1
|
Vaccari FE, Diomedi S, De Vitis M, Filippini M, Fattori P. Similar neural states, but dissimilar decoding patterns for motor control in parietal cortex. Netw Neurosci 2024; 8:486-516. [PMID: 38952818 PMCID: PMC11146678 DOI: 10.1162/netn_a_00364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 07/03/2024] Open
Abstract
Discrete neural states are associated with reaching movements across the fronto-parietal network. Here, the Hidden Markov Model (HMM) applied to spiking activity of the somato-motor parietal area PE revealed a sequence of states similar to those of the contiguous visuomotor areas PEc and V6A. Using a coupled clustering and decoding approach, we proved that these neural states carried spatiotemporal information regarding behaviour in all three posterior parietal areas. However, comparing decoding accuracy, PE was less informative than V6A and PEc. In addition, V6A outperformed PEc in target inference, indicating functional differences among the parietal areas. To check the consistency of these differences, we used both a supervised and an unsupervised variant of the HMM, and compared its performance with two more common classifiers, Support Vector Machine and Long-Short Term Memory. The differences in decoding between areas were invariant to the algorithm used, still showing the dissimilarities found with HMM, thus indicating that these dissimilarities are intrinsic in the information encoded by parietal neurons. These results highlight that, when decoding from the parietal cortex, for example, in brain machine interface implementations, attention should be paid in selecting the most suitable source of neural signals, given the great heterogeneity of this cortical sector.
Collapse
Affiliation(s)
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy
| |
Collapse
|
2
|
Skandalakis GP, Linn W, Yeh F, Kazim SF, Komaitis S, Neromyliotis E, Dimopoulos D, Drosos E, Hadjipanayis CG, Kongkham PN, Zadeh G, Stranjalis G, Koutsarnakis C, Kogan M, Evans LT, Kalyvas A. Unveiling the axonal connectivity between the precuneus and temporal pole: Structural evidence from the cingulum pathways. Hum Brain Mapp 2024; 45:e26771. [PMID: 38925589 PMCID: PMC11199201 DOI: 10.1002/hbm.26771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimaging studies have consistently demonstrated concurrent activation of the human precuneus and temporal pole (TP), both during resting-state conditions and various higher-order cognitive functions. However, the precise underlying structural connectivity between these brain regions remains uncertain despite significant advancements in neuroscience research. In this study, we investigated the connectivity of the precuneus and TP by employing parcellation-based fiber micro-dissections in human brains and fiber tractography techniques in a sample of 1065 human subjects and a sample of 41 rhesus macaques. Our results demonstrate the connectivity between the posterior precuneus area POS2 and the areas 35, 36, and TG of the TP via the fifth subcomponent of the cingulum (CB-V) also known as parahippocampal cingulum. This finding contributes to our understanding of the connections within the posteromedial cortices, facilitating a more comprehensive integration of anatomy and function in both normal and pathological brain processes. PRACTITIONER POINTS: Our investigation delves into the intricate architecture and connectivity patterns of subregions within the precuneus and temporal pole, filling a crucial gap in our knowledge. We revealed a direct axonal connection between the posterior precuneus (POS2) and specific areas (35, 35, and TG) of the temporal pole. The direct connections are part of the CB-V pathway and exhibit a significant association with the cingulum, SRF, forceps major, and ILF. Population-based human tractography and rhesus macaque fiber tractography showed consistent results that support micro-dissection outcomes.
Collapse
Affiliation(s)
- Georgios P. Skandalakis
- Section of NeurosurgeryDartmouth Hitchcock Medical CenterLebanonNew HampshireUSA
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Wen‐Jieh Linn
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Fang‐Cheng Yeh
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Syed Faraz Kazim
- Department of NeurosurgeryUniversity of New Mexico HospitalAlbuquerqueNew MexicoUSA
| | - Spyridon Komaitis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Eleftherios Neromyliotis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Dimitrios Dimopoulos
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Evangelos Drosos
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | | | - Paul N. Kongkham
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| | - Gelareh Zadeh
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| | - George Stranjalis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Christos Koutsarnakis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Michael Kogan
- Department of NeurosurgeryUniversity of New Mexico HospitalAlbuquerqueNew MexicoUSA
| | - Linton T. Evans
- Section of NeurosurgeryDartmouth Hitchcock Medical CenterLebanonNew HampshireUSA
| | - Aristotelis Kalyvas
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| |
Collapse
|
3
|
Ugolini G, Graf W. Pathways from the superior colliculus and the nucleus of the optic tract to the posterior parietal cortex in macaque monkeys: Functional frameworks for representation updating and online movement guidance. Eur J Neurosci 2024; 59:2792-2825. [PMID: 38544445 DOI: 10.1111/ejn.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
The posterior parietal cortex (PPC) integrates multisensory and motor-related information for generating and updating body representations and movement plans. We used retrograde transneuronal transfer of rabies virus combined with a conventional tracer in macaque monkeys to identify direct and disynaptic pathways to the arm-related rostral medial intraparietal area (MIP), the ventral lateral intraparietal area (LIPv), belonging to the parietal eye field, and the pursuit-related lateral subdivision of the medial superior temporal area (MSTl). We found that these areas receive major disynaptic pathways via the thalamus from the nucleus of the optic tract (NOT) and the superior colliculus (SC), mainly ipsilaterally. NOT pathways, targeting MSTl most prominently, serve to process the sensory consequences of slow eye movements for which the NOT is the key sensorimotor interface. They potentially contribute to the directional asymmetry of the pursuit and optokinetic systems. MSTl and LIPv receive feedforward inputs from SC visual layers, which are potential correlates for fast detection of motion, perceptual saccadic suppression and visual spatial attention. MSTl is the target of efference copy pathways from saccade- and head-related compartments of SC motor layers and head-related reticulospinal neurons. They are potential sources of extraretinal signals related to eye and head movement in MSTl visual-tracking neurons. LIPv and rostral MIP receive efference copy pathways from all SC motor layers, providing online estimates of eye, head and arm movements. Our findings have important implications for understanding the role of the PPC in representation updating, internal models for online movement guidance, eye-hand coordination and optic ataxia.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS - Université Paris-Saclay, Campus CEA Saclay, Saclay, France
| | - Werner Graf
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| |
Collapse
|
4
|
Ishida H, Grandi LC, Fornia L. Secondary somatosensory and posterior insular cortices: a somatomotor hub for object prehension and manipulation movements. Front Integr Neurosci 2024; 18:1346968. [PMID: 38725800 PMCID: PMC11079213 DOI: 10.3389/fnint.2024.1346968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
The secondary somatosensory cortex (SII) and posterior insular cortex (pIC) are recognized for processing touch and movement information during hand manipulation in humans and non-human primates. However, their involvement in three-dimensional (3D) object manipulation remains unclear. To investigate neural activity related to hand manipulation in the SII/pIC, we trained two macaque monkeys to grasp three objects (a cone, a plate, and a ring) and engage in visual fixation on the object. Our results revealed that 19.4% (n = 50/257) of the task-related neurons in SII/pIC were active during hand manipulations, but did not respond to passive somatosensory stimuli. Among these neurons, 44% fired before hand-object contact (reaching to grasping neurons), 30% maintained tonic activity after contact (holding neurons), and 26% showed continuous discharge before and after contact (non-selective neurons). Object grasping-selectivity varied and was weak among these neurons, with only 24% responding to fixation of a 3D object (visuo-motor neurons). Even neurons unresponsive to passive visual stimuli showed responses to set-related activity before the onset of movement (42%, n = 21/50). Our findings suggest that somatomotor integration within SII/pIC is probably integral to all prehension sequences, including reaching, grasping, and object manipulation movements. Moreover, the existence of a set-related activity within SII/pIC may play a role in directing somatomotor attention during object prehension-manipulation in the absence of vision. Overall, SII/pIC may play a role as a somatomotor hub within the lateral grasping network that supports the generation of intentional hand actions based on haptic information.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Department of Neuroscience, Unit of Physiology, Parma University, Parma, Italy
- Italian Institute of Technology (IIT), Brain Center for Social and Motor Cognition (BCSMC), Parma, Italy
| | - Laura Clara Grandi
- Department of Neuroscience, Unit of Physiology, Parma University, Parma, Italy
| | - Luca Fornia
- Department of Neuroscience, Unit of Physiology, Parma University, Parma, Italy
| |
Collapse
|
5
|
Cross KP, Cook DJ, Scott SH. Rapid Online Corrections for Proprioceptive and Visual Perturbations Recruit Similar Circuits in Primary Motor Cortex. eNeuro 2024; 11:ENEURO.0083-23.2024. [PMID: 38238081 PMCID: PMC10867723 DOI: 10.1523/eneuro.0083-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
An important aspect of motor function is our ability to rapidly generate goal-directed corrections for disturbances to the limb or behavioral goal. The primary motor cortex (M1) is a key region involved in processing feedback for rapid motor corrections, yet we know little about how M1 circuits are recruited by different sources of sensory feedback to make rapid corrections. We trained two male monkeys (Macaca mulatta) to make goal-directed reaches and on random trials introduced different sensory errors by either jumping the visual location of the goal (goal jump), jumping the visual location of the hand (cursor jump), or applying a mechanical load to displace the hand (proprioceptive feedback). Sensory perturbations evoked a broad response in M1 with ∼73% of neurons (n = 257) responding to at least one of the sensory perturbations. Feedback responses were also similar as response ranges between the goal and cursor jumps were highly correlated (range of r = [0.91, 0.97]) as were the response ranges between the mechanical loads and the visual perturbations (range of r = [0.68, 0.86]). Lastly, we identified the neural subspace each perturbation response resided in and found a strong overlap between the two visual perturbations (range of overlap index, 0.73-0.89) and between the mechanical loads and visual perturbations (range of overlap index, 0.36-0.47) indicating each perturbation evoked similar structure of activity at the population level. Collectively, our results indicate rapid responses to errors from different sensory sources target similar overlapping circuits in M1.
Collapse
Affiliation(s)
- Kevin P Cross
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas J Cook
- Department of Surgery, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
6
|
Sulpizio V, Fattori P, Pitzalis S, Galletti C. Functional organization of the caudal part of the human superior parietal lobule. Neurosci Biobehav Rev 2023; 153:105357. [PMID: 37572972 DOI: 10.1016/j.neubiorev.2023.105357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Like in macaque, the caudal portion of the human superior parietal lobule (SPL) plays a key role in a series of perceptive, visuomotor and somatosensory processes. Here, we review the functional properties of three separate portions of the caudal SPL, i.e., the posterior parieto-occipital sulcus (POs), the anterior POs, and the anterior part of the caudal SPL. We propose that the posterior POs is mainly dedicated to the analysis of visual motion cues useful for object motion detection during self-motion and for spatial navigation, while the more anterior parts are implicated in visuomotor control of limb actions. The anterior POs is mainly involved in using the spotlight of attention to guide reach-to-grasp hand movements, especially in dynamic environments. The anterior part of the caudal SPL plays a central role in visually guided locomotion, being implicated in controlling leg-related movements as well as the four limbs interaction with the environment, and in encoding egomotion-compatible optic flow. Together, these functions reveal how the caudal SPL is strongly implicated in skilled visually-guided behaviors.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Martinez-Tejada LA, Imakura Y, Cho YT, Minati L, Yoshimura N. Differential processing of intrinsic vs. extrinsic coordinates in wrist movement: connectivity and chronometry perspectives. Front Neuroinform 2023; 17:1199862. [PMID: 37492243 PMCID: PMC10364451 DOI: 10.3389/fninf.2023.1199862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
This study explores brain-network differences between the intrinsic and extrinsic motor coordinate frames. A connectivity model showing the coordinate frames difference was obtained using brain fMRI data of right wrist isometric flexions and extensions movements, performed in two forearm postures. The connectivity model was calculated by machine-learning-based neural representation and effective functional connectivity using psychophysiological interaction and dynamic causal modeling analyses. The model indicated the network difference wherein the inferior parietal lobule receives extrinsic information from the rostral lingual gyrus through the superior parietal lobule and transmits intrinsic information to the Handknob, whereas extrinsic information is transmitted to the Handknob directly from the rostral lingual gyrus. A behavioral experiment provided further evidence on the difference between motor coordinate frames showing onset timing delay of muscle activity of intrinsic coordinate-directed wrist movement compared to extrinsic one. These results suggest that, if the movement is externally directed, intrinsic coordinate system information is bypassed to reach the primary motor area.
Collapse
Affiliation(s)
| | - Yuji Imakura
- School of Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Ying-Tung Cho
- School of Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Ludovico Minati
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Mattarello, Italy
| | - Natsue Yoshimura
- School of Computing, Tokyo Institute of Technology, Yokohama, Japan
- Neural Information Analysis Laboratories, ATR, Kyoto, Japan
| |
Collapse
|
8
|
Feng T, Zhao C, Rao JS, Guo XJ, Bao SS, He LW, Zhao W, Liu Z, Yang ZY, Li XG. Different macaque brain network remodeling after spinal cord injury and NT3 treatment. iScience 2023; 26:106784. [PMID: 37378337 PMCID: PMC10291247 DOI: 10.1016/j.isci.2023.106784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/08/2023] [Accepted: 04/26/2023] [Indexed: 06/29/2023] Open
Abstract
Graph theory-based analysis describes the brain as a complex network. Only a few studies have examined modular composition and functional connectivity (FC) between modules in patients with spinal cord injury (SCI). Little is known about the longitudinal changes in hubs and topological properties at the modular level after SCI and treatment. We analyzed differences in FC and nodal metrics reflecting modular interaction to investigate brain reorganization after SCI-induced compensation and neurotrophin-3 (NT3)-chitosan-induced regeneration. Mean inter-modular FC and participation coefficient of areas related to motor coordination were significantly higher in the treatment animals than in the SCI-only ones at the late stage. The magnocellular part of the red nucleus may reflect the best difference in brain reorganization after SCI and therapy. Treatment can enhance information flows between regions and promote the integration of motor functions to return to normal. These findings may reveal the information processing of disrupted network modules.
Collapse
Affiliation(s)
- Ting Feng
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, PR China
| | - Jia-Sheng Rao
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Xiao-Jun Guo
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Shu-Sheng Bao
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Le-Wei He
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, PR China
- Department of Biology, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Xiao-Guang Li
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| |
Collapse
|
9
|
Rolls ET, Deco G, Huang CC, Feng J. The human posterior parietal cortex: effective connectome, and its relation to function. Cereb Cortex 2023; 33:3142-3170. [PMID: 35834902 PMCID: PMC10401905 DOI: 10.1093/cercor/bhac266] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/04/2023] Open
Abstract
The effective connectivity between 21 regions in the human posterior parietal cortex, and 360 cortical regions was measured in 171 Human Connectome Project (HCP) participants using the HCP atlas, and complemented with functional connectivity and diffusion tractography. Intraparietal areas LIP, VIP, MIP, and AIP have connectivity from early cortical visual regions, and to visuomotor regions such as the frontal eye fields, consistent with functions in eye saccades and tracking. Five superior parietal area 7 regions receive from similar areas and from the intraparietal areas, but also receive somatosensory inputs and connect with premotor areas including area 6, consistent with functions in performing actions to reach for, grasp, and manipulate objects. In the anterior inferior parietal cortex, PFop, PFt, and PFcm are mainly somatosensory, and PF in addition receives visuo-motor and visual object information, and is implicated in multimodal shape and body image representations. In the posterior inferior parietal cortex, PFm and PGs combine visuo-motor, visual object, and reward input and connect with the hippocampal system. PGi in addition provides a route to motion-related superior temporal sulcus regions involved in social interactions. PGp has connectivity with intraparietal regions involved in coordinate transforms and may be involved in idiothetic update of hippocampal visual scene representations.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, Shanghai 200602, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
10
|
Bencivenga F, Tullo MG, Maltempo T, von Gal A, Serra C, Pitzalis S, Galati G. Effector-selective modulation of the effective connectivity within frontoparietal circuits during visuomotor tasks. Cereb Cortex 2023; 33:2517-2538. [PMID: 35709758 PMCID: PMC10016057 DOI: 10.1093/cercor/bhac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research, the functional architecture of the subregions of the dorsal posterior parietal cortex (PPC) involved in sensorimotor processing is far from clear. Here, we draw a thorough picture of the large-scale functional organization of the PPC to disentangle the fronto-parietal networks mediating visuomotor functions. To this aim, we reanalyzed available human functional magnetic resonance imaging data collected during the execution of saccades, hand, and foot pointing, and we combined individual surface-based activation, resting-state functional connectivity, and effective connectivity analyses. We described a functional distinction between a more lateral region in the posterior intraparietal sulcus (lpIPS), preferring saccades over pointing and coupled with the frontal eye fields (FEF) at rest, and a more medial portion (mpIPS) intrinsically correlated to the dorsal premotor cortex (PMd). Dynamic causal modeling revealed feedforward-feedback loops linking lpIPS with FEF during saccades and mpIPS with PMd during pointing, with substantial differences between hand and foot. Despite an intrinsic specialization of the action-specific fronto-parietal networks, our study reveals that their functioning is finely regulated according to the effector to be used, being the dynamic interactions within those networks differently modulated when carrying out a similar movement (i.e. pointing) but with distinct effectors (i.e. hand and foot).
Collapse
Affiliation(s)
- Federica Bencivenga
- Corresponding author: Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy.
| | | | - Teresa Maltempo
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Alessandro von Gal
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Roma, Italy
- PhD program in Behavioral Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Sabrina Pitzalis
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Roma, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
| |
Collapse
|
11
|
Rolls ET, Wirth S, Deco G, Huang C, Feng J. The human posterior cingulate, retrosplenial, and medial parietal cortex effective connectome, and implications for memory and navigation. Hum Brain Mapp 2023; 44:629-655. [PMID: 36178249 PMCID: PMC9842927 DOI: 10.1002/hbm.26089] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The human posterior cingulate, retrosplenial, and medial parietal cortex are involved in memory and navigation. The functional anatomy underlying these cognitive functions was investigated by measuring the effective connectivity of these Posterior Cingulate Division (PCD) regions in the Human Connectome Project-MMP1 atlas in 171 HCP participants, and complemented with functional connectivity and diffusion tractography. First, the postero-ventral parts of the PCD (31pd, 31pv, 7m, d23ab, and v23ab) have effective connectivity with the temporal pole, inferior temporal visual cortex, cortex in the superior temporal sulcus implicated in auditory and semantic processing, with the reward-related vmPFC and pregenual anterior cingulate cortex, with the inferior parietal cortex, and with the hippocampal system. This connectivity implicates it in hippocampal episodic memory, providing routes for "what," reward and semantic schema-related information to access the hippocampus. Second, the antero-dorsal parts of the PCD (especially 31a and 23d, PCV, and also RSC) have connectivity with early visual cortical areas including those that represent spatial scenes, with the superior parietal cortex, with the pregenual anterior cingulate cortex, and with the hippocampal system. This connectivity implicates it in the "where" component for hippocampal episodic memory and for spatial navigation. The dorsal-transitional-visual (DVT) and ProStriate regions where the retrosplenial scene area is located have connectivity from early visual cortical areas to the parahippocampal scene area, providing a ventromedial route for spatial scene information to reach the hippocampus. These connectivities provide important routes for "what," reward, and "where" scene-related information for human hippocampal episodic memory and navigation. The midcingulate cortex provides a route from the anterior dorsal parts of the PCD and the supracallosal part of the anterior cingulate cortex to premotor regions.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain Inspired IntelligenceFudan University, Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| | - Sylvia Wirth
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229CNRS and University of LyonBronFrance
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
- Brain and CognitionPompeu Fabra UniversityBarcelonaSpain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA)Universitat Pompeu FabraBarcelonaSpain
| | - Chu‐Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Jianfeng Feng
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain Inspired IntelligenceFudan University, Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| |
Collapse
|
12
|
Hadjidimitrakis K, De Vitis M, Ghodrati M, Filippini M, Fattori P. Anterior-posterior gradient in the integrated processing of forelimb movement direction and distance in macaque parietal cortex. Cell Rep 2022; 41:111608. [DOI: 10.1016/j.celrep.2022.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/16/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
|
13
|
Goldring AB, Cooke DF, Pineda CR, Recanzone GH, Krubitzer LA. Functional characterization of the fronto-parietal reaching and grasping network: reversible deactivation of M1 and areas 2, 5, and 7b in awake behaving monkeys. J Neurophysiol 2022; 127:1363-1387. [PMID: 35417261 PMCID: PMC9109808 DOI: 10.1152/jn.00279.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
In the present investigation, we examined the role of different cortical fields in the fronto-parietal reaching and grasping network in awake, behaving macaque monkeys. This network is greatly expanded in primates compared to other mammals and coevolved with glabrous hands with opposable thumbs and the extraordinary dexterous behaviors employed by a number of primates, including humans. To examine this, we reversibly deactivated the primary motor area (M1), anterior parietal area 2, and posterior parietal areas 5L and 7b individually while monkeys were performing two types of reaching and grasping tasks. Reversible deactivation was accomplished with small microfluidic thermal regulators abutting specifically targeted cortical areas. Placement of these devices in the different cortical fields was confirmed post hoc in histologically processed tissue. Our results indicate that the different areas examined form a complex network of motor control that is overlapping. However, several consistent themes emerged that suggest the independent roles that motor cortex, area 2, area 7b, and area 5L play in the motor planning and execution of reaching and grasping movements. Area 5L is involved in the early stages and area 7b the later stages of a reaching and grasping movement, motor cortex is involved in all aspects of the execution of the movement, and area 2 provides proprioceptive feedback throughout the movement. We discuss our results in the context of previous studies that explored the fronto-parietal network, the overlapping (but also independent) functions of different nodes of this network, and the rapid compensatory plasticity of this network.NEW & NOTEWORTHY This is the first study to directly compare the results of cooling different portions of the fronto-parietal reaching and grasping network (motor cortex, anterior and posterior parietal cortex) in the same animals and the first to employ a complex, bimanual reaching and grasping task that is ethologically relevant. Whereas cooling area 7b or area 5L evoked deficits at distinct task phases, cooling M1 evoked a general set of deficits and cooling area 2 evoked proprioceptive deficits.
Collapse
Affiliation(s)
- Adam B Goldring
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Dylan F Cooke
- Center for Neuroscience, University of California, Davis, California
- Department of Biomedical Physiology and Kinesiology (BPK), Simon Fraser University, Burnaby, British Columbia, Canada
| | - Carlos R Pineda
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Leah A Krubitzer
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| |
Collapse
|
14
|
Drudik K, Zlatkina V, Petrides M. Morphological patterns and spatial probability maps of the superior parietal sulcus in the human brain. Cereb Cortex 2022; 33:1230-1245. [PMID: 35388402 PMCID: PMC9930623 DOI: 10.1093/cercor/bhac132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/14/2022] Open
Abstract
The superior parietal sulcus (SPS) is the defining sulcus within the superior parietal lobule (SPL). The morphological variability of the SPS was examined in individual magnetic resonance imaging (MRI) scans of the human brain that were registered to the Montreal Neurological Institute (MNI) standard stereotaxic space. Two primary morphological patterns were consistently identified across hemispheres: (i) the SPS was identified as a single sulcus, separating the anterior from the posterior part of the SPL and (ii) the SPS was found as a complex of multiple sulcal segments. These morphological patterns were subdivided based on whether the SPS or SPS complex remained distinct or merged with surrounding parietal sulci. The morphological variability and spatial extent of the SPS were quantified using volumetric and surface spatial probabilistic mapping. The current investigation established consistent morphological patterns in a common anatomical space, the MNI stereotaxic space, to facilitate structural and functional analyses within the SPL.
Collapse
Affiliation(s)
- Kristina Drudik
- Corresponding author: Kristina Drudik, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.
| | - Veronika Zlatkina
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4,Department of Psychology, McGill University, 2001 McGill College, Montreal, Quebec, Canada H3A 1G1
| | - Michael Petrides
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4,Department of Psychology, McGill University, 2001 McGill College, Montreal, Quebec, Canada H3A 1G1
| |
Collapse
|
15
|
Smith AT. Cortical visual area CSv as a cingulate motor area: a sensorimotor interface for the control of locomotion. Brain Struct Funct 2021; 226:2931-2950. [PMID: 34240236 PMCID: PMC8541968 DOI: 10.1007/s00429-021-02325-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022]
Abstract
The response properties, connectivity and function of the cingulate sulcus visual area (CSv) are reviewed. Cortical area CSv has been identified in both human and macaque brains. It has similar response properties and connectivity in the two species. It is situated bilaterally in the cingulate sulcus close to an established group of medial motor/premotor areas. It has strong connectivity with these areas, particularly the cingulate motor areas and the supplementary motor area, suggesting that it is involved in motor control. CSv is active during visual stimulation but only if that stimulation is indicative of self-motion. It is also active during vestibular stimulation and connectivity data suggest that it receives proprioceptive input. Connectivity with topographically organized somatosensory and motor regions strongly emphasizes the legs over the arms. Together these properties suggest that CSv provides a key interface between the sensory and motor systems in the control of locomotion. It is likely that its role involves online control and adjustment of ongoing locomotory movements, including obstacle avoidance and maintaining the intended trajectory. It is proposed that CSv is best seen as part of the cingulate motor complex. In the human case, a modification of the influential scheme of Picard and Strick (Picard and Strick, Cereb Cortex 6:342-353, 1996) is proposed to reflect this.
Collapse
Affiliation(s)
- Andrew T Smith
- Department of Psychology, Royal Holloway, University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
16
|
Di Marco S, Sulpizio V, Bellagamba M, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Pitzalis S. Multisensory integration in cortical regions responding to locomotion-related visual and somatomotor signals. Neuroimage 2021; 244:118581. [PMID: 34543763 DOI: 10.1016/j.neuroimage.2021.118581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
During real-world locomotion, in order to be able to move along a path or avoid an obstacle, continuous changes in self-motion direction (i.e. heading) are needed. Control of heading changes during locomotion requires the integration of multiple signals (i.e., visual, somatomotor, vestibular). Recent fMRI studies have shown that both somatomotor areas (human PEc [hPEc], human PE [hPE], primary somatosensory cortex [S-I]) and egomotion visual regions (cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) respond to either leg movements and egomotion-compatible visual stimulations, suggesting a role in the analysis of both visual attributes of egomotion and somatomotor signals with the aim of guiding locomotion. However, whether these regions are able to integrate egomotion-related visual signals with somatomotor inputs coming from leg movements during heading changes remains an open question. Here we used a combined approach of individual functional localizers and task-evoked activity by fMRI. In thirty subjects we first localized three egomotion areas (CSv, pCi, PIC) and three somatomotor regions (S-I, hPE, hPEc). Then, we tested their responses in a multisensory integration experiment combining visual and somatomotor signals relevant to locomotion in congruent or incongruent trials. We used an fMR-adaptation paradigm to explore the sensitivity to the repeated presentation of these bimodal stimuli in the six regions of interest. Results revealed that hPE, S-I and CSv showed an adaptation effect regardless of congruency, while PIC, pCi and hPEc showed sensitivity to congruency. PIC exhibited a preference for congruent trials compared to incongruent trials. Areas pCi and hPEc exhibited an adaptation effect only for congruent and incongruent trials, respectively. PIC, pCi and hPEc sensitivity to the congruency relationship between visual (locomotion-compatible) cues and (leg-related) somatomotor inputs suggests that these regions are involved in multisensory integration processes, likely in order to guide/adjust leg movements during heading changes.
Collapse
Affiliation(s)
- Sara Di Marco
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Valentina Sulpizio
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Martina Bellagamba
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Teresa Maltempo
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| |
Collapse
|
17
|
Vision for action: thalamic and cortical inputs to the macaque superior parietal lobule. Brain Struct Funct 2021; 226:2951-2966. [PMID: 34524542 PMCID: PMC8541979 DOI: 10.1007/s00429-021-02377-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
The dorsal visual stream, the cortical circuit that in the primate brain is mainly dedicated to the visual control of actions, is split into two routes, a lateral and a medial one, both involved in coding different aspects of sensorimotor control of actions. The lateral route, named "lateral grasping network", is mainly involved in the control of the distal part of prehension, namely grasping and manipulation. The medial route, named "reach-to-grasp network", is involved in the control of the full deployment of prehension act, from the direction of arm movement to the shaping of the hand according to the object to be grasped. In macaque monkeys, the reach-to-grasp network (the target of this review) includes areas of the superior parietal lobule (SPL) that hosts visual and somatosensory neurons well suited to control goal-directed limb movements toward stationary as well as moving objects. After a brief summary of the neuronal functional properties of these areas, we will analyze their cortical and thalamic inputs thanks to retrograde neuronal tracers separately injected into the SPL areas V6, V6A, PEc, and PE. These areas receive visual and somatosensory information distributed in a caudorostral, visuosomatic trend, and some of them are directly connected with the dorsal premotor cortex. This review is particularly focused on the origin and type of visual information reaching the SPL, and on the functional role this information can play in guiding limb interaction with objects in structured and dynamic environments.
Collapse
|
18
|
Orban GA, Sepe A, Bonini L. Parietal maps of visual signals for bodily action planning. Brain Struct Funct 2021; 226:2967-2988. [PMID: 34508272 PMCID: PMC8541987 DOI: 10.1007/s00429-021-02378-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| | - Alessia Sepe
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
19
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
20
|
The Complex Hodological Architecture of the Macaque Dorsal Intraparietal Areas as Emerging from Neural Tracers and DW-MRI Tractography. eNeuro 2021; 8:ENEURO.0102-21.2021. [PMID: 34039649 PMCID: PMC8266221 DOI: 10.1523/eneuro.0102-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 11/21/2022] Open
Abstract
In macaque monkeys, dorsal intraparietal areas are involved in several daily visuomotor actions. However, their border and sources of cortical afferents remain loosely defined. Combining retrograde histologic tracing and MRI diffusion-based tractography, we found a complex hodology of the dorsal bank of the intraparietal sulcus (db-IPS), which can be subdivided into a rostral intraparietal area PEip, projecting to the spinal cord, and a caudal medial intraparietal area MIP lacking such projections. Both include an anterior and a posterior sector, emerging from their ipsilateral, gradient-like connectivity profiles. As tractography estimations, we used the cross-sectional area of the white matter bundles connecting each area with other parietal and frontal regions, after selecting regions of interest (ROIs) corresponding to the injection sites of neural tracers. For most connections, we found a significant correlation between the proportions of cells projecting to all sectors of PEip and MIP along the continuum of the db-IPS and tractography. The latter also revealed “false positive” but plausible connections awaiting histologic validation.
Collapse
|
21
|
Diomedi S, Vaccari FE, Galletti C, Hadjidimitrakis K, Fattori P. Motor-like neural dynamics in two parietal areas during arm reaching. Prog Neurobiol 2021; 205:102116. [PMID: 34217822 DOI: 10.1016/j.pneurobio.2021.102116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
The classical view on motor control makes a clear distinction between the role of motor cortex in controlling muscles and parietal cortex in processing movement plans and goals. However, the strong parieto-frontal connections argue against such clear-cut separation of function. Modern dynamical approaches revealed that population activity in motor cortex can be captured by a limited number of patterns, called neural states that are preserved across diverse motor behaviors. Whether such dynamics are also present in parietal cortex is unclear. Here, we studied neural dynamics in the primate parietal cortex during arm movements and found three main states temporally coupled to the planning, execution and target holding epochs. Strikingly, as reported recently in motor cortex, execution was subdivided into distinct, arm acceleration- and deceleration-related, states. These results suggest that dynamics across parieto-frontal areas are highly consistent and hint that parietal population activity largely reflects timing constraints while motor actions unfold.
Collapse
Affiliation(s)
- S Diomedi
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - F E Vaccari
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - C Galletti
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - K Hadjidimitrakis
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy.
| | - P Fattori
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy.
| |
Collapse
|
22
|
Rushmore RJ, Bouix S, Kubicki M, Rathi Y, Rosene DL, Yeterian EH, Makris N. MRI-based Parcellation and Morphometry of the Individual Rhesus Monkey Brain: the macaque Harvard-Oxford Atlas (mHOA), a translational system referencing a standardized ontology. Brain Imaging Behav 2021; 15:1589-1621. [PMID: 32960419 PMCID: PMC8608281 DOI: 10.1007/s11682-020-00357-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Investigations of the rhesus monkey (Macaca mulatta) brain have shed light on the function and organization of the primate brain at a scale and resolution not yet possible in humans. A cornerstone of the linkage between non-human primate and human studies of the brain is magnetic resonance imaging, which allows for an association to be made between the detailed structural and physiological analysis of the non-human primate and that of the human brain. To further this end, we present a novel parcellation method and system for the rhesus monkey brain, referred to as the macaque Harvard-Oxford Atlas (mHOA), which is based on the human Harvard-Oxford Atlas (HOA) and grounded in an ontological and taxonomic framework. Consistent anatomical features were used to delimit and parcellate brain regions in the macaque, which were then categorized according to functional systems. This system of parcellation will be expanded with advances in technology and, like the HOA, will provide a framework upon which the results from other experimental studies (e.g., functional magnetic resonance imaging (fMRI), physiology, connectivity, graph theory) can be interpreted.
Collapse
Affiliation(s)
- R Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Edward H Yeterian
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
- Department of Psychology, Colby College, Waterville, ME, USA
| | - Nikos Makris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
23
|
Orban GA, Lanzilotto M, Bonini L. From Observed Action Identity to Social Affordances. Trends Cogn Sci 2021; 25:493-505. [PMID: 33745819 DOI: 10.1016/j.tics.2021.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Others' observed actions cause continuously changing retinal images, making it challenging to build neural representations of action identity. The monkey anterior intraparietal area (AIP) and its putative human homologue (phAIP) host neurons selective for observed manipulative actions (OMAs). The neuronal activity of both AIP and phAIP allows a stable readout of OMA identity across visual formats, but human neurons exhibit greater invariance and generalize from observed actions to action verbs. These properties stem from the convergence in AIP of superior temporal signals concerning: (i) observed body movements; and (ii) the changes in the body-object relationship. We propose that evolutionarily preserved mechanisms underlie the specification of observed-actions identity and the selection of motor responses afforded by them, thereby promoting social behavior.
Collapse
Affiliation(s)
- G A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - M Lanzilotto
- Department of Psychology, University of Turin, Turin, Italy
| | - L Bonini
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
24
|
Maltempo T, Pitzalis S, Bellagamba M, Di Marco S, Fattori P, Galati G, Galletti C, Sulpizio V. Lower visual field preference for the visuomotor control of limb movements in the human dorsomedial parietal cortex. Brain Struct Funct 2021; 226:2989-3005. [PMID: 33738579 PMCID: PMC8541995 DOI: 10.1007/s00429-021-02254-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Visual cues coming from the lower visual field (VF) play an important role in the visual guidance of upper and lower limb movements. A recently described region situated in the dorsomedial parietal cortex, area hPEc (Pitzalis et al. in NeuroImage 202:116092, 2019), might have a role in integrating visually derived information with somatomotor signals to guide limb interaction with the environment. In macaque, it has been demonstrated that PEc receives visual information mostly from the lower visual field but, to date, there has been no systematic investigation of VF preference in the newly defined human homologue of macaque area PEc (hPEc). Here we examined the VF preferences of hPEc while participants performed a visuomotor task implying spatially directed delayed eye-, hand- and foot-movements towards different spatial locations within the VF. By analyzing data as a function of the different target locations towards which upcoming movements were planned (and then executed), we observed the presence of asymmetry in the vertical dimension of VF in area hPEc, being this area more strongly activated by limb movements directed towards visual targets located in the lower compared to the upper VF. This result confirms the view, first advanced in macaque monkey, that PEc is involved in processing visual information to guide body interaction with the external environment, including locomotion. We also observed a contralateral dominance for the lower VF preference in the foot selective somatomotor cortex anterior to hPEc. This result might reflect the role of this cortex (which includes areas PE and S-I) in providing highly topographically organized signals, likely useful to achieve an appropriate foot posture during locomotion.
Collapse
Affiliation(s)
- Teresa Maltempo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Martina Bellagamba
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy. .,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy. .,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
| |
Collapse
|
25
|
Liu M, Tan Y, Zhang C, He L. Cortical anatomy plasticity in cases of cervical spondylotic myelopathy associated with decompression surgery: A strobe-compliant study of structural magnetic resonance imaging. Medicine (Baltimore) 2021; 100:e24190. [PMID: 33530210 PMCID: PMC7850749 DOI: 10.1097/md.0000000000024190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 12/12/2020] [Indexed: 11/25/2022] Open
Abstract
Using voxel-based morphometry (VBM), we studied cortical gray matter volume changes in patients with cervical spondylotic myelopathy (CSM) before and after cervical cord surgical decompression. We then discussed the structural damage mechanisms and the neural plasticity mechanisms involved in postsurgical CSM.Forty-five presurgical CSM patients, 41 of the same group followed-up 6 months after decompression surgery and 45 normal controls (NC) matched for age, sex and level of education underwent high-resolution 3-dimensional T1-weighted scans by 3.0 T MR. Then, VBM measurements were compared and cortical gray matter volume alterations were assessed among pre- or postsurgical CSM patients and NC, as well as correlations with clinical indexes by Pearson correlation.Compared with NC, presurgical CSM patients showed reduced gray matter volume in the left caudate nucleus and the right thalamus. After 6 months, postsurgical CSM patients had lower gray matter volume in the bilateral cerebellar posterior lobes but had higher gray matter volume in the brain-stem than did presurgical CSM patients. Postsurgical CSM patients had significantly lower gray matter volume in the left caudate nucleus but greater regional gray matter volume in the right inferior temporal gyrus, the right middle orbitofrontal cortex (OFC) and the bilateral lingual gyrus / precuneus /posterior cingulate cortex than did NC. Abnormal areas gray volume in presurgical CSM and postsurgical CSM patients showed no significant correlation with clinical data (P > .05).Myelopathy in the cervical cord may cause chronic cerebral structural damage before and after the decompression stage, markedly in outlier brain regions involving motor execution/control, vision processing and the default mode network and in areas associated with brain compensatory plasticity to reverse downstream spinal cord compression and respond to spinal cord surgical decompression.
Collapse
Affiliation(s)
| | - Yongming Tan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chenlei Zhang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Laichang He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
26
|
Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S. Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 2021; 137:74-92. [PMID: 33607346 DOI: 10.1016/j.cortex.2020.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
During locomotion, leg movements define the direction of walking (forward or backward) and the path one is taking (straight or curved). These aspects of locomotion produce characteristic visual motion patterns during movement. Here, we tested whether cortical regions responding to either egomotion-compatible visual motion, or leg movements, or both, are sensitive to these locomotion-relevant aspects of visual motion. We compared a curved path (typically the visual feedback of a changing direction of movement in the environment) to a linear path for simulated forward and backward motion in an event-related fMRI experiment. We used an individual surface-based approach and two functional localizers to define (1) six egomotion-related areas (V6+, V3A, intraparietal motion area [IPSmot], cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) using the flow field stimulus and (2) three leg-related cortical regions (human PEc [hPEc], human PE [hPE] and primary somatosensory cortex [S-I]) using a somatomotor task. Then, we extracted the response from all these regions with respect to the main event-related fMRI experiment, consisting of passive viewing of an optic flow stimulus, simulating a forward or backward direction of self-motion in either linear or curved path. Results showed that some regions have a significant preference for the curved path motion (hPEc, hPE, S-I, IPSmot) or a preference for the forward motion (V3A), while other regions have both a significant preference for the curved path motion and for the forward compared to backward motion (V6+, CSv, pCi). We did not find any significant effects of the present stimuli in PIC. Since controlling locomotion mainly means controlling changes of walking direction in the environment during forward self-motion, such a differential functional profile among these cortical regions suggests that they play a differentiated role in the visual guidance of locomotion.
Collapse
Affiliation(s)
- Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Teresa Maltempo
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
27
|
Greulich RS, Adam R, Everling S, Scherberger H. Shared functional connectivity between the dorso-medial and dorso-ventral streams in macaques. Sci Rep 2020; 10:18610. [PMID: 33122655 PMCID: PMC7596572 DOI: 10.1038/s41598-020-75219-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/07/2020] [Indexed: 12/04/2022] Open
Abstract
Manipulation of an object requires us to transport our hand towards the object (reach) and close our digits around that object (grasp). In current models, reach-related information is propagated in the dorso-medial stream from posterior parietal area V6A to medial intraparietal area, dorsal premotor cortex, and primary motor cortex. Grasp-related information is processed in the dorso-ventral stream from the anterior intraparietal area to ventral premotor cortex and the hand area of primary motor cortex. However, recent studies have cast doubt on the validity of this separation in separate processing streams. We investigated in 10 male rhesus macaques the whole-brain functional connectivity of these areas using resting state fMRI at 7-T. Although we found a clear separation between dorso-medial and dorso-ventral network connectivity in support of the two-stream hypothesis, we also found evidence of shared connectivity between these networks. The dorso-ventral network was distinctly correlated with high-order somatosensory areas and feeding related areas, whereas the dorso-medial network with visual areas and trunk/hindlimb motor areas. Shared connectivity was found in the superior frontal and precentral gyrus, central sulcus, intraparietal sulcus, precuneus, and insular cortex. These results suggest that while sensorimotor processing streams are functionally separated, they can access information through shared areas.
Collapse
Affiliation(s)
- R Stefan Greulich
- Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077, Göttingen, Germany. .,Faculty of Biology and Psychology, University of Goettingen, Göttingen, Germany.
| | - Ramina Adam
- Robarts Research Institute, University of Western Ontario, London, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Hansjörg Scherberger
- Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077, Göttingen, Germany. .,Faculty of Biology and Psychology, University of Goettingen, Göttingen, Germany.
| |
Collapse
|
28
|
Niu M, Impieri D, Rapan L, Funck T, Palomero-Gallagher N, Zilles K. Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus. eLife 2020; 9:55979. [PMID: 32613942 PMCID: PMC7365665 DOI: 10.7554/elife.55979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
The intraparietal sulcus (IPS) is structurally and functionally heterogeneous. We performed a quantitative cyto-/myelo- and receptor architectonical analysis to provide a multimodal map of the macaque IPS. We identified 17 cortical areas, including novel areas PEipe, PEipi (external and internal subdivisions of PEip), and MIPd. Multivariate analyses of receptor densities resulted in a grouping of areas based on the degree of (dis)similarity of their receptor architecture: a cluster encompassing areas located in the posterior portion of the IPS and associated mainly with the processing of visual information, a cluster including areas found in the anterior portion of the IPS and involved in sensorimotor processing, and an ‘intermediate’ cluster of multimodal association areas. Thus, differences in cyto-/myelo- and receptor architecture segregate the cortical ribbon within the IPS, and receptor fingerprints provide novel insights into the relationship between the structural and functional segregation of this brain region in the macaque monkey.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Daniele Impieri
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Aachen, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| |
Collapse
|
29
|
Lanzilotto M, Ferroni CG, Livi A, Gerbella M, Maranesi M, Borra E, Passarelli L, Gamberini M, Fogassi L, Bonini L, Orban GA. Anterior Intraparietal Area: A Hub in the Observed Manipulative Action Network. Cereb Cortex 2020; 29:1816-1833. [PMID: 30766996 PMCID: PMC6418391 DOI: 10.1093/cercor/bhz011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
Current knowledge regarding the processing of observed manipulative actions (OMAs) (e.g., grasping, dragging, or dropping) is limited to grasping and underlying neural circuitry remains controversial. Here, we addressed these issues by combining chronic neuronal recordings along the anteroposterior extent of monkeys’ anterior intraparietal (AIP) area with tracer injections into the recorded sites. We found robust neural selectivity for 7 distinct OMAs, particularly in the posterior part of AIP (pAIP), where it was associated with motor coding of grip type and own-hand visual feedback. This cluster of functional properties appears to be specifically grounded in stronger direct connections of pAIP with the temporal regions of the ventral visual stream and the prefrontal cortex, as connections with skeletomotor related areas and regions of the dorsal visual stream exhibited opposite or no rostrocaudal gradients. Temporal and prefrontal areas may provide visual and contextual information relevant for manipulative action processing. These results revise existing models of the action observation network, suggesting that pAIP constitutes a parietal hub for routing information about OMA identity to the other nodes of the network.
Collapse
Affiliation(s)
- Marco Lanzilotto
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | | | - Alessandro Livi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Monica Maranesi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Elena Borra
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| |
Collapse
|
30
|
Cheng CH, Lin SH, Wu CY, Liao YH, Chang KC, Hsieh YW. Mirror Illusion Modulates M1 Activities and Functional Connectivity Patterns of Perceptual-Attention Circuits During Bimanual Movements: A Magnetoencephalography Study. Front Neurosci 2020; 13:1363. [PMID: 32009873 PMCID: PMC6972502 DOI: 10.3389/fnins.2019.01363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
We differentiated the influence of mirror-induced visual conflicts on the perceptual–attention–motor control process by examining the variation of primary motor cortex (M1) activities and the functional connectivity among five brain regions associated with perceptual, motor, and attentional processes. Magnetoencephalography (MEG) was recorded under three conditions: both hands kept stationary with the forearms supinated (resting condition), in-phase bimanual movements with congruent visual feedback [symmetry (Sym) condition], and out-of-phase bimanual movements with incongruent visual feedback [asymmetry (Asy) condition]. We found that compared with the resting state, the decrease in beta oscillation was greater in the Sym than in the Asy condition, suggesting a greater activation of M1 when implementing hand movement without visual conflict. The results of functional connectivity patterns showed that the alpha band functional connectivity between V1 and superior temporal gyrus (STG) and the gamma band functional connectivity between the precuneus and posterior cingulate cortex (PCC) triggered greater or slightly greater coherence strength in the Asy condition than in the Sym condition. However, the beta band functional connectivity showed no difference between the two conditions in all pairs of the brain regions. These findings confirm and extend the previous findings to provide evidence that mirror visual feedback engages the functional networks associated with the perceptual–attentional process and triggers M1 activation, although the M1 activation is functionally independent of other brain regions unrelated to motor function. In summary, this study demonstrated a concrete functional connectivity pattern for motor control in the face of visual conflicts, and providing a foundation for future research to examine the dynamic functional networks of mirror illusion in motor control.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan City, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan City, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Szu-Hung Lin
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan City, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Ching-Yi Wu
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan City, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Han Liao
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan City, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Ku-Chou Chang
- Division of Cerebrovascular Diseases, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Discharge Planning Service Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan.,Department of Senior Citizen Service Management, Yuh-Ing Junior College, Kaohsiung City, Taiwan
| | - Yu-Wei Hsieh
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan City, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
31
|
Medendorp WP, Heed T. State estimation in posterior parietal cortex: Distinct poles of environmental and bodily states. Prog Neurobiol 2019; 183:101691. [DOI: 10.1016/j.pneurobio.2019.101691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023]
|
32
|
Structural connectivity and functional properties of the macaque superior parietal lobule. Brain Struct Funct 2019; 225:1349-1367. [DOI: 10.1007/s00429-019-01976-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
|
33
|
Alterations in the Structural and Functional Connectivity of the Visuomotor Network of Children With Periventricular Leukomalacia. Semin Pediatr Neurol 2019; 31:48-56. [PMID: 31548024 PMCID: PMC6761984 DOI: 10.1016/j.spen.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Children born preterm with periventricular leukomalacia (PVL) demonstrate increased difficulties with tasks requiring visuomotor integration. The visuomotor integration network encompasses brain regions within frontal, parietal, and occipital cortices. Because of their proximity to the lateral ventricle the underlying white matter pathways are at a high risk of damage following PVL-related hypoxic-ischemic white matter injury. This study provides an exploratory analysis of the structural and functional connections within the visuomotor integration network, along with an a priori evaluation of the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and frontal aslant tract. For each pathway, tracts within both hemispheres revealed decreased volume and number of reconstructed fibers and an increase in quantitative anisotropy and generalized fractional anisotropy. The connectivity results also indicate that there may be changes to both the structural integrity and functional integration of neural networks involved with visuomotor integration functions in children with PVL.
Collapse
|
34
|
Passarelli L, Rosa MGP, Bakola S, Gamberini M, Worthy KH, Fattori P, Galletti C. Uniformity and Diversity of Cortical Projections to Precuneate Areas in the Macaque Monkey: What Defines Area PGm? Cereb Cortex 2019; 28:1700-1717. [PMID: 28369235 DOI: 10.1093/cercor/bhx067] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
We report on the corticocortical connections of areas on the mesial surface of the macaque posterior parietal cortex, based on 10 retrograde tracer injections targeting different parts of the precuneate gyrus. Analysis of afferent connections supported the existence of two areas: PGm (also known as 7 m) and area 31. Both areas received major afferents from the V6A complex and from the external subdivision of area 23, but they differed in most other aspects. Area 31 showed greater emphasis on connections with premotor and parietal sensorimotor areas, whereas PGm received a greater proportion of its afferents from visuomotor structures involved in spatial cognition (including the lateral intraparietal cortex, inferior parietal lobule, and the putative visual areas in the ventral part of the precuneus). Medially, the anterior cingulate cortex (area 24) preferentially targeted area 31, whereas retrosplenial areas preferentially targeted PGm. These results indicate that earlier views on the connections of PGm were based on tracer injections that included parts of adjacent areas (including area 31), and prompt a reassessment of the limits of PGm. Our findings are compatible with a primary role of PGm in visuospatial cognition (including navigation), while supporting a role for area 31 in sensorimotor planning and coordination.
Collapse
Affiliation(s)
- Lauretta Passarelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marcello G P Rosa
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Sophia Bakola
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.,Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Michela Gamberini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Katrina H Worthy
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
35
|
Martínez-Vázquez P, Gail A. Directed Interaction Between Monkey Premotor and Posterior Parietal Cortex During Motor-Goal Retrieval from Working Memory. Cereb Cortex 2019; 28:1866-1881. [PMID: 29481586 PMCID: PMC5907360 DOI: 10.1093/cercor/bhy035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/31/2018] [Indexed: 12/04/2022] Open
Abstract
Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.
Collapse
Affiliation(s)
- Pablo Martínez-Vázquez
- German Primate Center, Cognitive Neuroscience Lab, Kellnerweg 4, 37077 Göttingen, Germany
| | - Alexander Gail
- German Primate Center, Cognitive Neuroscience Lab, Kellnerweg 4, 37077 Göttingen, Germany.,Bernstein Center for Computational Neuroscience, Göttingen, Germany.,Faculty of Biology and Psychology, Georg-August-Universität, Göttingen, Germany
| |
Collapse
|
36
|
Pitzalis S, Serra C, Sulpizio V, Di Marco S, Fattori P, Galati G, Galletti C. A putative human homologue of the macaque area PEc. Neuroimage 2019; 202:116092. [PMID: 31408715 DOI: 10.1016/j.neuroimage.2019.116092] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
The cortical area PEc is anatomically and functionally well-defined in macaque, but it is unknown whether it has a counterpart in human. Since we know that macaque PEc, but not the nearby posterior regions, hosts a lower limb representation, in an attempt to recognize a possible human PEc we looked for the existence of leg representations in the human parietal cortex using individual cortical surface-based analysis, task-evoked paradigms and resting-state functional connectivity. fMRI images were acquired while thirty-one participants performed long-range leg movements through an in-house MRI-compatible set-up. We revealed the existence of multiple leg representations in the human dorsomedial parietal cortex, here defined as S-I (somatosensory-I), hPE (human PE, in the postcentral sulcus), and hPEc (human PEc, in the anterior precuneus). Among the three "leg" regions, hPEc had a unique functional profile, in that it was the only one responding to both arm and leg movements, to both hand-pointing and foot pointing movements, and to flow field visual stimulation, very similar to macaque area PEc. In addition, hPEc showed functional connections with the somatomotor regions hosting a lower limb representation, again as in macaque area PEc. Therefore, based on similarity in brain position, functional organization, cortical connections, and relationship with the neighboring areas, we propose that this cortical region is the human homologue of macaque area PEc.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico", 00135, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00142, Rome, Italy.
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico", 00135, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00142, Rome, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00142, Rome, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico", 00135, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00142, Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00142, Rome, Italy; Brain Imaging Laboratory, Department of Psychology, Sapienza University, 00185, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
37
|
Impieri D, Zilles K, Niu M, Rapan L, Schubert N, Galletti C, Palomero-Gallagher N. Receptor density pattern confirms and enhances the anatomic-functional features of the macaque superior parietal lobule areas. Brain Struct Funct 2019; 224:2733-2756. [PMID: 31392403 PMCID: PMC6778536 DOI: 10.1007/s00429-019-01930-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/30/2019] [Indexed: 01/18/2023]
Abstract
The macaque monkey superior parietal lobule (SPL) is part of a neuronal network involved in the integration of information from visual and somatosensory cortical areas for execution of reaching and grasping movements. We applied quantitative in vitro receptor autoradiography to analyse the distribution patterns of 15 different receptors for glutamate, GABA, acetylcholine, serotonin, dopamine, and adenosine in the SPL of three adult male Macaca fascicularis monkeys. For each area, mean (averaged over all cortical layers) receptor densities were visualized as a receptor fingerprint of that area. Multivariate analyses were conducted to detect clusters of areas according to the degree of (dis)similarity of their receptor organization. Differences in regional and laminar receptor distributions confirm the location and extent of areas V6, V6Av, V6Ad, PEc, PEci, and PGm as found in cytoarchitectonic and functional studies, but also enable the definition of three subdivisions within area PE. Receptor densities are higher in supra- than in infragranular layers, with the exception of kainate, M2, and adenosine receptors. Glutamate and GABAergic receptors are the most expressed in all areas analysed. Hierarchical cluster analyses demonstrate that SPL areas are organized in two groups, an organization that corresponds to the visual or sensory-motor characteristics of those areas. Finally, based on present results and in the framework of our current understanding of the structural and functional organization of the primate SPL, we propose a novel pattern of homologies between human and macaque SPL areas.
Collapse
Affiliation(s)
- Daniele Impieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Nicole Schubert
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany. .,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany.
| |
Collapse
|
38
|
The neglected medial part of macaque area PE: segregated processing of reach depth and direction. Brain Struct Funct 2019; 224:2537-2557. [DOI: 10.1007/s00429-019-01923-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/13/2019] [Indexed: 11/26/2022]
|
39
|
Pereira-Pedro AS, Beaudet A, Bruner E. Parietal lobe variation in cercopithecid endocasts. Am J Primatol 2019; 81:e23025. [PMID: 31241198 DOI: 10.1002/ajp.23025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/10/2019] [Accepted: 06/02/2019] [Indexed: 01/20/2023]
Abstract
In extant primates, the posterior parietal cortex is involved in visuospatial integration, attention, and eye-hand coordination, which are crucial functions for foraging and feeding behaviors. Paleoneurology studies brain evolution through the analysis of endocasts, that is molds of the inner surface of the braincase. These may preserve imprints of cortical structures, such as sulci, which might be of interest for locating the boundaries of major cortical regions. Old World monkeys (Cercopithecidae) represent an interesting zoological group for evolutionary studies, because of their diverse ecologies and locomotor behaviors. In this study, we quantify parietal lobe variation within the cercopithecid family, in a sample of 30 endocasts including 11 genera and 17 species, by combining landmark-based and landmark-free geometric morphometric analyses. More specifically, we quantitatively assess variation of the parietal proportions based on landmarks placed on reliable anatomical references and of parietal lobe surface morphology through deformation-based methods. The main feature associated with the cercopithecid endocranial variation regards the inverse proportions of parietal and occipital lobes, with colobines, Theropithecus, and Papio displaying relatively larger parietal lobes and smaller occipital lobes compared with cercopithecins. The parietal surface is anteroposteriorly longer and mediolaterally flatter in colobines, while longitudinally shorter but laterally bulging in baboons. Large parietal lobes in colobines and baboons are likely to be independent evolutionary traits, and not necessarily associated with analogous functions or morphogenetic mechanisms.
Collapse
Affiliation(s)
- Ana Sofia Pereira-Pedro
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Amélie Beaudet
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, University of Pretoria, Pretoria, South Africa
| | - Emiliano Bruner
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
40
|
Saradjian AH, Teasdale N, Blouin J, Mouchnino L. Independent Early and Late Sensory Processes for Proprioceptive Integration When Planning a Step. Cereb Cortex 2019; 29:2353-2365. [PMID: 29750263 DOI: 10.1093/cercor/bhy104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 03/21/2018] [Accepted: 04/18/2018] [Indexed: 11/15/2022] Open
Abstract
Somatosensory inputs to the cortex undergo an early and a later stage of processing which are characterized by an early and a late somatosensory evoked potentials (SEP). The early response is highly representative of the stimulus characteristics whereas the late response reflects a more integrative, task specific, stage of sensory processing. We hypothesized that the later processing stage is independent of the early processing stage. We tested the prediction that a reduction of the first volley of input to the cortex should not prevent the increase of the late SEP. Using the sensory interference phenomenon, we halved the amplitude of the early response to somatosensory input of the ankle joints (evoked by vibration) when participants either planned a step forward or remained still. Despite the initial cortical response to the vibration being massively decreased in both tasks, the late response was still enhanced during step planning. Source localization indicated the posterior parietal cortex (PPC) as the likely origin of the late response modulation. Overall these results support the dissociation between the processes underlying the early and late SEP. The later processing stage could involve both direct and indirect thalamic connections to PPC which bypass the postcentral somatosensory cortex.
Collapse
Affiliation(s)
| | - Normand Teasdale
- Faculté de médecine, Département de kinésiologie, Université Laval, Québec, QC, Canada.,CHU de Québec - Hôpital du Saint-Sacrement, Centre d'excellence sur le vieillissement de Québec, Québec, QC, Canada
| | - Jean Blouin
- Aix-Marseille Univ, CNRS, LNC FR 3C 3512, Marseille, France
| | | |
Collapse
|
41
|
Ugolini G, Prevosto V, Graf W. Ascending vestibular pathways to parietal areas MIP and LIPv and efference copy inputs from the medial reticular formation: Functional frameworks for body representations updating and online movement guidance. Eur J Neurosci 2019; 50:2988-3013. [DOI: 10.1111/ejn.14426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriella Ugolini
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Vincent Prevosto
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
- Department of Biomedical Engineering Pratt School of Engineering Durham North Carolina
- Department of Neurobiology Duke School of Medicine Duke University Durham North Carolina
| | - Werner Graf
- Department of Physiology and Biophysics Howard University Washington District of Columbia
| |
Collapse
|
42
|
Serra C, Galletti C, Di Marco S, Fattori P, Galati G, Sulpizio V, Pitzalis S. Egomotion-related visual areas respond to active leg movements. Hum Brain Mapp 2019; 40:3174-3191. [PMID: 30924264 DOI: 10.1002/hbm.24589] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Monkey neurophysiology and human neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates a cortical network of temporal, parietal, insular, and cingulate visual motion regions. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by active lower limb movements, and hence are likely involved in guiding human locomotion. To this aim, we used a combined approach of task-evoked activity and resting-state functional connectivity by fMRI. We localized a set of six egomotion-responsive visual areas (V6+, V3A, intraparietal motion/ventral intraparietal [IPSmot/VIP], cingulate sulcus visual area [CSv], posterior cingulate sulcus area [pCi], posterior insular cortex [PIC]) by using optic flow. We tested their response to a motor task implying long-range active leg movements. Results revealed that, among these visually defined areas, CSv, pCi, and PIC responded to leg movements (visuomotor areas), while V6+, V3A, and IPSmot/VIP did not (visual areas). Functional connectivity analysis showed that visuomotor areas are connected to the cingulate motor areas, the supplementary motor area, and notably to the medial portion of the somatosensory cortex, which represents legs and feet. We suggest that CSv, pCi, and PIC perform the visual analysis of egomotion-like signals to provide sensory information to the motor system with the aim of guiding locomotion.
Collapse
Affiliation(s)
- Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| | - Valentina Sulpizio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
43
|
Hadjidimitrakis K, Bakola S, Wong YT, Hagan MA. Mixed Spatial and Movement Representations in the Primate Posterior Parietal Cortex. Front Neural Circuits 2019; 13:15. [PMID: 30914925 PMCID: PMC6421332 DOI: 10.3389/fncir.2019.00015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
The posterior parietal cortex (PPC) of humans and non-human primates plays a key role in the sensory and motor transformations required to guide motor actions to objects of interest in the environment. Despite decades of research, the anatomical and functional organization of this region is still a matter of contention. It is generally accepted that specialized parietal subregions and their functional counterparts in the frontal cortex participate in distinct segregated networks related to eye, arm and hand movements. However, experimental evidence obtained primarily from single neuron recording studies in non-human primates has demonstrated a rich mixing of signals processed by parietal neurons, calling into question ideas for a strict functional specialization. Here, we present a brief account of this line of research together with the basic trends in the anatomical connectivity patterns of the parietal subregions. We review, the evidence related to the functional communication between subregions of the PPC and describe progress towards using parietal neuron activity in neuroprosthetic applications. Recent literature suggests a role for the PPC not as a constellation of specialized functional subdomains, but as a dynamic network of sensorimotor loci that combine multiple signals and work in concert to guide motor behavior.
Collapse
Affiliation(s)
- Kostas Hadjidimitrakis
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Sophia Bakola
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Yan T Wong
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Department of Electrical and Computer Science Engineering, Monash University, Clayton, VIC, Australia
| | - Maureen A Hagan
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| |
Collapse
|
44
|
Lhomond O, Teasdale N, Simoneau M, Mouchnino L. Supplementary Motor Area and Superior Parietal Lobule Restore Sensory Facilitation Prior to Stepping When a Decrease of Afferent Inputs Occurs. Front Neurol 2019; 9:1132. [PMID: 30662426 PMCID: PMC6328453 DOI: 10.3389/fneur.2018.01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
The weighting of the sensory inputs is not uniform during movement preparation and execution. For instance, a transient increase in the transmission to the cortical level of cutaneous input ~700 ms was observed before participants initiated a step forward. The sensory facilitation occurred at a time when feet cutaneous information is critical for setting the forces to be exerted onto the ground to shift the center of mass toward the supporting side prior to foot-off. Despite clear evidence of task-dependent modulation of the early somatosensory signal transmission, the neural mechanisms are mainly unknown. One hypothesis suggests that during movement preparation the premotor cortex and specifically the supplementary motor area (SMA) can be the source of an efferent signal that facilitates the somatosensory processes irrespectively of the amount of sensory inputs arriving at the somatosensory areas. Here, we depressed mechanically the plantar sole cutaneous transmission by increasing pressure under the feet by adding an extra body weight to test whether the task-dependent modulation is present during step preparation. Results showed upregulation of the neural response to tactile stimulation in the extra-weight condition during the stepping preparation whereas depressed neural response was still observed in standing condition. Source localization indicated the SMA and to a lesser extent the superior parietal lobule (SPL) areas as the likely origin of the response modulation. Upregulating cutaneous inputs (when mechanically depressed) at an early stage by efferent signals from the motor system could be an attempt to restore the level of sensory afferents to make it suitable for setting the anticipatory adjustments prior to step initiation.
Collapse
Affiliation(s)
- Olivia Lhomond
- Aix Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| | - Normand Teasdale
- Faculté de médecine, Département de kinésiologie, Université Laval, Québec, QC, Canada
| | - Martin Simoneau
- Faculté de médecine, Département de kinésiologie, Université Laval, Québec, QC, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec, QC, Canada
| | - Laurence Mouchnino
- Aix Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| |
Collapse
|
45
|
Fattori P, Breveglieri R, Bosco A, Gamberini M, Galletti C. Vision for Prehension in the Medial Parietal Cortex. Cereb Cortex 2018; 27:1149-1163. [PMID: 26656999 DOI: 10.1093/cercor/bhv302] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the last 2 decades, the medial posterior parietal area V6A has been extensively studied in awake macaque monkeys for visual and somatosensory properties and for its involvement in encoding of spatial parameters for reaching, including arm movement direction and amplitude. This area also contains populations of neurons sensitive to grasping movements, such as wrist orientation and grip formation. Recent work has shown that V6A neurons also encode the shape of graspable objects and their affordance. In other words, V6A seems to encode object visual properties specifically for the purpose of action, in a dynamic sequence of visuomotor transformations that evolve in the course of reach-to-grasp action.We propose a model of cortical circuitry controlling reach-to-grasp actions, in which V6A acts as a comparator that monitors differences between current and desired hand positions and configurations. This error signal could be used to continuously update the motor output, and to correct reach direction, hand orientation, and/or grip aperture as required during the act of prehension.In contrast to the generally accepted view that the dorsomedial component of the dorsal visual stream encodes reaching, but not grasping, the functional properties of V6A neurons strongly suggest the view that this area is involved in encoding all phases of prehension, including grasping.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Breveglieri
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Michela Gamberini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
46
|
Impieri D, Gamberini M, Passarelli L, Rosa MGP, Galletti C. Thalamo‐cortical projections to the macaque superior parietal lobule areas PEc and PE. J Comp Neurol 2018; 526:1041-1056. [DOI: 10.1002/cne.24389] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/23/2017] [Accepted: 09/20/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Daniele Impieri
- Department of Pharmacy and BiotechnologyUniversity of BolognaBologna40126 Italy
| | - Michela Gamberini
- Department of Pharmacy and BiotechnologyUniversity of BolognaBologna40126 Italy
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna40126 Italy
| | - Lauretta Passarelli
- Department of Pharmacy and BiotechnologyUniversity of BolognaBologna40126 Italy
| | - Marcello G. P. Rosa
- Biomedicine Discovery Institute and Department of PhysiologyMonash UniversityClayton Victoria3800 Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University NodeClayton Victoria3800 Australia
| | - Claudio Galletti
- Department of Pharmacy and BiotechnologyUniversity of BolognaBologna40126 Italy
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna40126 Italy
| |
Collapse
|
47
|
Gamberini M, Dal Bò G, Breveglieri R, Briganti S, Passarelli L, Fattori P, Galletti C. Sensory properties of the caudal aspect of the macaque's superior parietal lobule. Brain Struct Funct 2017; 223:1863-1879. [PMID: 29260370 DOI: 10.1007/s00429-017-1593-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/12/2017] [Indexed: 11/26/2022]
Abstract
In the superior parietal lobule (SPL), the anterior part (area PE) is known to process somatosensory information, while the caudalmost part (areas V6Av and V6) processes visual information. Here we studied the visual and somatosensory properties of the areas PEc and V6Ad located in between the somatosensory and visual domains of SPL. About 1500 neurons were extracellularly recorded in 19 hemispheres of 12 monkeys (Macaca fascicularis). Visual and somatosensory properties of single neurons were generally studied separately, while in a subpopulation of neurons, both the sensory properties were tested. Visual neurons were more represented in V6Ad and somatosensory neurons in PEc. The visual neurons of these two areas showed similar properties and represented a large part of the contralateral visual field, mostly the lower part. In contrast, somatosensory neurons showed remarkable differences. The arms were overrepresented in both the areas, but V6Ad represented only the upper limbs, whereas PEc both the upper and lower limbs. Interestingly, we found that in both the areas, bimodal visual-somatosensory cells represented the proximal part of the arms. We suggest that PEc is involved in locomotion and in the control of hand/foot interaction with the objects of the environment, while V6Ad is in the control of the object prehension specifically performed with the upper limbs. Neuroimaging and lesion studies from literature support a strict homology with humans.
Collapse
Affiliation(s)
- Michela Gamberini
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Giulia Dal Bò
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Rossella Breveglieri
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Sofia Briganti
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Lauretta Passarelli
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
48
|
Cortical Afferents and Myeloarchitecture Distinguish the Medial Intraparietal Area (MIP) from Neighboring Subdivisions of the Macaque Cortex. eNeuro 2017; 4:eN-NWR-0344-17. [PMID: 29379868 PMCID: PMC5779118 DOI: 10.1523/eneuro.0344-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
The parietal reach region (PRR) in the medial bank of the macaque intraparietal sulcus has been a subject of considerable interest in research aimed at the development of brain-controlled prosthetic arms, but its anatomical organization remains poorly characterized. We examined the anatomical organization of the putative PRR territory based on myeloarchitecture and retrograde tracer injections. We found that the medial bank includes three areas: an extension of the dorsal subdivision of V6A (V6Ad), the medial intraparietal area (MIP), and a subdivision of area PE (PEip). Analysis of corticocortical connections revealed that both V6Ad and MIP receive inputs from visual area V6; the ventral subdivision of V6A (V6Av); medial (PGm, 31), superior (PEc), and inferior (PFG/PF) parietal association areas; and intraparietal areas AIP and VIP. They also receive long-range projections from the superior temporal sulcus (MST, TPO), cingulate area 23, and the dorsocaudal (area F2) and ventral (areas F4/F5) premotor areas. In comparison with V6Ad, MIP receives denser input from somatosensory areas, the primary motor cortex, and the medial motor fields, as well as from visual cortex in the ventral precuneate cortex and frontal regions associated with oculomotor guidance. Unlike MIP, V6Ad receives stronger visual input, from the caudal inferior parietal cortex (PG/Opt) and V6Av, whereas PEip shows marked emphasis on anterior parietal, primary motor, and ventral premotor connections. These anatomical results suggest that MIP and V6A have complementary roles in sensorimotor behavior, with MIP more directly involved in movement planning and execution in comparison with V6A.
Collapse
|
49
|
Functional anatomy of the macaque temporo-parieto-frontal connectivity. Cortex 2017; 97:306-326. [DOI: 10.1016/j.cortex.2016.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/21/2016] [Accepted: 12/04/2016] [Indexed: 01/19/2023]
|
50
|
Area PEc Neurons Use a Multiphasic Pattern of Activity to Signal the Spatial Properties of Optic Flow. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6495872. [PMID: 29285515 PMCID: PMC5733201 DOI: 10.1155/2017/6495872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/13/2017] [Accepted: 10/12/2017] [Indexed: 11/18/2022]
Abstract
The cortical representation of visual perception requires the integration of several-signal processing distributed across many cortical areas, but the neural substrates of such perception are largely unknown. The type of firing pattern exhibited by single neurons is an important indicator of dynamic circuitry within or across cortical areas. Neurons in area PEc are involved in the spatial mapping of the visual field; thus, we sought to analyze the firing pattern of activity of PEc optic flow neurons to shed some light on the cortical processing of visual signals. We quantified the firing activity of 152 optic flow neurons using a spline interpolation function, which allowed determining onset, end, and latency of each neuronal response. We found that many PEc neurons showed multiphasic activity, which is strictly related to the position of the eye and to the position of the focus of expansion (FOE) of the flow field. PEc neurons showed a multiphasic activity comprised of excitatory phases interspersed with inhibitory pauses. This phasic pattern seems to be a very efficient way to signal the spatial location of visual stimuli, given that the same neuron sends different firing patterns according to a specific combination of FOE/eye position.
Collapse
|