1
|
Drebitz E, Rausch LP, Domingo Gil E, Kreiter AK. Three distinct gamma oscillatory networks within cortical columns in macaque monkeys' area V1. Front Neural Circuits 2024; 18:1490638. [PMID: 39735419 PMCID: PMC11671273 DOI: 10.3389/fncir.2024.1490638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction A fundamental property of the neocortex is its columnar organization in many species. Generally, neurons of the same column share stimulus preferences and have strong anatomical connections across layers. These features suggest that neurons within a column operate as one unified network. Other features, like the different patterns of input and output connections of neurons located in separate layers and systematic differences in feature tuning, hint at a more segregated and possibly flexible functional organization of neurons within a column. Methods To distinguish between these views of columnar processing, we conducted laminar recordings in macaques' area V1 while they performed a demanding attention task. We identified three separate regions with strong gamma oscillatory activity, located in the supragranular, granular, and infragranular laminar domains, based on the current source density (CSD). Results and Discussion Their characteristics differed significantly in their dominant gamma frequency and attention-dependent modulation of their gramma power and gamma frequency. In line, spiking activity in the supragranular, infragranular, and upper part of the granular domain exhibited strong phase coherence with the CSD signals of their domain but showed much weaker coherence with the CSD signals of other domains. Conclusion These results indicate that columnar processing involves a certain degree of independence between neurons in the three laminar domains, consistent with the assumption of multiple, separate intracolumnar ensembles. Such a functional organization offers various possibilities for dynamic network configuration, indicating that neurons in a column are not restricted to operate as one unified network. Thus, the findings open interesting new possibilities for future concepts and investigations on flexible, dynamic cortical ensemble formation and selective information processing.
Collapse
Affiliation(s)
- Eric Drebitz
- Cognitive Neurophysiology, Brain Research Institute, University of Bremen, Bremen, Germany
| | | | | | | |
Collapse
|
2
|
Cleary DR, Tchoe Y, Bourhis A, Dickey CW, Stedelin B, Ganji M, Lee SH, Lee J, Siler DA, Brown EC, Rosen BQ, Kaestner E, Yang JC, Soper DJ, Han SJ, Paulk AC, Cash SS, Raslan AM, Dayeh SA, Halgren E. Syllable processing is organized in discrete subregions of the human superior temporal gyrus. PLoS Biol 2024; 22:e3002774. [PMID: 39241107 PMCID: PMC11410217 DOI: 10.1371/journal.pbio.3002774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2024] [Revised: 09/18/2024] [Accepted: 07/29/2024] [Indexed: 09/08/2024] Open
Abstract
Modular organization at approximately 1 mm scale could be fundamental to cortical processing, but its presence in human association cortex is unknown. Using custom-built, high-density electrode arrays placed on the cortical surface of 7 patients undergoing awake craniotomy for tumor excision, we investigated receptive speech processing in the left (dominant) human posterior superior temporal gyrus. Responses to consonant-vowel syllables and noise-vocoded controls recorded with 1,024 channel micro-grids at 200 μm pitch demonstrated roughly circular domains approximately 1.7 mm in diameter, with sharp boundaries observed in 128 channel linear arrays at 50 μm pitch, possibly consistent with a columnar organization. Peak latencies to syllables in different modules were bimodally distributed centered at 252 and 386 ms. Adjacent modules were sharply delineated from each other by their distinct time courses and stimulus selectivity. We suggest that receptive language cortex may be organized in discrete processing modules.
Collapse
Affiliation(s)
- Daniel R Cleary
- Department of Neurosurgery, University of California San Diego, La Jolla, California, United States of America
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Youngbin Tchoe
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Andrew Bourhis
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Charles W Dickey
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States of America
| | - Brittany Stedelin
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Mehran Ganji
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Sang Heon Lee
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Jihwan Lee
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Dominic A Siler
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Burke Q Rosen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States of America
| | - Jimmy C Yang
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Daniel J Soper
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Seunggu Jude Han
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Shadi A Dayeh
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, United States of America
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Eric Halgren
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
- Department of Neuroscience, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
3
|
Cleary DR, Tchoe Y, Bourhis A, Dickey CW, Stedelin B, Ganji M, Lee SH, Lee J, Siler DA, Brown EC, Rosen BQ, Kaestner E, Yang JC, Soper DJ, Han SJ, Paulk AC, Cash SS, Raslan AMT, Dayeh SA, Halgren E. Modular Phoneme Processing in Human Superior Temporal Gyrus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576120. [PMID: 38293030 PMCID: PMC10827201 DOI: 10.1101/2024.01.17.576120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2024]
Abstract
Modular organization is fundamental to cortical processing, but its presence is human association cortex is unknown. We characterized phoneme processing with 128-1024 channel micro-arrays at 50-200µm pitch on superior temporal gyrus of 7 patients. High gamma responses were highly correlated within ~1.7mm diameter modules, sharply delineated from adjacent modules with distinct time-courses and phoneme-selectivity. We suggest that receptive language cortex may be organized in discrete processing modules.
Collapse
Affiliation(s)
- Daniel R Cleary
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Youngbin Tchoe
- Departments of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew Bourhis
- Departments of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Charles W Dickey
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Departments of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Departments of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Departments of Radiology and Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Brittany Stedelin
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mehran Ganji
- Departments of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sang Hoen Lee
- Departments of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jihwan Lee
- Departments of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Dominic A Siler
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Burke Q Rosen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jimmy C Yang
- Department of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel J Soper
- Department of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seunggu Jude Han
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Angelique C Paulk
- Department of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ahmed M T Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shadi A Dayeh
- Departments of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Departments of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Eric Halgren
- Departments of Radiology and Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Jin Y, Gao X, Lu M, Chen G, Yang X, Ren N, Song Y, Hou C, Li J, Liu Q, Gao J. Loss of BAF (mSWI/SNF) chromatin-remodeling ATPase Brg1 causes multiple malformations of cortical development in mice. Hum Mol Genet 2022; 31:3504-3520. [PMID: 35666215 DOI: 10.1093/hmg/ddac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in genes encoding subunits of the BAF (BRG1/BRM-associated factor) complex cause various neurodevelopmental diseases. However, the underlying pathophysiology remains largely unknown. Here, we analyzed the function of Brg1, a core ATPase of BAF complexes, in the developing cerebral cortex. Loss of Brg1 causes several morphological defects resembling human malformations of cortical development (MCDs), including microcephaly, cortical dysplasia, cobblestone lissencephaly, and periventricular heterotopia. We demonstrated that neural progenitor cell (NPC) renewal, neuronal differentiation, neuronal migration, apoptotic cell death, pial basement membrane, and apical junctional complexes, which are associated with MCD formation, were impaired after Brg1 deletion. Furthermore, transcriptome profiling indicated that a large number of genes were deregulated. The deregulated genes were closely related to MCD formation, and most of these genes were bound by Brg1. Cumulatively, our study indicates an essential role of Brg1 in cortical development and provides a new possible pathogenesis underlying Brg1-based BAF complex-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yecheng Jin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaotong Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Miaoqing Lu
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Ge Chen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Xiaofan Yang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Naixia Ren
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Yuning Song
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Congzhe Hou
- Department of Reproductive medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Jiangxia Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiangang Gao
- School of Laboratory Animal Science, Shandong First Medical University, Jinan, Shandong 250117, China
| |
Collapse
|
5
|
Casingal CR, Descant KD, Anton ES. Coordinating cerebral cortical construction and connectivity: Unifying influence of radial progenitors. Neuron 2022; 110:1100-1115. [PMID: 35216663 PMCID: PMC8989671 DOI: 10.1016/j.neuron.2022.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023]
Abstract
Radial progenitor development and function lay the foundation for the construction of the cerebral cortex. Radial glial scaffold, through its functions as a source of neurogenic progenitors and neuronal migration guide, is thought to provide a template for the formation of the cerebral cortex. Emerging evidence is challenging this limited view. Intriguingly, radial glial scaffold may also play a role in axonal growth, guidance, and neuronal connectivity. Radial glial cells not only facilitate the generation, placement, and allocation of neurons in the cortex but also regulate how they wire up. The organization and function of radial glial cells may thus be a unifying feature of the developing cortex that helps to precisely coordinate the right patterns of neurogenesis, neuronal placement, and connectivity necessary for the emergence of a functional cerebral cortex. This perspective critically explores this emerging view and its impact in the context of human brain development and disorders.
Collapse
Affiliation(s)
- Cristine R Casingal
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine D Descant
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - E S Anton
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Mezias C, Torok J, Maia PD, Markley E, Raj A. Matrix Inversion and Subset Selection (MISS): A pipeline for mapping of diverse cell types across the murine brain. Proc Natl Acad Sci U S A 2022; 119:e2111786119. [PMID: 35363567 PMCID: PMC9168512 DOI: 10.1073/pnas.2111786119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
The advent of increasingly sophisticated imaging platforms has allowed for the visualization of the murine nervous system at single-cell resolution. However, current experimental approaches have not yet produced whole-brain maps of a comprehensive set of neuronal and nonneuronal types that approaches the cellular diversity of the mammalian cortex. Here, we aim to fill in this gap in knowledge with an open-source computational pipeline, Matrix Inversion and Subset Selection (MISS), that can infer quantitatively validated distributions of diverse collections of neural cell types at 200-μm resolution using a combination of single-cell RNA sequencing (RNAseq) and in situ hybridization datasets. We rigorously demonstrate the accuracy of MISS against literature expectations. Importantly, we show that gene subset selection, a procedure by which we filter out low-information genes prior to performing deconvolution, is a critical preprocessing step that distinguishes MISS from its predecessors and facilitates the production of cell-type maps with significantly higher accuracy. We also show that MISS is generalizable by generating high-quality cell-type maps from a second independently curated single-cell RNAseq dataset. Together, our results illustrate the viability of computational approaches for determining the spatial distributions of a wide variety of cell types from genetic data alone.
Collapse
Affiliation(s)
- Christopher Mezias
- Department of Radiology, University of California, San Francisco, CA 94143
| | - Justin Torok
- Department of Radiology, University of California, San Francisco, CA 94143
- Department of Radiology, Weill Cornell Medicine of Cornell University, New York, NY 10065
| | - Pedro D. Maia
- Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019
| | - Eric Markley
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
| | - Ashish Raj
- Department of Radiology, University of California, San Francisco, CA 94143
- Department of Radiology, Weill Cornell Medicine of Cornell University, New York, NY 10065
| |
Collapse
|
7
|
Giandomenico SL, Sutcliffe M, Lancaster MA. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat Protoc 2020; 16:579-602. [PMID: 33328611 DOI: 10.1038/s41596-020-00433-w] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2020] [Accepted: 10/02/2020] [Indexed: 11/09/2022]
Abstract
Cerebral organoids, or brain organoids, can be generated from a wide array of emerging technologies for modeling brain development and disease. The fact that they are cultured in vitro makes them easily accessible both genetically and for live assays such as fluorescence imaging. In this Protocol Extension, we describe a modified version of our original protocol (published in 2014) that can be used to reliably generate cerebral organoids of a telencephalic identity and maintain long-term viability for later stages of neural development, including axon outgrowth and neuronal maturation. The method builds upon earlier cerebral organoid methodology, with modifications of embryoid body size and shape to increase surface area and slice culture to maintain nutrient and oxygen access to the interior regions of the organoid, enabling long-term culture. We also describe approaches for introducing exogenous plasmid constructs and for sparse cell labeling to image neuronal axon outgrowth and maturation over time. Together, these methods allow for modeling of later events in cortical development, which are important for neurodevelopmental disease modeling. The protocols described can be easily performed by an experimenter with stem cell culture experience and take 2-3 months to complete, with long-term maturation occurring over several months.
Collapse
Affiliation(s)
| | - Magdalena Sutcliffe
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK. .,Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
8
|
Cortay V, Delaunay D, Patti D, Gautier E, Doerflinger N, Giroud P, Knoblauch K, Huissoud C, Kennedy H, Dehay C. Radial Migration Dynamics Is Modulated in a Laminar and Area-Specific Manner During Primate Corticogenesis. Front Cell Dev Biol 2020; 8:588814. [PMID: 33178700 PMCID: PMC7596244 DOI: 10.3389/fcell.2020.588814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 01/26/2023] Open
Abstract
The orderly radial migration of cortical neurons from their birthplace in the germinal zones to their final destination in the cortical plate is a prerequisite for the functional assembly of microcircuits in the neocortex. Rodent and primate corticogenesis differ both quantitatively and qualitatively, particularly with respect to the generation of neurons of the supragranular layers. Marked area differences in the outer subventricular zone progenitor cell density impact the radial glia scaffold compactness which is likely to induce area differences in radial migration strategy. Here, we describe specific features of radial migration in the non-human primate, including the absence of the premigratory multipolar stage found in rodents. Ex vivo approaches in the embryonic macaque monkey visual cortex, show that migrating neurons destined for supragranular and infragranular layers exhibit significant differences in morphology and velocity. Migrating neurons destined for the supragranular layers show a more complex bipolar morphology and higher motility rates than do infragranular neurons. There are area differences in the gross morphology and membrane growth behavior of the tip of the leading process. In the subplate compartment migrating neurons destined for the supragranular layers of presumptive area 17 exhibit radial constrained trajectories and leading processes with filopodia, which contrast with the meandering trajectories and leading processes capped by lamellipodia observed in the migrating neurons destined for presumptive area 18. Together these results present evidence that migrating neurons may exhibit autonomy and in addition show marked area-specific differences. We hypothesize that the low motility and high radial trajectory of area 17 migrating neurons contribute to the unique structural features of this area.
Collapse
Affiliation(s)
- Veronique Cortay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Delphine Delaunay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Dorothée Patti
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Elodie Gautier
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Nathalie Doerflinger
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Pascale Giroud
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Kenneth Knoblauch
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Cyril Huissoud
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.,Service de Gynécologie-Obstétrique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Henry Kennedy
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.,Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| |
Collapse
|
9
|
Vasung L, Charvet CJ, Shiohama T, Gagoski B, Levman J, Takahashi E. Ex vivo fetal brain MRI: Recent advances, challenges, and future directions. Neuroimage 2019; 195:23-37. [PMID: 30905833 PMCID: PMC6617515 DOI: 10.1016/j.neuroimage.2019.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2017] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022] Open
Abstract
During early development, the fetal brain undergoes dynamic morphological changes. These changes result from neurogenic events, such as neuronal proliferation, migration, axonal elongation, retraction, and myelination. The duration and intensity of these events vary across species. Comparative assessments of these neurogenic events give us insight into evolutionary changes and the complexity of human brain development. Recent advances in magnetic resonance imaging (MRI), especially ex vivo MRI, permit characterizing and comparing fetal brain development across species. Comparative ex vivo MRI studies support the detection of species-specific differences that occur during early brain development. In this review, we provide a comprehensive overview of ex vivo MRI studies that characterize early brain development in humans, monkeys, cats, as well as rats/mice. Finally, we discuss the current advantages and limitations of ex vivo fetal brain MRI.
Collapse
Affiliation(s)
- Lana Vasung
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Christine J Charvet
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY, 14850, USA; Department of Psychology, Delaware State University, Dover, DE, 19901, USA
| | - Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA; Department of Pediatrics, Chiba University Hospital, Inohana 1-8-1, Chiba-shi, Chiba, 2608670, Japan
| | - Borjan Gagoski
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA; Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Nakagawa N, Plestant C, Yabuno-Nakagawa K, Li J, Lee J, Huang CW, Lee A, Krupa O, Adhikari A, Thompson S, Rhynes T, Arevalo V, Stein JL, Molnár Z, Badache A, Anton ES. Memo1-Mediated Tiling of Radial Glial Cells Facilitates Cerebral Cortical Development. Neuron 2019; 103:836-852.e5. [PMID: 31277925 DOI: 10.1016/j.neuron.2019.05.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2018] [Revised: 03/07/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022]
Abstract
Polarized, non-overlapping, regularly spaced, tiled organization of radial glial cells (RGCs) serves as a framework to generate and organize cortical neuronal columns, layers, and circuitry. Here, we show that mediator of cell motility 1 (Memo1) is a critical determinant of radial glial tiling during neocortical development. Memo1 deletion or knockdown leads to hyperbranching of RGC basal processes and disrupted RGC tiling, resulting in aberrant radial unit assembly and neuronal layering. Memo1 regulates microtubule (MT) stability necessary for RGC tiling. Memo1 deficiency leads to disrupted MT minus-end CAMSAP2 distribution, initiation of aberrant MT branching, and altered polarized trafficking of key basal domain proteins such as GPR56, and thus aberrant RGC tiling. These findings identify Memo1 as a mediator of RGC scaffold tiling, necessary to generate and organize neurons into functional ensembles in the developing cerebral cortex.
Collapse
Affiliation(s)
- Naoki Nakagawa
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Division of Neurogenetics, National Institute of Genetics, Mishima 411-8540, Japan; Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan.
| | - Charlotte Plestant
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Keiko Yabuno-Nakagawa
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jingjun Li
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Janice Lee
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chu-Wei Huang
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Amelia Lee
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Aditi Adhikari
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Suriya Thompson
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Tamille Rhynes
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Victoria Arevalo
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, Institut Paoli-Calmettes, Aix-Marseille Université, CNRS, 13009 Marseille, France
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Gluncic V, Moric M, Chu Y, Hanko V, Li J, Lukić IK, Lukić A, Edassery SL, Kroin JS, Persons AL, Perry P, Kelly L, Shiveley TJ, Nice K, Napier CT, Kordower JH, Tuman KJ. In utero Exposure to Anesthetics Alters Neuronal Migration Pattern in Developing Cerebral Cortex and Causes Postnatal Behavioral Deficits in Rats. Cereb Cortex 2019; 29:5285-5301. [DOI: 10.1093/cercor/bhz065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
During fetal development, cerebral cortical neurons are generated in the proliferative zone along the ventricles and then migrate to their final positions. To examine the impact of in utero exposure to anesthetics on neuronal migration, we injected pregnant rats with bromodeoxyuridine to label fetal neurons generated at embryonic Day (E) 17 and then randomized these rats to 9 different groups receiving 3 different means of anesthesia (oxygen/control, propofol, isoflurane) for 3 exposure durations (20, 50, 120 min). Histological analysis of brains from 54 pups revealed that significant number of neurons in anesthetized animals failed to acquire their correct cortical position and remained dispersed within inappropriate cortical layers and/or adjacent white matter. Behavioral testing of 86 littermates pointed to abnormalities that correspond to the aberrations in the brain areas that are specifically developing during the E17. In the second set of experiments, fetal brains exposed to isoflurane at E16 had diminished expression of the reelin and glutamic acid decarboxylase 67, proteins critical for neuronal migration. Together, these results call for cautious use of anesthetics during the neuronal migration period in pregnancy and more comprehensive investigation of neurodevelopmental consequences for the fetus and possible consequences later in life.
Collapse
Affiliation(s)
- V Gluncic
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago IL, USA
| | - M Moric
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - Y Chu
- Department of Neurological Sciences, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - V Hanko
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - J Li
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - I K Lukić
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - A Lukić
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - S L Edassery
- Department of Pharmacology, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - J S Kroin
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - A L Persons
- Department of Pharmacology, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
- The Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | - P Perry
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - L Kelly
- Department of Neurological Sciences, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - T J Shiveley
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - K Nice
- Department of Neurological Sciences, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - C T Napier
- Department of Pharmacology, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
- The Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - J H Kordower
- Department of Neurological Sciences, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - K J Tuman
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
12
|
Barbas H, Wang J, Joyce MKP, García-Cabezas MÁ. Pathway mechanism for excitatory and inhibitory control in working memory. J Neurophysiol 2018; 120:2659-2678. [PMID: 30256740 DOI: 10.1152/jn.00936.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
Humans engage in many daily activities that rely on working memory, the ability to hold and sequence information temporarily to accomplish a task. We focus on the process of working memory, based on circuit mechanisms for attending to relevant signals and suppressing irrelevant stimuli. We discuss that connections critically depend on the systematic variation in laminar structure across all cortical systems. Laminar structure is used to group areas into types regardless of their placement in the cortex, ranging from low-type agranular areas that lack layer IV to high-type areas that have six well-delineated layers. Connections vary in laminar distribution and strength based on the difference in type between linked areas, according to the "structural model" (Barbas H, Rempel-Clower N. Cereb Cortex 7: 635-646, 1997). The many possible pathways thus vary systematically by laminar distribution and strength, and they interface with excitatory neurons to select relevant stimuli and with functionally distinct inhibitory neurons that suppress activity at the site of termination. Using prefrontal pathways, we discuss how systematic architectonic variation gives rise to diverse pathways that can be recruited, along with amygdalar and hippocampal pathways that provide sensory, affective, and contextual information. The prefrontal cortex is also connected with thalamic nuclei that receive the output of the basal ganglia and cerebellum, which may facilitate fast sequencing of information. The complement of connections and their interface with distinct inhibitory neurons allows dynamic recruitment of areas and shifts in cortical rhythms to meet rapidly changing demands of sequential components of working memory tasks.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts.,Graduate Program in Neuroscience, Boston University , Boston, Massachusetts
| | - Jingyi Wang
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts
| | - Mary Kate P Joyce
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Graduate Program in Neuroscience, Boston University , Boston, Massachusetts
| | - Miguel Ángel García-Cabezas
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts
| |
Collapse
|
13
|
Son AI, Opfermann JD, McCue C, Ziobro J, Abrahams JH, Jones K, Morton PD, Ishii S, Oluigbo C, Krieger A, Liu JS, Hashimoto-Torii K, Torii M. An Implantable Micro-Caged Device for Direct Local Delivery of Agents. Sci Rep 2017; 7:17624. [PMID: 29247175 PMCID: PMC5732160 DOI: 10.1038/s41598-017-17912-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2017] [Accepted: 12/04/2017] [Indexed: 11/08/2022] Open
Abstract
Local and controlled delivery of therapeutic agents directly into focally afflicted tissues is the ideal for the treatment of diseases that require direct interventions. However, current options are obtrusive, difficult to implement, and limited in their scope of utilization; the optimal solution requires a method that may be optimized for available therapies and is designed for exact delivery. To address these needs, we propose the Biocage, a customizable implantable local drug delivery platform. The device is a needle-sized porous container capable of encasing therapeutic molecules and matrices of interest to be eluted into the region of interest over time. The Biocage was fabricated using the Nanoscribe Photonic Professional GT 3D laser lithography system, a two-photon polymerization (2PP) 3D printer capable of micron-level precision on a millimeter scale. We demonstrate the build consistency and features of the fabricated device; its ability to release molecules; and a method for its accurate, stable delivery in mouse brain tissue. The Biocage provides a powerful tool for customizable and precise delivery of therapeutic agents into target tissues.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA
| | - Justin D Opfermann
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC, 20010, USA
| | - Caroline McCue
- Terrapin Works, School of Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Julie Ziobro
- Department of Neurology, Children's National Medical Center, Washington, DC, 20010, USA
| | - John H Abrahams
- Nanocenter FabLab, University of Maryland, College Park, MD, 20742, USA
| | - Katherine Jones
- Terrapin Works, School of Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Seiji Ishii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, 20010, USA
| | - Axel Krieger
- Department of Mechanical Engineering, A. James Clark School of Engineering, University of Maryland, College Mark, MD, 20742, USA
| | - Judy S Liu
- Department of Neurology, Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA
- Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA.
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA.
- Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
14
|
Opris I, Chang S, Noga BR. What Is the Evidence for Inter-laminar Integration in a Prefrontal Cortical Minicolumn? Front Neuroanat 2017; 11:116. [PMID: 29311848 PMCID: PMC5735117 DOI: 10.3389/fnana.2017.00116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022] Open
Abstract
The objective of this perspective article is to examine columnar inter-laminar integration during the executive control of behavior. The integration hypothesis posits that perceptual and behavioral signals are integrated within the prefrontal cortical inter-laminar microcircuits. Inter-laminar minicolumnar activity previously recorded from the dorsolateral prefrontal cortex (dlPFC) of nonhuman primates, trained in a visual delay match-to-sample (DMS) task, was re-assessed from an integrative perspective. Biomorphic multielectrode arrays (MEAs) played a unique role in the in vivo recording of columnar cell firing in the dlPFC layers 2/3 and 5/6. Several integrative aspects stem from these experiments: 1. Functional integration of perceptual and behavioral signals across cortical layers during executive control. The integrative effect of dlPFC minicolumns was shown by: (i) increased correlated firing on correct vs. error trials; (ii) decreased correlated firing when the number of non-matching images increased; and (iii) similar spatial firing preference across cortical-striatal cells during spatial-trials, and less on object-trials. 2. Causal relations to integration of cognitive signals by the minicolumnar turbo-engines. The inter-laminar integration between the perceptual and executive circuits was facilitated by stimulating the infra-granular layers with firing patterns obtained from supra-granular layers that enhanced spatial preference of percent correct performance on spatial trials. 3. Integration across hierarchical levels of the brain. The integration of intention signals (visual spatial, direction) with movement preparation (timing, velocity) in striatum and with the motor command and posture in midbrain is also discussed. These findings provide evidence for inter-laminar integration of executive control signals within brain's prefrontal cortical microcircuits.
Collapse
Affiliation(s)
- Ioan Opris
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephano Chang
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Brian R. Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
15
|
In Utero Exposure to Valproic Acid Induces Neocortical Dysgenesis via Dysregulation of Neural Progenitor Cell Proliferation/Differentiation. J Neurosci 2017; 36:10908-10919. [PMID: 27798144 DOI: 10.1523/jneurosci.0229-16.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2016] [Accepted: 09/12/2016] [Indexed: 11/21/2022] Open
Abstract
Valproic acid (VPA), a widely used antiepileptic drug, is an inhibitor of histone deacetylases, which epigenetically modify cell proliferation/differentiation in developing tissues. A series of recent clinical studies in humans reported that VPA exposure in utero impaired histogenesis and the development of the central nervous system, leading to increased risks of congenital malformation and the impairment of higher brain functions in children. In the present study conducted in mice, we report that VPA exposure in utero (1) increases the amount of acetylated histone proteins, (2) alters the expression of G1-phase regulatory proteins, (3) inhibits the cell cycle exit of neural progenitor cells during the early stage of neocortical histogenesis, and (4) increases the production of projection neurons distributed in the superficial neocortical layers in embryonic brains. Together, our findings show that VPA exposure in utero alters proliferation/differentiation characteristics of neural progenitor cells and hence leads to the neocortical dysgenesis. SIGNIFICANCE STATEMENT This study provides new insight into the mechanisms of how an altered in utero environment, such as drug exposure, affects the generation of neurons prenatally. The antiepileptic drug valproic acid (VPA) is a good target molecule as in utero exposure to VPA has been repeatedly reported to increase the risk of nervous system malformations and to impair higher brain functions in children. We show that VPA decreases the probability of differentiation of the neural progenitor cells (NPCs) in mice, resulting in an abnormally increased number of projection neurons in the superficial layers of the neocortex. Further, we suggest that histone deacetylase inhibition by VPA may be involved in the dysregulation of proliferation/differentiation characteristics of NPCs.
Collapse
|
16
|
Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ, Knoblich JA. Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 2017; 35:659-666. [PMID: 28562594 DOI: 10.1038/nbt.3906] [Citation(s) in RCA: 518] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2017] [Accepted: 05/18/2017] [Indexed: 01/13/2023]
Abstract
Three-dimensional cell culture models have either relied on the self-organizing properties of mammalian cells or used bioengineered constructs to arrange cells in an organ-like configuration. While self-organizing organoids excel at recapitulating early developmental events, bioengineered constructs reproducibly generate desired tissue architectures. Here, we combine these two approaches to reproducibly generate human forebrain tissue while maintaining its self-organizing capacity. We use poly(lactide-co-glycolide) copolymer (PLGA) fiber microfilaments as a floating scaffold to generate elongated embryoid bodies. Microfilament-engineered cerebral organoids (enCORs) display enhanced neuroectoderm formation and improved cortical development. Furthermore, reconstitution of the basement membrane leads to characteristic cortical tissue architecture, including formation of a polarized cortical plate and radial units. Thus, enCORs model the distinctive radial organization of the cerebral cortex and allow for the study of neuronal migration. Our data demonstrate that combining 3D cell culture with bioengineering can increase reproducibility and improve tissue architecture.
Collapse
Affiliation(s)
- Madeline A Lancaster
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.,MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nina S Corsini
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Simone Wolfinger
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - E Hilary Gustafson
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Alex W Phillips
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Thomas R Burkard
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.,IMP-Institute of Molecular Pathology, Vienna, Austria
| | - Tomoki Otani
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Frederick J Livesey
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| |
Collapse
|
17
|
Skorput AGJ, Yeh HH. Chronic Gestational Exposure to Ethanol Leads to Enduring Aberrances in Cortical Form and Function in the Medial Prefrontal Cortex. Alcohol Clin Exp Res 2016; 40:1479-88. [PMID: 27242215 DOI: 10.1111/acer.13107] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2015] [Accepted: 04/23/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exposure to ethanol (EtOH) in utero alters the disposition of tangentially migrating GABAergic interneurons in the fetal brain. The medial ganglionic eminence (MGE) gives rise to a large portion of cortical GABAergic interneurons, including the parvalbumin-expressing interneurons that shape and contribute to inhibitory/excitatory (I/E) balance of the intracortical circuit. Here, we investigated in the mouse medial prefrontal cortex (mPFC) the hypothesis that low levels of maternal EtOH consumption from closure of the neural tube embryonic day (E) 9.5 until birth result in an enduring interneuronopathy. METHODS Pregnant mice were subjected to a 2% w/w EtOH consumption regimen starting at neural tube closure and ending at parturition. Neurogenesis in the MGE was assessed by 5-bromo-2-deoxyuridine (BrdU) immunofluorescence at E12.5. The count and distribution of parvalbumin-expressing interneurons were determined in adult animals, and patch clamp electrophysiology was performed to determine GABAergic function and I/E balance. Open-field behavior in adult mice was assessed to determine whether the EtOH-exposed cohort displayed a lasting alteration in exploratory behavior. RESULTS In embryos exposed to EtOH in utero, we found increased BrdU labeling in the MGE, pointing to increased neurogenesis. Adult mice prenatally exposed to EtOH were hyperactive, and this was associated with an increase in parvalbumin-expressing GABAergic interneurons in the mPFC. In addition, prenatal EtOH exposure altered the balance between spontaneous inhibitory and excitatory synaptic input and attenuated GABAergic tone in layer V mPFC pyramidal neurons in juvenile mice. CONCLUSIONS These findings underscore that altered migration of GABAergic interneurons contributes to the EtOH-induced aberration of cortical development and that these effects persist into adulthood as altered cortical form and function.
Collapse
Affiliation(s)
- Alexander G J Skorput
- Department of Neuroscience, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota
| | - Hermes H Yeh
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
18
|
Rafati AH, Safavimanesh F, Dorph-Petersen KA, Rasmussen JG, Møller J, Nyengaard JR. Detection and spatial characterization of minicolumnarity in the human cerebral cortex. J Microsc 2016; 261:115-26. [PMID: 26575198 DOI: 10.1111/jmi.12321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2015] [Accepted: 08/01/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Spatial characterization of vertical organization of neurons in human cerebral cortex, cortical columnarity or minicolumns, and its possible association with various psychiatric and neurological diseases has been investigated for many years. NEW METHOD In this study, we obtained 3D coordinates of disector sampled cells from layer III of Brodmann area 4 of the human cerebral cortex using light microscopy and 140-μm-thick glycolmethacrylate sections. A new analytical tool called cylindrical K-function was applied for spatial point pattern analysis of 3D datasets to see whether there is a spatially organized columnar structure. In order to demonstrate the behaviour of the cylindrical K-function, the result from brain tissues was compared with two models: A homogeneous Poisson process exhibiting complete spatial randomness, and a Poisson line cluster point process. The latter is a point process model in 3D space, which exhibits spatial structure of points similar to minicolumns. RESULTS The data show in three out of four samples nonrandom patterns in the 3D neuronal positions with the direction of minicolumns perpendicular to the pial surface of the brain - without a priori assuming the existence of minicolumns. COMPARISON WITH EXISTING METHODS Studies on columnarity are difficult and have mainly been based on two-dimensional images analysis of thin sections of the cerebral cortex with the a priori assumption that minicolumns existed. CONCLUSIONS A clear difference from complete spatial randomness in the data could be detected with the new tool, the cylindrical K-function, although classical functional summary statistics are less useful in this connection.
Collapse
Affiliation(s)
- A H Rafati
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - F Safavimanesh
- Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Aarhus, Denmark.,Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - K-A Dorph-Petersen
- Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark.,Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - J G Rasmussen
- Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Aarhus, Denmark.,Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - J Møller
- Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Aarhus, Denmark.,Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - J R Nyengaard
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
A. Moss R. A Theory on the Singular Function of the Hippocampus: Facilitating the Binding of New Circuits of Cortical Columns. AIMS Neurosci 2016. [DOI: 10.3934/neuroscience.2016.3.264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
|
20
|
Hutsler JJ, Casanova MF. Review: Cortical construction in autism spectrum disorder: columns, connectivity and the subplate. Neuropathol Appl Neurobiol 2015; 42:115-34. [PMID: 25630827 DOI: 10.1111/nan.12227] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2014] [Accepted: 01/16/2015] [Indexed: 01/28/2023]
Abstract
The cerebral cortex undergoes protracted maturation during human development and exemplifies how biology and environment are inextricably intertwined in the construction of complex neural circuits. Autism spectrum disorders are characterized by a number of pathological changes arising from this developmental process. These include: (i) alterations to columnar structure that have significant implications for the organization of cortical circuits and connectivity; (ii) alterations to synaptic spines on individual cortical units that may underlie specific types of connectional changes; and (iii) alterations within the cortical subplate, a region that plays a role in proper cortical development and in regulating interregional communication in the mature brain. Although the cerebral cortex is not the only structure affected in the disorder, it is a fundamental contributor to the behaviours that characterize autism. These alterations to cortical circuitry likely underlie the behavioural phenotype in autism and contribute to the unique pattern of deficits and strengths that characterize cognitive functioning. Recent findings within the cortical subplate may indicate that alterations to cortical construction begin prenatally, before activity-dependent connections are established, and are in need of further study. A better understanding of cortical development in autism spectrum disorders will draw bridges between the microanatomical computational circuitry and the atypical behaviours that arise when that circuitry is modified. In addition, it will allow us to better exploit the constructional plasticity within the brain to design more targeted interventions that better manage atypical cortical construction and that can be applied very early in postnatal life.
Collapse
Affiliation(s)
- Jeffrey J Hutsler
- Department of Psychology, Program in Neuroscience, University of Nevada, Reno, USA
| | - Manuel F Casanova
- Department of Psychiatry and Behavioral Science, University of Louisville School of Medicine, Louisville, USA
| |
Collapse
|
21
|
CORTECON: a temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells. Neuron 2014; 83:51-68. [PMID: 24991954 DOI: 10.1016/j.neuron.2014.05.013] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/06/2014] [Indexed: 01/24/2023]
Abstract
Many neurological and psychiatric disorders affect the cerebral cortex, and a clearer understanding of the molecular processes underlying human corticogenesis will provide greater insight into such pathologies. To date, knowledge of gene expression changes accompanying corticogenesis is largely based on murine data. Here we present a searchable, comprehensive, temporal gene expression data set encompassing cerebral cortical development from human embryonic stem cells (hESCs). Using a modified differentiation protocol that yields neurons suggestive of prefrontal cortex, we identified sets of genes and long noncoding RNAs that significantly change during corticogenesis and those enriched for disease-associations. Numerous alternatively spliced genes with varying temporal patterns of expression are revealed, including TGIF1, involved in holoprosencephaly, and MARK1, involved in autism. We have created a database (http://cortecon.neuralsci.org/) that provides online, query-based access to changes in RNA expression and alternatively spliced transcripts during human cortical development.
Collapse
|
22
|
Vidu R, Rahman M, Mahmoudi M, Enachescu M, Poteca TD, Opris I. Nanostructures: a platform for brain repair and augmentation. Front Syst Neurosci 2014; 8:91. [PMID: 24999319 PMCID: PMC4064704 DOI: 10.3389/fnsys.2014.00091] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2014] [Accepted: 04/30/2014] [Indexed: 01/04/2023] Open
Abstract
Nanoscale structures have been at the core of research efforts dealing with integration of nanotechnology into novel electronic devices for the last decade. Because the size of nanomaterials is of the same order of magnitude as biomolecules, these materials are valuable tools for nanoscale manipulation in a broad range of neurobiological systems. For instance, the unique electrical and optical properties of nanowires, nanotubes, and nanocables with vertical orientation, assembled in nanoscale arrays, have been used in many device applications such as sensors that hold the potential to augment brain functions. However, the challenge in creating nanowires/nanotubes or nanocables array-based sensors lies in making individual electrical connections fitting both the features of the brain and of the nanostructures. This review discusses two of the most important applications of nanostructures in neuroscience. First, the current approaches to create nanowires and nanocable structures are reviewed to critically evaluate their potential for developing unique nanostructure based sensors to improve recording and device performance to reduce noise and the detrimental effect of the interface on the tissue. Second, the implementation of nanomaterials in neurobiological and medical applications will be considered from the brain augmentation perspective. Novel applications for diagnosis and treatment of brain diseases such as multiple sclerosis, meningitis, stroke, epilepsy, Alzheimer's disease, schizophrenia, and autism will be considered. Because the blood brain barrier (BBB) has a defensive mechanism in preventing nanomaterials arrival to the brain, various strategies to help them to pass through the BBB will be discussed. Finally, the implementation of nanomaterials in neurobiological applications is addressed from the brain repair/augmentation perspective. These nanostructures at the interface between nanotechnology and neuroscience will play a pivotal role not only in addressing the multitude of brain disorders but also to repair or augment brain functions.
Collapse
Affiliation(s)
- Ruxandra Vidu
- Department of Chemical Engineering and Materials Science, University of California DavisDavis, CA, USA
| | - Masoud Rahman
- Department of Chemical Engineering and Materials Science, University of California DavisDavis, CA, USA
| | - Morteza Mahmoudi
- Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical SciencesTehran, Iran
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, University “Politehnica” BucharestBucharest, Romania
- Academy of Romanian ScientistsBucharest, Romania
| | - Teodor D. Poteca
- Carol Davila University of Medicine and PharmacyBucharest, Romania
| | - Ioan Opris
- Wake Forest University Health SciencesWinston-Salem, NC, USA
| |
Collapse
|
23
|
|
24
|
Ciceri G, Dehorter N. [Organization of interneurons lineages in the cerebral cortex]. Med Sci (Paris) 2014; 30:144-6. [PMID: 24572111 DOI: 10.1051/medsci/20143002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gabriele Ciceri
- Instituto de Neurociencias de Alicante, CSIC-Universidad Miguel Hernández, Campus de Sant Joan, 03550 Sant Joan d'Alacant, Espagne
| | - Nathalie Dehorter
- Instituto de Neurociencias de Alicante, CSIC-Universidad Miguel Hernández, Campus de Sant Joan, 03550 Sant Joan d'Alacant, Espagne
| |
Collapse
|
25
|
Opris I, Casanova MF. Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. ACTA ACUST UNITED AC 2014; 137:1863-75. [PMID: 24531625 DOI: 10.1093/brain/awt359] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
The prefrontal cortex of the primate brain has a modular architecture based on the aggregation of neurons in minicolumnar arrangements having afferent and efferent connections distributed across many brain regions to represent, select and/or maintain behavioural goals and executive commands. Prefrontal cortical microcircuits are assumed to play a key role in the perception to action cycle that integrates relevant information about environment, and then selects and enacts behavioural responses. Thus, neurons within the interlaminar microcircuits participate in various functional states requiring the integration of signals across cortical layers and the selection of executive variables. Recent research suggests that executive abilities emerge from cortico-cortical interactions between interlaminar prefrontal cortical microcircuits, whereas their disruption is involved in a broad spectrum of neurologic and psychiatric disorders such as autism, schizophrenia, Alzheimer's and drug addiction. The focus of this review is on the structural, functional and pathological approaches involving cortical minicolumns. Based on recent technological progress it has been demonstrated that microstimulation of infragranular cortical layers with patterns of microcurrents derived from supragranular layers led to an increase in cognitive performance. This suggests that interlaminar prefrontal cortical microcircuits are playing a causal role in improving cognitive performance. An important reason for the new interest in cortical modularity comes from both the impressive progress in understanding anatomical, physiological and pathological facets of cortical microcircuits and the promise of neural prosthetics for patients with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ioan Opris
- 1 Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Manuel F Casanova
- 2 Department of Psychiatry and Behavioural Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
26
|
Opris I. Inter-laminar microcircuits across neocortex: repair and augmentation. Front Syst Neurosci 2013; 7:80. [PMID: 24312019 PMCID: PMC3832795 DOI: 10.3389/fnsys.2013.00080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2013] [Accepted: 10/19/2013] [Indexed: 02/01/2023] Open
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| |
Collapse
|
27
|
Lineage-specific laminar organization of cortical GABAergic interneurons. Nat Neurosci 2013; 16:1199-210. [PMID: 23933753 DOI: 10.1038/nn.3485] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2013] [Accepted: 06/25/2013] [Indexed: 12/14/2022]
Abstract
In the cerebral cortex, pyramidal cells and interneurons are generated in distant germinal zones, and so the mechanisms that control their precise assembly into specific microcircuits remain an enigma. Here we report that cortical interneurons labeled at the clonal level do not distribute randomly but rather have a strong tendency to cluster in the mouse neocortex. This behavior is common to different classes of interneurons, independently of their origin. Interneuron clusters are typically contained within one or two adjacent cortical layers, are largely formed by isochronically generated neurons and populate specific layers, as revealed by unbiased hierarchical clustering methods. Our results suggest that different progenitor cells give rise to interneurons populating infra- and supragranular cortical layers, which challenges current views of cortical neurogenesis. Thus, specific lineages of cortical interneurons seem to be produced to primarily mirror the laminar structure of the cerebral cortex, rather than its columnar organization.
Collapse
|
28
|
Catania KC, Catania EH, Sawyer EK, Leitch DB. Barrelettes without barrels in the American water shrew. PLoS One 2013; 8:e65975. [PMID: 23755296 PMCID: PMC3670899 DOI: 10.1371/journal.pone.0065975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2013] [Accepted: 05/04/2013] [Indexed: 11/19/2022] Open
Abstract
Water shrews (Sorex palustris) depend heavily on their elaborate whiskers to navigate their environment and locate prey. They have small eyes and ears with correspondingly small optic and auditory nerves. Previous investigations have shown that water shrew neocortex is dominated by large representations of the whiskers in primary and secondary somatosensory cortex (S1 and S2). Flattened sections of juvenile cortex processed for cytochrome oxidase revealed clear borders of the whisker pad representation in S1, but no cortical barrels. We were therefore surprised to discover prominent barrelettes in brainstem of juvenile water shrews in the present investigation. These distinctive modules were found in the principal trigeminal nucleus (PrV), and in two of the three spinal trigeminal subnuclei (interpolaris – SpVi and caudalis – SpVc). Analysis of the shrew's whisker pad revealed the likely relationship between whiskers and barrelettes. Barrelettes persisted in adult water shrew PrV, but barrels were also absent from adult cortex. Thus in contrast to mice and rats, which have obvious barrels in primary somatosensory cortex and less clear barrelettes in the principal nucleus, water shrews have clear barrelettes in the brainstem and no barrels in the neocortex. These results highlight the diverse ways that similar mechanoreceptors can be represented in the central nervous systems of different species.
Collapse
Affiliation(s)
- Kenneth C Catania
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.
| | | | | | | |
Collapse
|
29
|
Hutsler JJ, Avino TA. Sigmoid fits to locate and characterize cortical boundaries in human cerebral cortex. J Neurosci Methods 2012; 212:242-6. [PMID: 23137653 DOI: 10.1016/j.jneumeth.2012.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Quantitative evaluation of neuropathology within the cortex often requires a significant investigator time commitment. Here we elaborate on a method of quantifying the distinctiveness of the gray-white matter boundary using function fitting methods (Avino and Hutsler, 2010) and demonstrate that it can also be adapted to reliably identify the location of the gray matter/white matter (GM-WM) boundary in microscopic images, even when that boundary is indistinct. Multiple images of the gray-white matter boundary were acquired from sixteen subjects. Density profiles across the cortical layers were acquired and sigmoid functions were iteratively fit to the density profiles until a best fit was found. The slope of the resulting sigmoid was used to describe both the position and distinctiveness of the GM-WM boundary. Subsequently, two raters laid cortical boundaries on the same set of images and agreement between the raters, as well as agreement between each rater and the transverse-based boundaries, was assessed. Computer-generated boundaries showed reliably higher agreement with each individual rater, relative to the agreement between individual raters. Error between the raters and the transverse-based boundaries was associated with those images where the boundary was less distinct as assessed by the sigmoid slopes. These findings suggest that transverse-based boundaries are superior to user-generated boundaries. Furthermore, these findings suggest that rater-based boundary definitions in both neurotypical and pathological cases may become unreliable as the number of cell profiles found in the subplate region increases, as is the case in both autism and schizophrenia.
Collapse
Affiliation(s)
- Jeffrey J Hutsler
- Psychology Department, Program in Neuroscience, University of Nevada, Reno, NV 89557, USA.
| | | |
Collapse
|
30
|
Yang JW, An S, Sun JJ, Reyes-Puerta V, Kindler J, Berger T, Kilb W, Luhmann HJ. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. ACTA ACUST UNITED AC 2012; 23:1299-316. [PMID: 22593243 DOI: 10.1093/cercor/bhs103] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Neocortical areas are organized in columns, which form the basic structural and functional modules of intracortical information processing. Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex of newborn rats in vivo, we found that spontaneously occurring and whisker stimulation-induced gamma bursts followed by longer lasting spindle bursts were topographically organized in functional cortical columns already at the day of birth. Gamma bursts synchronized a cortical network of 300-400 µm in diameter and were coherent with gamma activity recorded simultaneously in the thalamic ventral posterior medial (VPM) nucleus. Cortical gamma bursts could be elicited by focal electrical stimulation of the VPM. Whisker stimulation-induced spindle and gamma bursts and the majority of spontaneously occurring events were profoundly reduced by the local inactivation of the VPM, indicating that the thalamus is important to generate these activity patterns. Furthermore, inactivation of the barrel cortex with lidocaine reduced the gamma activity in the thalamus, suggesting that a cortico-thalamic feedback loop modulates this early thalamic network activity.
Collapse
Affiliation(s)
- Jenq-Wei Yang
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A. Proc Natl Acad Sci U S A 2011; 108:16807-12. [PMID: 21949377 DOI: 10.1073/pnas.1113648108] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Although physiological data on microcircuits involving a few inhibitory neurons in the mammalian cerebral cortex are available, data on the quantitative relation between inhibition and excitation in cortical circuits involving thousands of neurons are largely missing. Because the distribution of neurons is very inhomogeneous in the cerebral cortex, it is critical to map all neurons in a given volume rather than to rely on sparse sampling methods. Here, we report the comprehensive mapping of interneurons (INs) in cortical columns of rat somatosensory cortex, immunolabeled for neuron-specific nuclear protein and glutamate decarboxylase. We found that a column contains ~2,200 INs (11.5% of ~19,000 neurons), almost a factor of 2 less than previously estimated. The density of GABAergic neurons was inhomogeneous between layers, with peaks in the upper third of L2/3 and in L5A. IN density therefore defines a distinct layer 2 in the sensory neocortex. In addition, immunohistochemical markers of IN subtypes were layer-specific. The "hot zones" of inhibition in L2 and L5A match the reported low stimulus-evoked spiking rates of excitatory neurons in these layers, suggesting that these inhibitory hot zones substantially suppress activity in the neocortex.
Collapse
|
32
|
Belgard T, Marques A, Oliver P, Abaan HO, Sirey T, Hoerder-Suabedissen A, García-Moreno F, Molnár Z, Margulies E, Ponting C. A transcriptomic atlas of mouse neocortical layers. Neuron 2011; 71:605-16. [PMID: 21867878 PMCID: PMC3163272 DOI: 10.1016/j.neuron.2011.06.039] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 06/20/2011] [Indexed: 01/05/2023]
Abstract
In the mammalian cortex, neurons and glia form a patterned structure across six layers whose complex cytoarchitectonic arrangement is likely to contribute to cognition. We sequenced transcriptomes from layers 1-6b of different areas (primary and secondary) of the adult (postnatal day 56) mouse somatosensory cortex to understand the transcriptional levels and functional repertoires of coding and noncoding loci for cells constituting these layers. A total of 5,835 protein-coding genes and 66 noncoding RNA loci are differentially expressed ("patterned") across the layers, on the basis of a machine-learning model (naive Bayes) approach. Layers 2-6b are each associated with specific functional and disease annotations that provide insights into their biological roles. This new resource (http://genserv.anat.ox.ac.uk/layers) greatly extends currently available resources, such as the Allen Mouse Brain Atlas and microarray data sets, by providing quantitative expression levels, by being genome-wide, by including novel loci, and by identifying candidate alternatively spliced transcripts that are differentially expressed across layers.
Collapse
Affiliation(s)
- T. Grant Belgard
- MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9400, USA
| | - Ana C. Marques
- MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK
| | - Peter L. Oliver
- MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK
| | - Hatice Ozel Abaan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9400, USA
| | - Tamara M. Sirey
- MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | | - Fernando García-Moreno
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Elliott H. Margulies
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9400, USA
| | - Chris P. Ponting
- MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
33
|
Collins CE. Variability in neuron densities across the cortical sheet in primates. BRAIN, BEHAVIOR AND EVOLUTION 2011; 78:37-50. [PMID: 21691046 DOI: 10.1159/000327319] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
The function of any area of the brain is a product of its unique population of neurons and nonneurons and their local and long-range connectional architecture. At the present time, we have inadequate data about numbers of neurons and the distribution patterns of neurons in the cortex and other parts of the brain. Numbers and densities of neurons and nonneurons provide the foundation for the assembly of a cortical and whole-brain neuronal network, yet the majority of studies reporting neuron densities for the primate cortex estimate the number of neurons in the cortex as a whole or in specific areas for comparisons between treatment groups or species. While this is valuable information for studies of scaling or comparative studies of specific pathways or functions, a more detailed examination of cell and neuron number distribution across the entire cortical expanse is needed. Two studies reviewed here use the isotropic fractionator method for the determination of cell and neuron numbers to investigate the distribution of cells and neurons across the entire cortical sheet of 4 primate species, taking into consideration cortical areal boundaries. Neuron and total cell numbers were found to vary as much as 5 times between different functional areas across the cortical sheet. Numbers were also variable across representational zones within cortical areas like V1 and S1. The overall distribution of cells and neurons appears to be conserved across the species examined, suggesting a common plan for cell distribution in primates, with more areas of high neuron density in macaques and baboons compared to the smaller and less differentiated cortex of prosimian galagos and the New World owl monkey.
Collapse
|