HCN1 surface expression in hippocampal principal neurons. Protein kinase C (PKC) activation irreversibly diminished Ih and HCN1 surface expression, whereas PKC inhibition augmented Ih and HCN1 surface expression. PKC activation increased HCN1 channel phosphorylation. These results demonstrate the novel finding of a phosphorylation mechanism, dependent on PKC activity, which bidirectionally modulates Ih amplitude and HCN1channel surface expression in hippocampal principal neurons under normal physiological conditions. ABSTRACT Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels attenuate excitability in hippocampal pyramidal neurons. Loss of HCN channel-mediated current (Ih ), particularly that mediated by the HCN1 isoform, occurs with the development of epilepsy. Previously, we showed that, following pilocarpine-induced status epilepticus, there are two independent changes in HCN function in dendrites: decreased Ih amplitude associated with a loss of HCN1 surface expression and a hyperpolarizing shift in voltage-dependence of activation (gating). The hyperpolarizing shift in gating was attributed to decreased phosphorylation as a result of a loss of p38 mitogen-activated protein kinase activity and increased calcineurin activity; however, the mechanisms controlling Ih amplitude and HCN1 surface expression under epileptic or normal physiological conditions are poorly understood. We aimed to investigate phosphorylation as a mechanism regulating Ih amplitude and HCN1 surface expression (i.e. as is the case for HCN gating) in hippocampal principal neurons under normal physiological conditions. We discovered that inhibition of either tyrosine phosphatases or the serine/threonine protein phosphatases 1 and 2A decreased Ih at maximal activation in hippocampal CA1 pyramidal dendrites and pyramidal-like principal neuron somata from naïve rats. Furthermore, we found that inhibition of PP1/PP2A decreased HCN1 surface expression, whereas tyrosine phosphatase inhibition did not. Protein kinase C (PKC) activation reduced Ih amplitude and HCN1 surface expression, whereas PKC inhibition produced the opposite effect. Inhibition of protein phosphatases 1 and 2A and activation of PKC increased the serine phosphorylation state of the HCN1 protein. The effect of PKC activation on Ih was irreversible. These results indicate that PKC bidirectionally modulates Ih amplitude and HCN1 surface expression in hippocampal principal neurons.
Collapse
Affiliation(s)
- Aaron D Williams
- Department of Physiology and Biophysics, University of Washington
| | - Sangwook Jung
- Department of Physiology and Biophysics, University of Washington
| | - Nicholas P Poolos
- Department of Physiology and Biophysics, University of Washington
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Distribution of the orexin-1 receptor (OX1R) in the mouse forebrain and rostral brainstem: A characterisation of OX1R-eGFP mice. J Chem Neuroanat 2015; 66-67:1-9. [DOI: 10.1016/j.jchemneu.2015.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 02/02/2023]
|
27
|
Chen L, Xu R, Sun FJ, Xue Y, Hao XM, Liu HX, Wang H, Chen XY, Liu ZR, Deng WS, Han XH, Xie JX, Yung WH. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate firing of globus pallidus neurons in vivo. Mol Cell Neurosci 2015; 68:46-55. [PMID: 25858108 DOI: 10.1016/j.mcn.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 03/26/2015] [Accepted: 04/03/2015] [Indexed: 01/27/2023] Open
Abstract
The globus pallidus plays a significant role in motor control under both health and pathological states. Recent studies have revealed that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels occupy a critical position in globus pallidus pacemaking activity. Morphological studies have shown the expression of HCN channels in the globus pallidus. To investigate the in vivo effects of HCN channels in the globus pallidus, extracellular recordings and behavioral tests were performed in the present study. In normal rats, micro-pressure ejection of 0.05mM ZD7288, the selective HCN channel blocker, decreased the frequency of spontaneous firing in 21 out of the 40 pallidal neurons. The average decrease was 50.4±5.4%. Interestingly, in another 18 out of the 40 pallidal neurons, ZD7288 increased the firing rate by 137.1±27.6%. Similar bidirectional modulation on the firing rate was observed by a higher concentration of ZD7288 (0.5mM) as well as another HCN channel blocker, CsCl. Furthermore, activation of HCN channels by 8-Br-cAMP increased the firing rate by 63.0±9.3% in 15 out of the 25 pallidal neurons and decreased the firing rate by 46.9±9.4% in another 8 out of the 25 pallidal neurons. Further experiments revealed that modulation of glutamatergic but not GABAergic transmission may be involved in ZD7288-induced increase in firing rate. Consistent with electrophysiological results, further studies revealed that modulation of HCN channels also had bidirectional effects on behavior. Taken together, the present studies suggest that HCN channels may modulate the activity of pallidal neurons by different pathways in vivo.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China.
| | - Rong Xu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Feng-Jiao Sun
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Yan Xue
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Meng Hao
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hong-Xia Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hua Wang
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xin-Yi Chen
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zi-Ran Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wen-Shuai Deng
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Hua Han
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Jun-Xia Xie
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
28
|
He C, Chen QH, Ye JN, Li C, Yang L, Zhang J, Xia JX, Hu ZA. Functional inactivation of hypocretin 1 receptors in the medial prefrontal cortex affects the pyramidal neuron activity and gamma oscillations: An in vivo multiple-channel single-unit recording study. Neuroscience 2015; 297:1-10. [PMID: 25838117 DOI: 10.1016/j.neuroscience.2015.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/06/2015] [Accepted: 03/19/2015] [Indexed: 01/18/2023]
Abstract
The hypocretin signaling is thought to play a critical role in maintaining wakefulness via stimulating the subcortical arousal pathways. Although the cortical areas, including the medial prefrontal cortex (mPFC), receive dense hypocretinergic fibers and express its receptors, it remains unclear whether the hypocretins can directly regulate the neural activity of the mPFC in vivo. In the present study, using multiple-channel single-unit recording study, we found that infusion of the SB-334867, a blocker for the Hcrtr1, beside the recording sites within the mPFC substantially exerted an inhibitory effect on the putative pyramidal neuron (PPN) activity in naturally behaving rats. In addition, functional blockade of the Hcrtr1 also selectively reduced the power of the gamma oscillations. The PPN activity and the power of the neural oscillations were not affected after microinjection of the TCS-OX2-29, a blocker for the Hcrtr2, within the mPFC. Together, these data indicate that endogenous hypocretins acting on the Hcrtr1 are required for the normal neural activity in the mPFC in vivo, and thus might directly contribute cortical arousal and mPFC-dependent cognitive processes.
Collapse
Affiliation(s)
- C He
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China
| | - Q-H Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China
| | - J-N Ye
- Department of Neurology, Xinqiao Hospital, Chongqing 400037, PR China
| | - C Li
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China
| | - L Yang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China
| | - J Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China
| | - J-X Xia
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China.
| | - Z-A Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
29
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
30
|
He C, Luo F, Chen X, Chen F, Li C, Ren S, Qiao Q, Zhang J, de Lecea L, Gao D, Hu Z. Superficial Layer-Specific Histaminergic Modulation of Medial Entorhinal Cortex Required for Spatial Learning. Cereb Cortex 2015; 26:1590-1608. [PMID: 25595181 DOI: 10.1093/cercor/bhu322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The medial entorhinal cortex (MEC) plays a crucial role in spatial learning and memory. Whereas the MEC receives a dense histaminergic innervation from the tuberomamillary nucleus of the hypothalamus, the functions of histamine in this brain region remain unclear. Here, we show that histamine acts via H1Rs to directly depolarize the principal neurons in the superficial, but not deep, layers of the MEC when recording at somata. Moreover, histamine decreases the spontaneous GABA, but not glutamate, release onto principal neurons in the superficial layers by acting at presynaptic H3Rs without effect on synaptic release in the deep layers. Histamine-induced depolarization is mediated via inhibition of Kir channels and requires the activation of protein kinase C, whereas the inhibition of spontaneous GABA release by histamine depends on voltage-gated Ca(2+) channels and extracellular Ca(2+). Furthermore, microinjection of the H1R or H3R, but not H2R, antagonist respectively into the superficial, but not deep, layers of MEC impairs rat spatial learning as assessed by water maze tasks but does not affect the motor function and exploratory activity in an open field. Together, our study indicates that histamine plays an essential role in spatial learning by selectively regulating neuronal excitability and synaptic transmission in the superficial layers of the MEC.
Collapse
Affiliation(s)
- Chao He
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Fenlan Luo
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Xingshu Chen
- Department of Histology and Embryology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Fang Chen
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Chao Li
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Shuancheng Ren
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Qicheng Qiao
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Jun Zhang
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Gao
- Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Zhian Hu
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| |
Collapse
|
31
|
Cun Y, Tang L, Yan J, He C, Li Y, Hu Z, Xia J. Orexin A attenuates the sleep-promoting effect of adenosine in the lateral hypothalamus of rats. Neurosci Bull 2014; 30:877-86. [PMID: 24898402 PMCID: PMC5562583 DOI: 10.1007/s12264-013-1442-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/23/2014] [Indexed: 01/04/2023] Open
Abstract
Orexin neurons within the lateral hypothalamus play a crucial role in the promotion and maintenance of arousal. Studies have strongly suggested that orexin neurons are an important target in endogenous adenosine-regulated sleep homeostasis. Orexin A induces a robust increase in the firing activity of orexin neurons, while adenosine has an inhibitory effect. Whether the excitatory action of orexins in the lateral hypothalamus actually promotes wakefulness and reverses the sleep-producing effect of adenosine in vivo is less clear. In this study, electroencephalographic and electromyographic recordings were used to investigate the effects of orexin A and adenosine on sleep and wakefulness in rats. We found that microinjection of orexin A into the lateral hypothalamus increased wakefulness with a concomitant reduction of sleep during the first 3 h of post-injection recording, and this was completely blocked by a selective antagonist for orexin receptor 1, SB 334867. The enhancement of wakefulness also occurred after application of the excitatory neurotransmitter glutamate in the first 3 h post-injection. However, in the presence of the NMDA receptor antagonist APV, orexin A did not induce any change of sleep and wakefulness in the first 3 h. Further, exogenous application of adenosine into the lateral hypothalamus induced a marked increase of sleep in the first 3-h post-injection. No significant change in sleep and wakefulness was detected after adenosine application followed by orexin A administration into the same brain area. These findings suggest that the sleep-promoting action of adenosine can be reversed by orexin A applied to the lateral hypothalamus, perhaps by exciting glutamatergic input to orexin neurons via the action of orexin receptor 1.
Collapse
Affiliation(s)
- Yanping Cun
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Lin Tang
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Jie Yan
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Yang Li
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Jianxia Xia
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| |
Collapse
|
32
|
Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014; 171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions.
Collapse
Affiliation(s)
- Jingcheng Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
33
|
Perin M, Longordo F, Massonnet C, Welker E, Lüthi A. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors. J Physiol 2014; 592:4277-95. [PMID: 25085886 DOI: 10.1113/jphysiol.2014.272757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.
Collapse
Affiliation(s)
- Martina Perin
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Fabio Longordo
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Christine Massonnet
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Egbert Welker
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| |
Collapse
|
34
|
Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2014; 35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypocretins, also named as orexins, are excitatory neuropeptides secreted by neurons specifically located in lateral hypothalamus and perifornical areas. Orexinergic fibers are extensively distributed in various brain regions and involved in a number of physiological functions, such as arousal, cognition, stress, appetite, and metabolism. Arousal is the most important function of orexin system as dysfunction of orexin signaling leads to narcolepsy. In addition to narcolepsy, orexin dysfunction is associated with serious neural disorders, including addiction, depression, and anxiety. However, some results linking orexin with these disorders are still contradictory, which may result from differences of detection methods or the precision of tools used in measurements; strategies targeted to orexin system (e.g., antagonists to orexin receptors, gene delivery, and cell transplantation) are promising new tools for treatment of neuropsychiatric disorders, though studies are still in a stage of preclinical or clinical research.
Collapse
Affiliation(s)
- Quanhui Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China; Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
35
|
Orexin induces excitation of respiratory neuronal network in isolated brainstem spinal cord of neonatal rat. Respir Physiol Neurobiol 2014; 200:105-9. [PMID: 24953675 DOI: 10.1016/j.resp.2014.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/22/2022]
Abstract
Endogenous neuropeptides known as orexins (hypocretins) play important roles in the regulation of feeding, drinking, endocrine function, and sleep/wakefulness. Orexin neuron projection sites include the rostral ventrolateral medulla of brainstem, which is related to the control of breathing. Previous studies suggest that orexins modulate the central CO2 ventilatory response during wakefulness in rodent. In the present study, we examined the effects of the orexinergic system on central respiratory control by adding orexin into a superfusion medium in the isolated brainstem-spinal cord of neonatal rat. Exposure to orexin B resulted in dose-dependent increases in C4 burst rate via brainstem, but not spinal cord. These increases in C4 burst rate induced concomitant increases in the depolarizing cycle rate of pre-inspiratory (Pre-I) and inspiratory (Insp) neurons. Tonic discharge was induced on C4 recording, although the rhythmic bursts of Pre-I and Insp neurons were maintained. Expiratory (Exp) neurons were also depolarized on administration of orexin B. Our findings indicate that orexin B activates central respiratory activity, mainly through depolarization and decreases in membrane resistance in Pre-I and Insp neurons, and possibly through early initiation of the expiratory phase induced by depolarization of Exp neurons.
Collapse
|
36
|
He C, Chen F, Li B, Hu Z. Neurophysiology of HCN channels: From cellular functions to multiple regulations. Prog Neurobiol 2014; 112:1-23. [DOI: 10.1016/j.pneurobio.2013.10.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 12/18/2022]
|
37
|
Leonard CS, Kukkonen JP. Orexin/hypocretin receptor signalling: a functional perspective. Br J Pharmacol 2014; 171:294-313. [PMID: 23848055 PMCID: PMC3904253 DOI: 10.1111/bph.12296] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/17/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022] Open
Abstract
Multiple homeostatic systems are regulated by orexin (hypocretin) peptides and their two known GPCRs. Activation of orexin receptors promotes waking and is essential for expression of normal sleep and waking behaviour, with the sleep disorder narcolepsy resulting from the absence of orexin signalling. Orexin receptors also influence systems regulating appetite/metabolism, stress and reward, and are found in several peripheral tissues. Nevertheless, much remains unknown about the signalling pathways and targets engaged by native receptors. In this review, we integrate knowledge about the orexin receptor signalling capabilities obtained from studies in expression systems and various native cell types (as presented in Kukkonen and Leonard, this issue of British Journal of Pharmacology) with knowledge of orexin signalling in different tissues. The tissues reviewed include the CNS, the gastrointestinal tract, the pituitary gland, pancreas, adrenal gland, adipose tissue and the male reproductive system. We also summarize the findings in different native and recombinant cell lines, especially focusing on the different cascades in CHO cells, which is the most investigated cell line. This reveals that while a substantial gap exists between what is known about orexin receptor signalling and effectors in recombinant systems and native systems, mounting evidence suggests that orexin receptor signalling is more diverse than originally thought. Moreover, rather than being restricted to orexin receptor 'overexpressing' cells, this signalling diversity may be utilized by native receptors in a site-specific manner.
Collapse
Affiliation(s)
- C S Leonard
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | |
Collapse
|
38
|
Aracri P, Banfi D, Pasini ME, Amadeo A, Becchetti A. Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex. Cereb Cortex 2013; 25:1330-47. [PMID: 24297328 PMCID: PMC4397574 DOI: 10.1093/cercor/bht326] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We studied the effect of hypocretin 1 (orexin A) in the frontal area 2 (Fr2) of the murine neocortex, implicated in the motivation-dependent goal-directed tasks. In layer V, hypocretin stimulated the spontaneous excitatory postsynaptic currents (EPSCs) on fast-spiking (FS) interneurons. The effect was accompanied by increased frequency of miniature EPSCs, indicating that hypocretin can target the glutamatergic terminals. Moreover, hypocretin stimulated the spontaneous inhibitory postsynaptic currents (IPSCs) on pyramidal neurons, with no effect on miniature IPSCs. This action was prevented by blocking 1) the ionotropic glutamatergic receptors; 2) the hypocretin receptor type 1 (HCRTR-1), with SB-334867. Finally, hypocretin increased the firing frequency in FS cells, and the effect was blocked when the ionotropic glutamate transmission was inhibited. Immunolocalization confirmed that HCRTR-1 is highly expressed in Fr2, particularly in layer V-VI. Conspicuous labeling was observed in pyramidal neuron somata and in VGLUT1+ glutamatergic terminals, but not in VGLUT2+ fibers (mainly thalamocortical afferents). The expression of HCRTR-1 in GABAergic structures was scarce. We conclude that 1) hypocretin regulates glutamate release in Fr2; 2) the effect presents a presynaptic component; 3) the peptide control of FS cells is indirect, and probably mediated by the regulation of glutamatergic input onto these cells.
Collapse
Affiliation(s)
- Patrizia Aracri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Daniele Banfi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Maria Enrica Pasini
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Milan 20128, Italy
| | - Alida Amadeo
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Milan 20128, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
39
|
Possible Mechanisms for the Effects of Orexin on Hippocampal Functioning and Spatial Learning (analytical review). ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11055-013-9849-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Ni LY, Zhu MJ, Song Y, Liu XM, Tang JY. Pentylenetetrazol-induced seizures are exacerbated by sleep deprivation through orexin receptor-mediated hippocampal cell proliferation. Neurol Sci 2013; 35:245-52. [DOI: 10.1007/s10072-013-1495-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/24/2013] [Indexed: 01/29/2023]
|
41
|
Juan LW, Liao CC, Lai WS, Chang CY, Pei JC, Wong WR, Liu CM, Hwu HG, Lee LJ. Phenotypic characterization of C57BL/6J mice carrying the Disc1 gene from the 129S6/SvEv strain. Brain Struct Funct 2013; 219:1417-31. [PMID: 23689501 DOI: 10.1007/s00429-013-0577-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/10/2013] [Indexed: 02/07/2023]
Abstract
Disruption of disrupted-in-schizophrenia 1 (DISC1), a candidate susceptibility gene for schizophrenia, was first identified in a large Scottish family in which many members suffered from various psychiatric disorders, including schizophrenia. To model the Scottish DISC1 truncation, we established a Disc1 mutant mouse line in which the 129S6/SvEv 25-bp deletion variant was transferred into the C57BL/6J strain by backcrossing. A battery of behavioral tasks was conducted to evaluate the basic behaviors and cognitive function of these mice. In heterozygote and homozygote Disc1 mutant (Het and Homo) mice, behavioral impairments were noted in working memory test which is thought to be mediated by the function of the medial prefrontal cortex (mPFC). The properties of mPFC neurons were characterized in both morphological and physiological aspects. The dendritic diameters were decreased in layer II/III mPFC pyramidal neurons of Het and Homo mice, whereas a significant reduction in spine density was observed in Homo mice. Neuronal excitability was declined in layer II/III mPFC pyramidal neurons of Het and Homo mice, yet increased transmitter release was identified in Homo mice. Thus, the structural and functional alterations of the mPFC in Het and Homo mice might account for their cognitive impairment. Since most of the gene knockout mice are generated from 129 substrain-derived embryonic stem cells, potential Disc1 deficiency should be considered.
Collapse
Affiliation(s)
- Liang-Wen Juan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Ren-Ai Rd, Section 1, Taipei, 100, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Alexandre C, Andermann ML, Scammell TE. Control of arousal by the orexin neurons. Curr Opin Neurobiol 2013; 23:752-9. [PMID: 23683477 DOI: 10.1016/j.conb.2013.04.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/02/2013] [Accepted: 04/09/2013] [Indexed: 01/01/2023]
Abstract
The orexin-producing neurons in the lateral hypothalamus play an essential role in promoting arousal and maintaining wakefulness. These neurons receive a broad variety of signals related to environmental, physiological and emotional stimuli; they project to almost every brain region involved in the regulation of wakefulness; and they fire most strongly during active wakefulness, high motor activation, and sustained attention. This review focuses on the specific neuronal pathways through which the orexin neurons promote wakefulness and maintain high level of arousal, and how recent studies using optogenetic and pharmacogenetic methods have demonstrated that the locus coeruleus, the tuberomammillary nucleus, and the basal forebrain are some of the key sites mediating the arousing actions of orexins.
Collapse
Affiliation(s)
- Chloe Alexandre
- Department of Neurology, Beth Israel Medical Deaconess Center, Boston, MA 02215, United States
| | | | | |
Collapse
|
43
|
Functional inactivation of orexin 1 receptors in the cerebellum disrupts trace eyeblink conditioning and local theta oscillations in guinea pigs. Behav Brain Res 2013; 250:114-22. [PMID: 23680162 DOI: 10.1016/j.bbr.2013.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
Abstract
The cerebellum plays an essential role in motor learning. Recently, orexins, the newfound lateral hypothalamic neuropeptides, have been found to excite Purkinje cells in the cerebellar cortex and neurons in the deep cerebellar nuclei (DCN). However, little is known about their roles in cerebellum-dependent motor learning. Therefore, the present study was designed to investigate the functional significance of hypothalamic orexinergic system during trace eyeblink conditioning, a tractable behavioral model system of cerebellum-dependent motor learning. It was revealed that the orexin 1 receptors (OXR1) were specifically localized on the soma of Purkinje cells and large DCN neurons. Furthermore, interfering with the endogenous orexins' effects on the cerebellum via the selective OXR1 antagonist SB-334867 disrupted the timing rather than the acquisition of trace conditioned eyeblink responses. In addition to the behavioral effects, the SB-334867 prevented the increase in peak amplitude of cerebellar theta oscillations with learning. These results suggest that the endogenous orexins may modulate motor learning via the activation of cerebellar OXR1.
Collapse
|
44
|
Brown RM, Lawrence AJ. Ascending orexinergic pathways and alcohol-seeking. Curr Opin Neurobiol 2013; 23:467-72. [PMID: 23537903 DOI: 10.1016/j.conb.2013.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 11/28/2022]
Abstract
Orexin (hypocretin) containing neurons reside in discrete regions of the lateral hypothalamus from where they innervate the entire neuroaxis. Via actions upon orexin receptors (OX1 and OX2), the orexin peptides (orexin A and orexin B) are thought to play a role in ethanol consumption and seeking. While a role for OX1 receptors in these behaviours is established, the case for OX2 receptors is less clear at present, although recent data certainly support an involvement of OX2 receptors in ethanol consumption. In terms of circuitry, orexin receptors the ventral tegmental area appear to contribute to ethanol consumption. Other loci remain to be characterised, and we suggest prefrontal cortical orexin receptors deserve attention in this respect.
Collapse
Affiliation(s)
- Robyn Mary Brown
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
45
|
Du L, Wang SJ, Cui J, He WJ, Ruan HZ. The role of HCN channels within the periaqueductal gray in neuropathic pain. Brain Res 2013; 1500:36-44. [PMID: 23375842 DOI: 10.1016/j.brainres.2013.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 02/08/2023]
Abstract
Peripheral and spinal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a key role in neuropathic pain by regulating neuronal excitability. HCN channels are expressed in the ventral-lateral periaqueductal gray (vlPAG), a region that is important for pain modulation. However, the role of vlPAG HCN channels in neuropathic pain remains poorly understood. In the present study, we investigated the impact of changes to vlPAG HCN channels on neural activity in neuropathic pain. First, sciatic nerve chronic constriction injury (CCI) was established as a neuropathic pain model. Then, changes in HCN channels and their influence on vlPAG neuronal activity were detected. Our results indicate that after CCI surgery the following changes occur in vlPAG neurons: the expression of HCN1 and HCN2 channels is increased, the amplitude of the hyperpolarization-activated current (Ih) is augmented and its activation curve is shifted to more positive potentials and there is an increase in the frequency of action potential (AP) firing and spontaneous EPSCs that is attenuated by ZD7288, a HCN channel blocker. In addition, forskolin, which can elevate intracellular cAMP, mimics the CCI induced changes in neuronal excitability in the vlPAG. The effects of forskolin were also reversed by ZD7288. Taken together, the present data indicate an important role for HCN channels in the vlPAG in neuropathic pain.
Collapse
Affiliation(s)
- Lu Du
- Department of Neurobiology, College of Basic Medical Sciences, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
46
|
Toth A, Balatoni B, Hajnik T, Detari L. EEG effect of orexin A in freely moving rats. ACTA ACUST UNITED AC 2012; 99:332-43. [DOI: 10.1556/aphysiol.99.2012.3.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Yan J, He C, Xia JX, Zhang D, Hu ZA. Orexin-A excites pyramidal neurons in layer 2/3 of the rat prefrontal cortex. Neurosci Lett 2012; 520:92-7. [PMID: 22617634 DOI: 10.1016/j.neulet.2012.05.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/23/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
The arousal peptides, orexins, play an important role in regulating the function of the prefrontal cortex (PFC). Although orexins have been shown to increase the excitability of deep-layer neurons in the medial prefrontal cortex (mPFC), little is known about their effect on layer 2/3, the main intracortical processing layer. In this study, we investigated the effect of orexin-A on pyramidal neurons in layer 2/3 of the mPFC using whole-cell recordings in rat brain slices. We observed that orexin-A reversibly depolarized layer 2/3 pyramidal neurons through a postsynaptic action. This depolarization was concentration-dependent and mediated via orexin receptor 1. In voltage-clamp recordings, the orexin-A-induced current was reduced by the replacement of internal K(+) with Cs(+), removal of external Na(+), or an application of flufenamic acid (an inhibitor of nonselective cation channels). A blocker of Na(+)/Ca(2+) exchangers (SN-6) did not influence the excitatory effect of orexin-A. Moreover, the current induced by orexin-A reversed near E(k) when the external solution contained low levels of Na(+). When recording with Cs(+)-containing pipettes in normal external solution, the reversal potential of the current was approximately -25 mV. These data suggest an involvement of both K(+) channels and nonselective cation channels in the effect of orexin-A. The direct excitatory action of orexin-A on layer 2/3 mPFC neurons may contribute to the modulation of PFC activity, and play a role in cognitive arousal.
Collapse
Affiliation(s)
- Jie Yan
- Department of Physiology, Third Military Medical University, Chongqing, PR China
| | | | | | | | | |
Collapse
|
48
|
Li B, Luo C, Tang W, Chen Z, Li Q, Hu B, Lin J, Zhu G, Zhang JH, Feng H. Role of HCN channels in neuronal hyperexcitability after subarachnoid hemorrhage in rats. J Neurosci 2012; 32:3164-75. [PMID: 22378889 PMCID: PMC3742969 DOI: 10.1523/jneurosci.5143-11.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/23/2011] [Accepted: 01/12/2012] [Indexed: 11/21/2022] Open
Abstract
Disruption of ionic homeostasis and neuronal hyperexcitability contribute to early brain injury after subarachnoid hemorrhage (SAH). The hyperpolarization-activated/cyclic nucleotide (HCN)-gated channels play critical role in the regulation of neuronal excitability in hippocampus CA1 region and neocortex, in which the abnormal neuronal activities are more readily provoked. This study was to investigate the interactions between HCN channels and hyperneuronal activity after experimental SAH. The present results from whole-cell recordings in rat brain slices indicated that (1) perfusion of hemoglobin (Hb)-containing artificial CSF produced neuronal hyperexcitability and inhibited HCN currents in CA1 pyramidal neurons, (2) nitric oxide/Spermine (NO/Sp), a controlled releaser of nitric oxide, attenuated neuronal excitability and enhanced HCN currents in CA1 pyramidal neurons, while L-nitroarginine (L-NNA), an inhibitor of nitric oxide synthase, reduced the HCN currents; and (3) the inhibitory action of Hb on HCN currents was reversed by application of NO/Sp, which also reduced neuronal hyperexcitability; conversely, L-NNA enhanced inhibitory action of Hb on HCN currents. Additionally, Hb perfusion scavenged the production of nitric oxide and decreased the expression of HCN1 subunits in CA1 region. In the rat SAH model, the expression of HCN1, both at mRNA and protein level, decreased in hippocampus CA1 region at 24 h and more pronounced at 72 h after SAH. These observations demonstrated a reduction of HCN channels expression after SAH and Hb reduced HCN currents in hippocampus CA1 pyramidal neurons. Inhibition of HCN channels by Hb may be a novel pathway for inducing the hyperneuronal excitability after SAH.
Collapse
Affiliation(s)
- Bo Li
- Departments of Neurosurgery and
| | - Chunxia Luo
- Departments of Neurosurgery and
- Neurology, Southwest Hospital, and
| | | | | | | | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, Peoples Republic of China, and
| | | | | | - John H. Zhang
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, California 92354
| | | |
Collapse
|
49
|
Xia JX, Xiong JX, Wang HK, Duan SM, Ye JN, Hu ZA. Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons. Neuroscience 2011; 201:46-56. [PMID: 22119641 DOI: 10.1016/j.neuroscience.2011.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
Hypocretin neurons in the lateral hypothalamus, a new wakefulness-promoting center, have been recently regarded as an important target involved in endogenous adenosine-regulating sleep homeostasis. The GABAergic synaptic transmissions are the main inhibitory afferents to hypocretin neurons, which play an important role in the regulation of excitability of these neurons. The inhibitory effect of adenosine, a homeostatic sleep-promoting factor, on the excitatory glutamatergic synaptic transmissions in hypocretin neurons has been well documented, whether adenosine also modulates these inhibitory GABAergic synaptic transmissions in these neurons has not been investigated. In this study, the effect of adenosine on inhibitory postsynaptic currents (IPSCs) in hypocretin neurons was examined by using perforated patch-clamp recordings in the acute hypothalamic slices. The findings demonstrated that adenosine suppressed the amplitude of evoked IPSCs in a dose-dependent manner, which was completely abolished by 8-cyclopentyltheophylline (CPT), a selective antagonist of adenosine A1 receptor but not adenosine A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl) xanthine. A presynaptic origin was suggested as following: adenosine increased paired-pulse ratio as well as reduced GABAergic miniature IPSC frequency without affecting the miniature IPSC amplitude. Further findings demonstrated that when the frequency of electrical stimulation was raised to 10 Hz, but not 1 Hz, a time-dependent depression of evoked IPSC amplitude was detected in hypocretin neurons, which could be partially blocked by CPT. However, under a higher frequency at 100 Hz stimulation, CPT had no action on the depressed GABAergic synaptic transmission induced by such tetanic stimulation in these hypocretin neurons. These results suggest that endogenous adenosine generated under certain stronger activities of synaptic transmissions exerts an inhibitory effect on GABAergic synaptic transmission in hypocretin neurons by activation of presynaptic adenosine A1 receptors, which may finely regulate the excitability of these neurons as well as eventually modulate the sleep-wakefulness.
Collapse
Affiliation(s)
- J X Xia
- Department of Physiology, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, China
| | | | | | | | | | | |
Collapse
|
50
|
Jia X, Yan J, Xia J, Xiong J, Wang T, Chen Y, Qi A, Yang N, Fan S, Ye J, Hu Z. Arousal effects of orexin A on acute alcohol intoxication-induced coma in rats. Neuropharmacology 2011; 62:775-83. [PMID: 21924278 DOI: 10.1016/j.neuropharm.2011.08.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 08/24/2011] [Accepted: 08/28/2011] [Indexed: 11/25/2022]
Abstract
The key role of the hypothalamic neuropeptides orexins in maintenance and promotion of arousal has been well established in normal mammalian animals, but whether orexins exert arousal effects under pathological condition such as coma was little studied. In this study, a model of unconscious rats induced by acute alcohol intoxication was used to examine the effects of orexins through intracerebroventricular injection. The results revealed that either orexin A or orexin B induced decrease of duration of loss of right reflex in alcohol-induced unconscious rats. In the presence of the selective orexin receptor 1 antagonist SB 334867 and orexin receptor 2 antagonist TCS OX2 29, the excitatory action of orexin A was completely blocked. Our data further presented that orexin A also induced reduction of delta power in EEG in these rats. Single-unit recording experiment in vivo demonstrated that orexin A could evoke increase of firing activity of prefrontal cortex neurons in unconscious rats. This excitation was completely inhibited by an H(1) receptor antagonist, pyrilamine, whereas application of α(1)-adrenoreceptor antagonist prazosin or 5-HT(2) selective receptor antagonist ritanserin partially attenuated the excitatory effects of orexin A on these neurons. Consistently, the results of EEG recordings showed that microinjection of pyrilamine, prazosin, or ritanserin suppressed reduction of delta power in EEG induced by orexin A on unconscious rats. Thus, these data suggest that orexins exert arousal effects on alcohol-induced unconscious rats by the promotion of cortical activity through activation of histaminergic, noradrenergic and serotonergic systems. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Xiaojun Jia
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|