1
|
Hapakova L, Necpal J, Kosutzka Z. The antisaccadic paradigm: A complementary neuropsychological tool in basal ganglia disorders. Cortex 2024; 178:116-140. [PMID: 38991475 DOI: 10.1016/j.cortex.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/20/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
This review explores the role of the antisaccadic task in understanding inhibitory mechanisms in basal ganglia disorders. It conducts a comparative analysis of saccadic profiles in conditions such as Parkinson's disease, Tourette syndrome, obsessive-compulsive disorder, Huntington's disease, and dystonia, revealing distinct patterns and proposing mechanisms for impaired performance. The primary focus is on two inhibitory mechanisms: global, pre-emptive inhibition responsible for suppressing prepotent responses, and slower, selective response inhibition. The antisaccadic task demonstrates practicality in clinical applications, aiding in differential diagnoses, treatment monitoring and reflecting gait control. To further enhance its differential diagnostic value, future directions should address issues such as the standardization of eye-tracking protocol and the integration of eye-tracking data with other disease indicators in a comprehensive dataset.
Collapse
Affiliation(s)
- Lenka Hapakova
- 2nd Department of Neurology, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia.
| | - Jan Necpal
- Neurology Department, Hospital Zvolen, a. s., Zvolen, Slovakia.
| | - Zuzana Kosutzka
- 2nd Department of Neurology, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia.
| |
Collapse
|
2
|
Obeso I, Loayza FR, González-Redondo R, Villagra F, Luis E, Jahanshahi M, Obeso JA, Pastor MA. The causal role of the subthalamic nucleus in the inhibitory network. Ann N Y Acad Sci 2024; 1538:117-128. [PMID: 39116019 DOI: 10.1111/nyas.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The neural network mediating successful response inhibition mainly includes right hemisphere activation of the pre-supplementary motor area, inferior frontal gyrus (IFG), subthalamic nucleus (STN), and caudate nucleus. However, the causal role of these regions in the inhibitory network is undefined. Five patients with Parkinson's disease were assessed prior to and after therapeutic thermal ablation of the right STN in two separate functional magnetic resonance imaging (fMRI) sessions while performing a stop-signal task. Initiation times were faster but motor inhibition with the left hand (contralateral to the lesion) was significantly impaired as evident in prolonged stop-signal reaction times. Reduced inhibition after right subthalamotomy was associated (during successful inhibition) with the recruitment of basal ganglia regions outside the established inhibitory network. They included the putamen and caudate together with the anterior cingulate cortex and IFG of the left hemisphere. Subsequent network connectivity analysis (with the seed over the nonlesioned left STN) revealed a new inhibitory network after right subthalamotomies. Our results highlight the causal role of the right STN in the neural network for motor inhibition and the possible basal ganglia mechanisms for compensation upon losing a key node of the inhibition network.
Collapse
Affiliation(s)
| | - Francis R Loayza
- Neuroimaging and BioEngineering Laboratory, Faculty of Mechanical Engineering, Polytechnic University (ESPOL), Guayaquil, Ecuador
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | - Federico Villagra
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Elkin Luis
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Marjan Jahanshahi
- Cognitive-Motor Neuroscience Group, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology & The National Hospital for Neurology and Neurosurgery, London, UK
| | - José A Obeso
- CIBERNED, Instituto Carlos III, Madrid, Spain
- HM-CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain
| | - Maria A Pastor
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
3
|
Hendriks M, Vinke S, Berlot R, Benedičič M, Jahansahi M, Trošt M, Georgiev D. In Parkinson's disease dopaminergic medication and deep brain stimulation of the subthalamic nucleus increase motor, but not reflection and cognitive impulsivity. Front Neurosci 2024; 18:1378614. [PMID: 39035780 PMCID: PMC11258995 DOI: 10.3389/fnins.2024.1378614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024] Open
Abstract
Background Parkinson's disease is associated with increased impulsivity, which can be divided into several domains: motor (consisting of proactive and reactive subdomains), reflection, and cognitive impulsivity. Evidence suggests that both dopaminergic medication and subthalamic nucleus deep brain stimulation can affect impulsivity. Therefore, we set out to investigate the effects of dopaminergic medication and subthalamic nucleus deep brain stimulation on motor, reflection, and cognitive impulsivity in Parkinson's disease patients. Methods Twenty Parkinson's disease patients who underwent subthalamic nucleus deep brain stimulation were tested ON and OFF dopaminergic medication and ON and OFF subthalamic nucleus deep brain stimulation. They performed three different impulsivity tasks: the AX continuous performance task (AX-CPT) to test for motor impulsivity, the Beads task for reflection impulsivity, and the Delay discounting task for cognitive impulsivity. Results The combination of subthalamic nucleus deep brain stimulation and dopaminergic medication led to an increase in motor impulsivity (p = 0.036), both proactive (p = 0.045) and reactive (p = 0.006). There was no effect of either dopaminergic medication or subthalamic nucleus deep brain stimulation on reflection and cognitive impulsivity. Conclusion The combination of dopaminergic medication and subthalamic nucleus deep brain stimulation leads to increased motor, but not cognitive or reflection, impulsivity in patients with Parkinson's disease. Both proactive and reactive motor impulsivity were impaired by the combination of dopaminergic medication and subthalamic nucleus deep brain stimulation.
Collapse
Affiliation(s)
- Martijn Hendriks
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurosurgery, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Saman Vinke
- Department of Neurosurgery, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Rok Berlot
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mitja Benedičič
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marjan Jahansahi
- Department Clinical and Motor Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Maja Trošt
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Battaglia S, Nazzi C, Di Fazio C, Borgomaneri S. The role of pre-supplementary motor cortex in action control with emotional stimuli: A repetitive transcranial magnetic stimulation study. Ann N Y Acad Sci 2024; 1536:151-166. [PMID: 38751225 DOI: 10.1111/nyas.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Swiftly halting ongoing motor actions is essential to react to unforeseen and potentially perilous circumstances. However, the neural bases subtending the complex interplay between emotions and motor control have been scarcely investigated. Here, we used an emotional stop signal task (SST) to investigate whether specific neural circuits engaged by action suppression are differently modulated by emotional signals with respect to neutral ones. Participants performed an SST before and after the administration of one session of repetitive transcranial magnetic stimulation (rTMS) over the pre-supplementary motor cortex (pre-SMA), the right inferior frontal gyrus (rIFG), and the left primary motor cortex (lM1). Results show that rTMS over the pre-SMA improved the ability to inhibit prepotent action (i.e., better action control) when emotional stimuli were presented. In contrast, action control in a neutral context was fostered by rTMS over the rIFG. No changes were observed after lM1 stimulation. Intriguingly, individuals with higher impulsivity traits exhibited enhanced motor control when facing neutral stimuli following rIFG stimulation. These results further our understanding of the interplay between emotions and motor functions, shedding light on the selective modulation of neural pathways underpinning these processes.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Claudio Nazzi
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Sara Borgomaneri
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| |
Collapse
|
5
|
Osada T, Konishi S. Noninvasive intervention by transcranial ultrasound stimulation: Modulation of neural circuits and its clinical perspectives. Psychiatry Clin Neurosci 2024; 78:273-281. [PMID: 38505983 PMCID: PMC11488602 DOI: 10.1111/pcn.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Low-intensity focused transcranial ultrasound stimulation (TUS) is an emerging noninvasive technique capable of stimulating both the cerebral cortex and deep brain structures with high spatial precision. This method is recognized for its potential to comprehensively perturb various brain regions, enabling the modulation of neural circuits, in a manner not achievable through conventional magnetic or electrical brain stimulation techniques. The underlying mechanisms of neuromodulation are based on a phenomenon where mechanical waves of ultrasound kinetically interact with neurons, specifically affecting neuronal membranes and mechanosensitive channels. This interaction induces alterations in the excitability of neurons within the stimulated region. In this review, we briefly present the fundamental principles of ultrasound physics and the physiological mechanisms of TUS neuromodulation. We explain the experimental apparatus and procedures for TUS in humans. Due to the focality, the integration of various methods, including magnetic resonance imaging and magnetic resonance-guided neuronavigation systems, is important to perform TUS experiments for precise targeting. We then review the current state of the literature on TUS neuromodulation, with a particular focus on human subjects, targeting both the cerebral cortex and deep subcortical structures. Finally, we outline future perspectives of TUS in clinical applications in psychiatric and neurological fields.
Collapse
Affiliation(s)
- Takahiro Osada
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Seiki Konishi
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University School of MedicineTokyoJapan
- Sportology CenterJuntendo University School of MedicineTokyoJapan
- Advanced Research Institute for Health ScienceJuntendo University School of MedicineTokyoJapan
| |
Collapse
|
6
|
Hannah R, Muralidharan V, Aron AR. Failing to attend versus failing to stop: Single-trial decomposition of action-stopping in the stop signal task. Behav Res Methods 2023; 55:4099-4117. [PMID: 36344774 PMCID: PMC10700434 DOI: 10.3758/s13428-022-02008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
The capacity to stop impending or ongoing actions contributes to executive control over behavior. Action-stopping, however, is difficult to directly quantify. It is therefore assayed via computational modeling of behavior in the stop signal task to estimate the latency of stopping (stop signal reaction time, SSRT) and, more recently, the reliability of stopping in terms of the distribution of SSRTs (standard deviation, SD-SSRT) and the frequency with which one outright fails to react to a stop signal (trigger failures, TF). Critically, the validity of computational estimates remains unknown because we currently have no direct readouts of behavior against which to compare them. Here, we developed a method for providing single-trial behavioral readouts of SSRT and trigger failures. The method relies on an adaptation of the stop signal task in which participants respond by moving a computer mouse. In two online experiments, we used movement kinematics to quantify stopping performance (SSRT, SD-SSRT, and TF), and then applied the standard Race Model and recent BEESTS model in order to examine the convergent validity of the methods. Overall, we demonstrate good correspondence between kinematics- and model-based estimates of stopping performance at the group and individual level. We conclude that the new method provides valid estimates of stopping performance that, unlike model-based estimates, can be read out at the level of single trials. Our approach might therefore be useful for interrogating single-trial neurophysiological correlates of stopping and for large-scale, online studies of behavioral stopping.
Collapse
Affiliation(s)
- Ricci Hannah
- Department of Psychology, University of California San Diego, La Jolla, CA, USA.
- Centre for Human & Applied Physiological Sciences, King's College London, London, UK.
| | | | - Adam R Aron
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Bhat SG, Shin AY, Kaufman KR. Upper extremity asymmetry due to nerve injuries or central neurologic conditions: a scoping review. J Neuroeng Rehabil 2023; 20:151. [PMID: 37940959 PMCID: PMC10634143 DOI: 10.1186/s12984-023-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Peripheral nerve injuries and central neurologic conditions can result in extensive disabilities. In cases with unilateral impairment, assessing the asymmetry between the upper extremity has been used to assess outcomes of treatment and severity of injury. A wide variety of validated and novel tests and sensors have been utilized to determine the upper extremity asymmetry. The purpose of this article is to review the literature and define the current state of the art for describing upper extremity asymmetry in patients with peripheral nerve injuries or central neurologic conditions. METHOD An electronic literature search of PubMed, Scopus, Web of Science, OVID was performed for publications between 2000 to 2022. Eligibility criteria were subjects with neurological conditions/injuries who were analyzed for dissimilarities in use between the upper extremities. Data related to study population, target condition/injury, types of tests performed, sensors used, real-world data collection, outcome measures of interest, and results of the study were extracted. Sackett's Level of Evidence was used to judge the quality of the articles. RESULTS Of the 7281 unique articles, 112 articles met the inclusion criteria for the review. Eight target conditions/injuries were identified (Brachial Plexus Injury, Cerebral Palsy, Multiple Sclerosis, Parkinson's Disease, Peripheral Nerve Injury, Spinal Cord Injury, Schizophrenia, and stroke). The tests performed were classified into thirteen categories based on the nature of the test and data collected. The general results related to upper extremity asymmetry were listed for all the reviewed articles. Stroke was the most studied condition, followed by cerebral palsy, with kinematics and strength measurement tests being the most frequently used tests. Studies with a level of evidence level II and III increased between 2000 and 2021. The use of real-world evidence-based data, and objective data collection tests also increased in the same period. CONCLUSION Adequately powered randomized controlled trials should be used to study upper extremity asymmetry. Neurological conditions other than stroke should be studied further. Upper extremity asymmetry should be measured using objective outcome measures like motion tracking and activity monitoring in the patient's daily living environment.
Collapse
Affiliation(s)
- Sandesh G Bhat
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kenton R Kaufman
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
- Motion Analysis Laboratory, Mayo Clinic, DAHLC 4-214A, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Johari K, Berger JI. High-definition transcranial direct current stimulation over right dorsolateral prefrontal cortex differentially modulates inhibitory mechanisms for speech vs. limb movement. Psychophysiology 2023; 60:e14289. [PMID: 36883294 DOI: 10.1111/psyp.14289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/25/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Evidence suggests that planning and execution of speech and limb movement are subserved by common neural substrates. However, less is known about whether they are supported by a common inhibitory mechanism. P3 event-related potentials (ERPs) is a neural signature of motor inhibition, which are found to be generated by several brain regions including the right dorsolateral prefrontal cortex (rDLPFC). However, the relative contribution of rDLPFC to the P3 response associated with speech versus limb inhibition remains elusive. We investigated the contribution of rDLPFC to the P3 underlying speech versus limb movement inhibition. Twenty-one neurotypical adults received both cathodal and sham high-definition transcranial direct current stimulation (HD-tDCS) over rDLPFC. ERPs were subsequently recorded while subjects were performing speech and limb Go/No-Go tasks. Cathodal HD-tDCS decreased accuracy for speech versus limb No-Go. Both speech and limb No-Go elicited a similar topographical distribution of P3, with significantly larger amplitudes for speech versus limb at a frontocentral location following cathodal HD-tDCS. Moreover, results showed stronger activation in cingulate cortex and rDLPFC for speech versus limb No-Go following cathodal HD-tDCS. These results indicate (1) P3 is an ERP marker of amodal inhibitory mechanisms that support both speech and limb inhibition, (2) larger P3 for speech versus limb No-Go following cathodal HD-tDCS may reflect the recruitment of additional neural resources-particularly within rDLPFC and cingulate cortex-as compensatory mechanisms to counteract the temporary stimulation-induced decline in speech inhibitory process. These findings have translational implications for neurological conditions that concurrently affect speech and limb movement.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Joel I Berger
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Gavazzi G, Noferini C, Benedetti V, Cotugno M, Giovannelli F, Caldara R, Mascalchi M, Viggiano MP. Cultural Differences in Inhibitory Control: An ALE Meta-Analysis. Brain Sci 2023; 13:907. [PMID: 37371385 DOI: 10.3390/brainsci13060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Culture greatly influences our attitudes, beliefs, and behaviors, affecting how we communicate and make decisions. There is an ongoing debate regarding the belief that people from Eastern cultures possess greater self-control abilities when compared to people from Western cultures. In this study, we conducted a meta-analysis using the Activation Likelihood Estimation (ALE) algorithm to compare 30 studies (719 subjects, 373 foci) that used fMRI to investigate the performance in Go-Nogo and Stop Signal Tasks of participants from Western and/or Eastern countries. Our meta-analysis found differences between the networks activated in Eastern and Western culture participants. The right prefrontal cortex showed distinct patterns, with the Inferior Frontal gyrus more active in the Eastern group and the middle and superior frontal gyri more active in the Western group. Our findings suggest that Eastern culture subjects have a higher tendency to activate brain regions involved in proactive inhibitory control, while Western culture subjects rely more on reactive inhibitory brain regions during cognitive control tasks. This implies that proactive inhibition may play a crucial role in promoting the collective and interdependent behavior typical of Eastern cultures, while reactive inhibition may be more important for efficient cognitive control in subjects of Western cultures that prioritize individualism and independence.
Collapse
Affiliation(s)
- Gioele Gavazzi
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, 50135 Florence, Italy
| | - Chiara Noferini
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, 50135 Florence, Italy
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Viola Benedetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, 50135 Florence, Italy
| | - Maria Cotugno
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, 50135 Florence, Italy
| | - Fabio Giovannelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, 50135 Florence, Italy
| | - Roberto Caldara
- Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Mario Mascalchi
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50135 Florence, Italy
| | - Maria Pia Viggiano
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, 50135 Florence, Italy
| |
Collapse
|
10
|
Mirabella G. Beyond Reactive Inhibition: Unpacking the Multifaceted Nature of Motor Inhibition. Brain Sci 2023; 13:brainsci13050804. [PMID: 37239277 DOI: 10.3390/brainsci13050804] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Inhibition is a pillar of cognitive control, i [...].
Collapse
Affiliation(s)
- Giovanni Mirabella
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
11
|
Constantin IM, Voruz P, Péron JA. Moderating effects of uric acid and sex on cognition and psychiatric symptoms in asymmetric Parkinson's disease. Biol Sex Differ 2023; 14:26. [PMID: 37143121 PMCID: PMC10157998 DOI: 10.1186/s13293-023-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Non-motor symptoms are an important early feature of Parkinson's disease (PD), encompassing a variety of cognitive and psychiatric symptoms that seem to manifest differently depending on motor symptom asymmetry. Different factors, such as uric acid (UA) and sex, seem to influence cognitive and psychiatric expression in PD, however their interplay remains to be better understood. METHODS Participants taking part in the Parkinson's Progression Marker Initiative were studied based on the side of motor symptom asymmetry and sex. Three-way interaction modeling was used to examine the moderating effects of sex and UA on cognitive functions and psychiatric symptoms. RESULTS Significant three-way interactions were highlighted at 1-year follow-up between motor symptom asymmetry, UA and sex for immediate and long-term memory in female patients exhibiting predominantly left-sided motor symptoms, and for processing speed and sleepiness in female patients exhibiting predominantly right-sided motor symptoms. No significant interactions were observed for male patients. Moreover, female patients exhibiting predominantly right-sided motor symptoms demonstrated lower serum UA concentrations and had overall better outcomes, while male patients with predominantly right-sided motor symptoms demonstrated particularly poor outcomes. CONCLUSIONS These findings suggest that in the earliest stages of the disease, UA and sex moderate cognitive functions and psychiatric symptoms differently depending on motor asymmetry, holding important clinical implications for symptom management in patients.
Collapse
Affiliation(s)
- Ioana Medeleine Constantin
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland
| | - Philippe Voruz
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland
- Neurology Department, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland
| | - Julie Anne Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland.
- Neurology Department, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland.
| |
Collapse
|
12
|
Trevarrow MP, Munoz MJ, Rivera YM, Arora R, Drane QH, Rosenow JM, Sani SB, Pal GD, Verhagen Metman L, Goelz LC, Corcos DM, David FJ. The Effects of Subthalamic Nucleus Deep Brain Stimulation and Retention Delay on Memory-Guided Reaching Performance in People with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:917-935. [PMID: 37522216 PMCID: PMC10578280 DOI: 10.3233/jpd-225041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) improves intensive aspects of movement (velocity) in people with Parkinson's disease (PD) but impairs the more cognitively demanding coordinative aspects of movement (error). We extended these findings by evaluating STN-DBS induced changes in intensive and coordinative aspects of movement during a memory-guided reaching task with varying retention delays. OBJECTIVE We evaluated the effect of STN-DBS on motor control during a memory-guided reaching task with short and long retention delays in participants with PD and compared performance to healthy controls (HC). METHODS Eleven participants with PD completed the motor section of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) and performed a memory-guided reaching task under four different STN-DBS conditions (DBS-OFF, DBS-RIGHT, DBS-LEFT, and DBS-BOTH) and two retention delays (0.5 s and 5 s). An additional 13 HC completed the memory-guided reaching task. RESULTS Unilateral and bilateral STN-DBS improved the MDS-UPDRS III scores. In the memory-guided reaching task, both unilateral and bilateral STN-DBS increased the intensive aspects of movement (amplitude and velocity) in the direction toward HC but impaired coordinative aspects of movement (error) away from the HC. Furthermore, movement time was decreased but reaction time was unaffected by STN-DBS. Shorter retention delays increased amplitude and velocity, decreased movement times, and decreased error, but increased reaction times in the participants with PD. There were no interactions between STN-DBS condition and retention delay. CONCLUSION STN-DBS may affect cognitive-motor functioning by altering activity throughout cortico-basal ganglia networks and the oscillatory activity subserving them.
Collapse
Affiliation(s)
- Michael P. Trevarrow
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Rishabh Arora
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Gian D. Pal
- Department of Neurology, Division of Movement Disorders, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Leonard Verhagen Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lisa C. Goelz
- Department of Kinesiology and Nutrition, UIC College of Applied Health Sciences, Chicago, IL, USA
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Waldthaler J, Sperlich A, Stüssel C, Steidel K, Timmermann L, Pedrosa DJ. Stimulation of non-motor subthalamic nucleus impairs selective response inhibition via prefrontal connectivity. Brain Commun 2023; 5:fcad121. [PMID: 37113315 PMCID: PMC10128876 DOI: 10.1093/braincomms/fcad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/03/2023] [Indexed: 04/29/2023] Open
Abstract
Given the inconsistent results in the past, there is an ongoing debate whether and how deep brain stimulation in the subthalamic nucleus modifies cognitive control processes like response inhibition in persons with Parkinson's disease. In this study, we examined how the location of the stimulation volume within the subthalamic nucleus affects the performance in an antisaccade task but also how its structural connectivity is related to response inhibition. Antisaccade error rates and latencies were collected in 14 participants on and off deep brain stimulation in a randomized order. Stimulation volumes were computed based on patient-specific lead localizations using preoperative MRI and postoperative CT scans. Structural connectivity of the stimulation volumes with pre-defined cortical oculomotor control regions as well as whole-brain connectivity was estimated using a normative connectome. We showed that the detrimental effect of deep brain stimulation on response inhibition, measured as antisaccade error rate, depended upon the magnitude of the intersection of volumes of activated tissue with the non-motor subregion of the subthalamic nucleus and on its structural connectivity with regions of the prefrontal oculomotor network including bilateral frontal eye fields and right anterior cingulate cortex. Our results corroborate previous recommendations for avoidance of stimulation in the ventromedial non-motor subregion of the subthalamic nucleus which connects to the prefrontal cortex to prevent stimulation-induced impulsivity. Furthermore, antisaccades were initiated faster with deep brain stimulation when the stimulation volume was connected to fibres passing the subthalamic nucleus laterally and projecting onto the prefrontal cortex, indicating that improvement of voluntary saccade generation with deep brain stimulation may be an off-target effect driven by stimulation of corticotectal fibres directly projecting from the frontal and supplementary eye fields onto brainstem gaze control areas. Taken together, these findings could help implement individualized circuit-based deep brain stimulation strategies that avoid impulsive side effects while improving voluntary oculomotor control.
Collapse
Affiliation(s)
- Josefine Waldthaler
- Correspondence to: Josefine Waldthaler, Department of Neurology, University Hospitals Gießen and Marburg, Baldingerstraße, 35033 Marburg, Hesse, Germany E-mail:
| | - Alexander Sperlich
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Charlotte Stüssel
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Kenan Steidel
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg and Justus-Liebig-University Giessen, 35033 Marburg, Germany
| | - David J Pedrosa
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg and Justus-Liebig-University Giessen, 35033 Marburg, Germany
| |
Collapse
|
14
|
Montalti M, Calbi M, Cuccio V, Umiltà MA, Gallese V. Is motor inhibition involved in the processing of sentential negation? An assessment via the Stop-Signal Task. PSYCHOLOGICAL RESEARCH 2023; 87:339-352. [PMID: 33905001 PMCID: PMC9873753 DOI: 10.1007/s00426-021-01512-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the last decades, the embodied approach to cognition and language gained momentum in the scientific debate, leading to evidence in different aspects of language processing. However, while the bodily grounding of concrete concepts seems to be relatively not controversial, abstract aspects, like the negation logical operator, are still today one of the main challenges for this research paradigm. In this framework, the present study has a twofold aim: (1) to assess whether mechanisms for motor inhibition underpin the processing of sentential negation, thus, providing evidence for a bodily grounding of this logic operator, (2) to determine whether the Stop-Signal Task, which has been used to investigate motor inhibition, could represent a good tool to explore this issue. Twenty-three participants were recruited in this experiment. Ten hand-action-related sentences, both in affirmative and negative polarity, were presented on a screen. Participants were instructed to respond as quickly and accurately as possible to the direction of the Go Stimulus (an arrow) and to withhold their response when they heard a sound following the arrow. This paradigm allows estimating the Stop Signal Reaction Time (SSRT), a covert reaction time underlying the inhibitory process. Our results show that the SSRT measured after reading negative sentences are longer than after reading affirmative ones, highlighting the recruitment of inhibitory mechanisms while processing negative sentences. Furthermore, our methodological considerations suggest that the Stop-Signal Task is a good paradigm to assess motor inhibition's role in the processing of sentence negation.
Collapse
Affiliation(s)
- Martina Montalti
- grid.10383.390000 0004 1758 0937Department of Medicine and Surgery Unit of Neuroscience, University of Parma, Parma, Italy
| | - Marta Calbi
- grid.10383.390000 0004 1758 0937Department of Medicine and Surgery Unit of Neuroscience, University of Parma, Parma, Italy
| | - Valentina Cuccio
- grid.10438.3e0000 0001 2178 8421Department of Cognitive, Psychological, Pedagogical Sciences and Cultural Studies, University of Messina, Messina, Italy
| | - Maria Alessandra Umiltà
- grid.10383.390000 0004 1758 0937Department of Food and Drug, University of Parma, Parma, Italy
| | - Vittorio Gallese
- grid.10383.390000 0004 1758 0937Department of Medicine and Surgery Unit of Neuroscience, University of Parma, Parma, Italy ,grid.7468.d0000 0001 2248 7639Berlin School of Mind and Brain, Humboldt-Universität Zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Biomarkers and non-motor symptoms as a function of motor symptom asymmetry in early Parkinson's disease. Neuropsychologia 2022; 177:108419. [PMID: 36375651 DOI: 10.1016/j.neuropsychologia.2022.108419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The longitudinal trajectories of cognitive-neuropsychiatric symptoms from the early stages of Parkinson's disease, as a function of motor symptom asymmetry at the onset of the disease, remain to be fully explored. Moreover, the relationship to biomarkers warrants further investigation. METHODOLOGY Non-motor and biospecimen data from 413 patients with Parkinson's disease, dissociating predominantly left-sided motor symptoms patients (n = 179), predominantly right-sided motor symptoms patients (n = 234), and matched healthy controls (n = 196), were extracted from the Parkinson's Progression Marker Initiative database during a 3-Year follow-up. Non-parametric and conservative corrections for multivariate comparisons were carried out on neuropsychiatric and biomarker data. RESULTS A decline for global cognitive efficiency scores in predominantly right-sided motor symptoms patients was observed, whereas depressive and anxiety symptoms were greater overtime for predominantly left-sided motor symptoms patients. Biomarker analysis revealed that predominantly right-sided patients expressed decreased levels of total-tau and phospho-tau over time, while left-sided patients didn't differ from healthy controls. CONCLUSION From the early course of the disease, the existence of different clinical phenotypes is proposed, associated to emerging evidences of distinct pathological pathways and a left-hemispheric vulnerability for cognitive decline.
Collapse
|
16
|
van den Wildenberg WPM, Ridderinkhof KR, Wylie SA. Towards Conceptual Clarification of Proactive Inhibitory Control: A Review. Brain Sci 2022; 12:1638. [PMID: 36552098 PMCID: PMC9776056 DOI: 10.3390/brainsci12121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The aim of this selective review paper is to clarify potential confusion when referring to the term proactive inhibitory control. Illustrated by a concise overview of the literature, we propose defining reactive inhibition as the mechanism underlying stopping an action. On a stop trial, the stop signal initiates the stopping process that races against the ongoing action-related process that is triggered by the go signal. Whichever processes finishes first determines the behavioral outcome of the race. That is, stopping is either successful or unsuccessful in that trial. Conversely, we propose using the term proactive inhibition to explicitly indicate preparatory processes engaged to bias the outcome of the race between stopping and going. More specifically, these proactive processes include either pre-amping the reactive inhibition system (biasing the efficiency of the stopping process) or presetting the action system (biasing the efficiency of the go process). We believe that this distinction helps meaningful comparisons between various outcome measures of proactive inhibitory control that are reported in the literature and extends to experimental research paradigms other than the stop task.
Collapse
Affiliation(s)
- Wery P. M. van den Wildenberg
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129 B, 1018 WS Amsterdam, The Netherlands
- Amsterdam Brain and Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129 B, P.O. Box 15900, 1001 NK Amsterdam, The Netherlands
| | - K. Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129 B, 1018 WS Amsterdam, The Netherlands
- Amsterdam Brain and Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129 B, P.O. Box 15900, 1001 NK Amsterdam, The Netherlands
| | - Scott A. Wylie
- Department of Neurosurgery, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
17
|
Kang W, Hernández SP, Rahman MS, Voigt K, Malvaso A. Inhibitory Control Development: A Network Neuroscience Perspective. Front Psychol 2022; 13:651547. [PMID: 36300046 PMCID: PMC9588931 DOI: 10.3389/fpsyg.2022.651547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/25/2022] [Indexed: 07/30/2023] Open
Abstract
As one of the core executive functions, inhibition plays an important role in human life through development. Inhibitory control is defined as the ability to suppress actions when they are unlikely to accomplish valuable results. Contemporary neuroscience has investigated the underlying neural mechanisms of inhibitory control. The controversy started to arise, which resulted in two schools of thought: a modulatory and a network account of inhibitory control. In this systematic review, we survey developmental mechanisms in inhibitory control as well as neurodevelopmental diseases related to inhibitory dysfunctions. This evidence stands against the modulatory perspective of inhibitory control: the development of inhibitory control does not depend on a dedicated region such as the right inferior frontal gyrus (rIFG) but relies on a more broadly distributed network.
Collapse
Affiliation(s)
- Weixi Kang
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | | | | | - Katharina Voigt
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Antonio Malvaso
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Wessel JR, Diesburg DA, Chalkley NH, Greenlee JDW. A causal role for the human subthalamic nucleus in non-selective cortico-motor inhibition. Curr Biol 2022; 32:3785-3791.e3. [PMID: 35841891 PMCID: PMC9511894 DOI: 10.1016/j.cub.2022.06.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Common cortico-basal ganglia models of motor control suggest a key role for the subthalamic nucleus (STN) in motor inhibition.1-3 In particular, when already-initiated actions have to be suddenly stopped, the STN is purportedly recruited via a hyperdirect pathway to net inhibit the cortico-motor system in a broad, non-selective fashion.4 Indeed, the suppression of cortico-spinal excitability (CSE) during rapid action stopping extends beyond the stopped muscle and affects even task-irrelevant motor representations.5,6 Although such non-selective CSE suppression has long been attributed to the broad inhibitory influence of STN on the motor system, causal evidence for this association is hitherto lacking. Here, 20 Parkinson's disease patients treated with STN deep-brain stimulation (DBS) and 20 matched healthy controls performed a verbal stop-signal task while CSE was measured from a task-unrelated hand muscle. DBS allowed a causal manipulation of STN, while CSE was measured using transcranial magnetic stimulation (TMS) over primary motor cortex and concurrent electromyography. In patients OFF-DBS and controls, the CSE of the hand was non-selectively suppressed when the verbal response was successfully stopped. Crucially, this effect disappeared when STN was disrupted via DBS in the patient group. Using this unique combination of DBS and TMS during human behavior, the current study provides first causal evidence that STN is likely involved in non-selectively suppressing the physiological excitability of the cortico-motor system during action stopping. This confirms a core prediction of long-held cortico-basal ganglia circuit models of movement. The absence of cortico-motor inhibition during STN-DBS may also provide potential insights into the common side effects of STN-DBS, such as increased impulsivity.7-11.
Collapse
Affiliation(s)
- Jan R Wessel
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52245, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52245, USA
| | - Nathan H Chalkley
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA
| | - Jeremy D W Greenlee
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA; Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
19
|
Rahman S, Siddique U, Choudhury S, Islam N, Roy A, Basu P, Anand SS, Islam MA, Shahi MS, Nayeem A, Chowdhury MTI, Chowdhury MSJH, Taylor JP, Baker MR, Baker SN, Kumar H. Comparing Stop Signal Reaction Times in Alzheimer's and Parkinson's Disease. Can J Neurol Sci 2022; 49:662-671. [PMID: 34321129 DOI: 10.1017/cjn.2021.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND To investigate the relative contributions of cerebral cortex and basal ganglia to movement stopping, we tested the optimum combination Stop Signal Reaction Time (ocSSRT) and median visual reaction time (RT) in patients with Alzheimer's disease (AD) and Parkinson's disease (PD) and compared values with data from healthy controls. METHODS Thirty-five PD patients, 22 AD patients, and 29 healthy controls were recruited to this study. RT and ocSSRT were measured using a hand-held battery-operated electronic box through a stop signal paradigm. RESULT The mean ocSSRT was found to be 309 ms, 368 ms, and 265 ms in AD, PD, and healthy controls, respectively, and significantly prolonged in PD compared to healthy controls (p = 0.001). The ocSSRT but not RT could separate AD from PD patients (p = 0.022). CONCLUSION Our data suggest that subcortical networks encompassing dopaminergic pathways in the basal ganglia play a more important role than cortical networks in movement-stopping. Combining ocSSRT with other putative indices or biomarkers of AD (and other dementias) could increase the accuracy of early diagnosis.
Collapse
Affiliation(s)
- Simin Rahman
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | - Ummatul Siddique
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | - Supriyo Choudhury
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | - Nazrul Islam
- National Institute of Neurosciences & Hospital, Agargoan, Dhaka, Bangladesh
| | - Akash Roy
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | - Purba Basu
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | - Sidharth Shankar Anand
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | | | | | - Abu Nayeem
- National Institute of Neurosciences & Hospital, Agargoan, Dhaka, Bangladesh
| | | | | | | | - Mark R Baker
- Medical School, Newcastle University, Newcastle upon Tyne, UK
- Departments of Neurology and Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Stuart N Baker
- Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Hrishikesh Kumar
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| |
Collapse
|
20
|
Nakajima K, Osada T, Ogawa A, Tanaka M, Oka S, Kamagata K, Aoki S, Oshima Y, Tanaka S, Konishi S. A causal role of anterior prefrontal-putamen circuit for response inhibition revealed by transcranial ultrasound stimulation in humans. Cell Rep 2022; 40:111197. [PMID: 35977493 DOI: 10.1016/j.celrep.2022.111197] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Stopping an inappropriate response requires the involvement of the prefrontal-subthalamic hyperdirect pathway. However, how the prefrontal-striatal indirect pathway contributes to stopping is poorly understood. In this study, transcranial ultrasound stimulation is used to perform interventions in a task-related region in the striatum. Functional magnetic resonance imaging (MRI) reveals activation in the right anterior part of the putamen during response inhibition, and ultrasound stimulation to the anterior putamen, as well as the subthalamic nucleus, results in significant impairments in stopping performance. Diffusion imaging further reveals prominent structural connections between the anterior putamen and the right anterior part of the inferior frontal cortex (IFC), and ultrasound stimulation to the anterior IFC also shows significant impaired stopping performance. These results demonstrate that the right anterior putamen and right anterior IFC causally contribute to stopping and suggest that the anterior IFC-anterior putamen circuit in the indirect pathway serves as an essential route for stopping.
Collapse
Affiliation(s)
- Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Science, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
21
|
Leimbach F, Atkinson-Clement C, Socorro P, Jahanshahi M. The Effects of Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease on Associative Learning of Verbal and Non-Verbal Information by Trial and Error or with Corrective Feedback. JOURNAL OF PARKINSON'S DISEASE 2022; 12:885-896. [PMID: 35342046 DOI: 10.3233/jpd-212843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Parkinson's disease (PD) and subthalamic nucleus deep brain stimulation (STN-DBS) are both known to induce cognitive changes. OBJECTIVE The aim of our study was to investigate the impact of STN-DBS on two forms of conditional associative learning (CAL), trial and error or corrective feedback learning, which differed in difficulty to test the load-dependency hypothesis of the cognitive effects of STN-DBS in PD. METHODS We recruited two groups of PD patients, those who had STN-DBS surgery bilaterally (n = 24) and a second unoperated group (n = 9) who were assessed on two versions of a task of visual CAL involving either a more difficult trial and error learning or a relatively easier corrective feedback learning. Each task was completed twice by both groups, On and Off STN-DBS for the operated group and a first and second time by the unoperated group. RESULTS With STN-DBS Off, corrective feedback learning was superior to trial and error CAL, but not with STN-DBS On. The unoperated PD group had improved performance during the second assessment. To control for the improvement observed with repeated assessment in the PD control group, we split the STN-DBS group into two subgroups based on the condition of the first assessment (Off first vs. On first). While we found no STN-DBS effects for the Off first subgroup (N = 14), we observed improved performance during the second STN-DBS Off session for the On first subgroup (N = 10). CONCLUSION The findings suggest that in PD, STN-DBS interferes with use of corrective feedback and its integration in the conditional associative learning process. Also STN stimulation affected the ability of operated patients to resolve proactive interference during learning of the arbitrary visual associations by trial and error or with corrective feedback.
Collapse
Affiliation(s)
- Friederike Leimbach
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Cyril Atkinson-Clement
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, F-75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,School of Medicine, University of Nottingham, Nottingham, UK
| | - Pieter Socorro
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
22
|
Reverse Visually Guided Reaching in Patients with Parkinson’s Disease. PARKINSON'S DISEASE 2022; 2022:8132923. [PMID: 35386952 PMCID: PMC8979744 DOI: 10.1155/2022/8132923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
In addition to motor symptoms such as difficulty in movement initiation and bradykinesia, patients with Parkinson’s disease (PD) display nonmotor executive cognitive dysfunction with deficits in inhibitory control. Preoperative psychological assessments are used to screen for impulsivity that may be worsened by deep brain stimulation (DBS) of the subthalamic nucleus (STN). However, it is unclear whether anti-Parkinson’s therapy, such as dopamine replacement therapy (DRT) or DBS, which has beneficial effects on motor function, adversely affects inhibitory control or its domains. The detrimental effects of STN-DBS are more apparent when tasks test the inhibition of habitual prepotent responses or involve complex cognitive loads. Our goal was to use a reverse visually guided reaching (RVGR) task, a hand-based version of the antisaccade task, to simultaneously measure motor performance and response inhibition in subjects with PD. We recruited 55 healthy control subjects, 26 PD subjects receiving treatment with DRTs, and 7 PD subjects receiving treatment with STN-DBS and DRTs. In the RVGR task, a cursor moved opposite to the subject’s hand movement. This was compared to visually guided reaching (VGR) where the cursor moved in the same direction as the subject’s hand movement. Reaction time, mean speed, and direction errors (in RVGR) were assessed. Reaction times were longer, and mean speeds were slower during RVGR compared to VGR in all three groups but worse in untreated subjects with PD. Treatment with DRTs, DBS, or DBS + DRT improved the reaction time and speed on the RVGR task to a greater extent than VGR. Additionally, DBS or DBS + DRT demonstrated an increase in direction errors, which was correlated with decreased reaction time. These results show that the RVGR task quantifies the benefit of STN-DBS on bradykinesia and the concomitant reduction of proactive inhibitory control. The RVGR task has the potential to be used to rapidly screen for preoperative deficits in inhibitory control and to titrate STN-DBS, to maximize the therapeutic benefits on movement, and minimize impaired inhibitory control.
Collapse
|
23
|
Ribot B, de Rugy A, Langbour N, Duron A, Goillandeau M, Michelet T. Competition, Conflict and Change of Mind: A Role of GABAergic Inhibition in the Primary Motor Cortex. Front Hum Neurosci 2022; 15:736732. [PMID: 35058762 PMCID: PMC8763692 DOI: 10.3389/fnhum.2021.736732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Deciding between different voluntary movements implies a continuous control of the competition between potential actions. Many theories postulate a leading role of prefrontal cortices in this executive function, but strong evidence exists that a motor region like the primary motor cortex (M1) is also involved, possibly via inhibitory mechanisms. This was already shown during the pre-movement decision period, but not after movement onset. For this pilot experiment we designed a new task compatible with the dynamics of post-onset control to study the silent period (SP) duration, a pause in electromyographic activity after single-pulse transcranial magnetic stimulation that reflects inhibitory mechanisms. A careful analysis of the SP during the ongoing movement indicates a gradual increase in inhibitory mechanisms with the level of competition, consistent with an increase in mutual inhibition between alternative movement options. However, we also observed a decreased SP duration for high-competition trials associated with change-of-mind inflections in their trajectories. Our results suggest a new post-onset adaptive process that consists in a transient reduction of GABAergic inhibition within M1 for highly conflicting situations. We propose that this reduced inhibition softens the competition between concurrent motor options, thereby favoring response vacillation, an adaptive strategy that proved successful at improving behavioral performance.
Collapse
Affiliation(s)
- Bastien Ribot
- CNRS, IMN, UMR 5293, University of Bordeaux, Bordeaux, France
| | - Aymar de Rugy
- CNRS, EPHE, INCIA, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Nicolas Langbour
- Unité de Recherche Clinique Intersectorielle en Psychiatrie à Vocation Régionale du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Anne Duron
- Faculté de Médecine, Université de Paris, Paris, France
| | | | - Thomas Michelet
- CNRS, EPHE, INCIA, UMR 5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
24
|
Diesburg DA, Greenlee JD, Wessel JR. Cortico-subcortical β burst dynamics underlying movement cancellation in humans. eLife 2021; 10:70270. [PMID: 34874267 PMCID: PMC8691838 DOI: 10.7554/elife.70270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Dominant neuroanatomical models hold that humans regulate their movements via loop-like cortico-subcortical networks, which include the subthalamic nucleus (STN), motor thalamus, and sensorimotor cortex (SMC). Inhibitory commands across these networks are purportedly sent via transient, burst-like signals in the β frequency (15-29 Hz). However, since human depth-recording studies are typically limited to one recording site, direct evidence for this proposition is hitherto lacking. Here, we present simultaneous multi-site recordings from SMC and either STN or motor thalamus in humans performing the stop-signal task. In line with their purported function as inhibitory signals, subcortical β-bursts were increased on successful stop-trials. STN bursts in particular were followed within 50 ms by increased β-bursting over SMC. Moreover, between-site comparisons (including in a patient with simultaneous recordings from SMC, thalamus, and STN) confirmed that β-bursts in STN temporally precede thalamic β-bursts. This highly unique set of recordings provides empirical evidence for the role of β-bursts in conveying inhibitory commands along long-proposed cortico-subcortical networks underlying movement regulation in humans.
Collapse
Affiliation(s)
- Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
| | - Jeremy Dw Greenlee
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States.,Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, United States
| |
Collapse
|
25
|
Hannah R, Aron AR. Towards real-world generalizability of a circuit for action-stopping. Nat Rev Neurosci 2021; 22:538-552. [PMID: 34326532 PMCID: PMC8972073 DOI: 10.1038/s41583-021-00485-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Two decades of cross-species neuroscience research on rapid action-stopping in the laboratory has provided motivation for an underlying prefrontal-basal ganglia circuit. Here we provide an update of key studies from the past few years. We conclude that this basic neural circuit is on increasingly firm ground, and we move on to consider whether the action-stopping function implemented by this circuit applies beyond the simple laboratory stop signal task. We advance through a series of studies of increasing 'real-worldness', starting with laboratory tests of stopping of speech, gait and bodily functions, and then going beyond the laboratory to consider neural recordings and stimulation during moments of control presumably required in everyday activities such as walking and driving. We end by asking whether stopping research has clinical relevance, focusing on movement disorders such as stuttering, tics and freezing of gait. Overall, we conclude there are hints that the prefrontal-basal ganglia action-stopping circuit that is engaged by the basic stop signal task is recruited in myriad scenarios; however, truly proving this for real-world scenarios requires a new generation of studies that will need to overcome substantial technical and inferential challenges.
Collapse
Affiliation(s)
- Ricci Hannah
- Department of Psychology, University of California San Diego, San Diego, CA, USA.
| | - Adam R Aron
- Department of Psychology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
26
|
Handedness Does Not Impact Inhibitory Control, but Movement Execution and Reactive Inhibition Are More under a Left-Hemisphere Control. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The relationship between handedness, laterality, and inhibitory control is a valuable benchmark for testing the hypothesis of the right-hemispheric specialization of inhibition. According to this theory, and given that to stop a limb movement, it is sufficient to alter the activity of the contralateral hemisphere, then suppressing a left arm movement should be faster than suppressing a right-arm movement. This is because, in the latter case, inhibitory commands produced in the right hemisphere should be sent to the other hemisphere. Further, as lateralization of cognitive functions in left-handers is less pronounced than in right-handers, in the former, the inhibitory control should rely on both hemispheres. We tested these predictions on a medium-large sample of left- and right-handers (n = 52). Each participant completed two sessions of the reaching versions of the stop-signal task, one using the right arm and one using the left arm. We found that reactive and proactive inhibition do not differ according to handedness. However, we found a significant advantage of the right versus the left arm in canceling movements outright. By contrast, there were no differences in proactive inhibition. As we also found that participants performed movements faster with the right than with the left arm, we interpret our results in light of the dominant role of the left hemisphere in some aspects of motor control.
Collapse
|
27
|
Lo Buono V, Lucà Trombetta M, Palmeri R, Bonanno L, Cartella E, Di Lorenzo G, Bramanti P, Marino S, Corallo F. Subthalamic nucleus deep brain stimulation and impulsivity in Parkinson's disease: a descriptive review. Acta Neurol Belg 2021; 121:837-847. [PMID: 33961279 PMCID: PMC8349322 DOI: 10.1007/s13760-021-01684-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
Standard treatment of Parkinson’s disease involves the dopaminergic medications. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an important neurosurgical intervention often used as alternative treatment to drug therapy; however, it can be associated with increase of impulsive behaviors. This descriptive review focused on studies investigating the correlation between Deep brain stimulation of the subthalamic nucleus and impulsivity in Parkinson’s disease patients, arguing, the action’s mechanism and the specific role of the subthalamic nucleus. We searched on PubMed and Web of Science databases and screening references of included studies and review articles for additional citations. From initial 106 studies, only 15 met the search criteria. Parkinson’s Disease patients with and without Deep Brain Stimulation were compared with healthy controls, through 16 different tasks that assessed some aspects of impulsivity. Both Deep brain stimulation of the subthalamic nucleus and medication were associated with impulsive behavior and influenced decision-making processes. Moreover, findings demonstrated that: Impulse Control Disorders (ICDs) occurred soon after surgery, while, in pharmacological treatment, they appeared mainly after the initiation of treatment or the increase in dosage, especially with dopamine agonists. The subthalamic nucleus plays a part in the fronto-striato-thalamic-cortical loops mediating motor, cognitive, and emotional functions: this could explain the role of the Deep Brain Stimulation in behavior modulation in Parkinson’s Disease patients. Indeed, increase impulsivity has been reported also after deep brain stimulation of the subthalamic nucleus independently by dopaminergic medication status.
Collapse
Affiliation(s)
| | | | | | - Lilla Bonanno
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | - Silvia Marino
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | |
Collapse
|
28
|
Lin Z, Zhang C, Li D, Sun B. Lateralized effects of deep brain stimulation in Parkinson's disease: evidence and controversies. NPJ Parkinsons Dis 2021; 7:64. [PMID: 34294724 PMCID: PMC8298477 DOI: 10.1038/s41531-021-00209-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The bilateral effects of deep brain stimulation (DBS) on motor and non-motor symptoms of Parkinson's disease (PD) have been extensively studied and reviewed. However, the unilateral effects-in particular, the potential lateralized effects of left- versus right-sided DBS-have not been adequately recognized or studied. Here we summarized the current evidence and controversies in the literature regarding the lateralized effects of DBS on motor and non-motor outcomes in PD patients. Publications in English language before February 2021 were obtained from the PubMed database and included if they directly compared the effects of unilateral versus contralateral side DBS on motor or non-motor outcomes in PD. The current literature is overall of low-quality and is biased by various confounders. Researchers have investigated mainly PD patients receiving subthalamic nucleus (STN) DBS while the potential lateralized effects of globus pallidus interna (GPi) DBS have not been adequately studied. Evidence suggests potential lateralized effects of STN DBS on axial motor symptoms and deleterious effects of left-sided DBS on language-related functions, in particular, the verbal fluency, in PD. The lateralized DBS effects on appendicular motor symptoms as well as other neurocognitive and neuropsychiatric domains remain inconclusive. Future studies should control for varying methodological approaches as well as clinical and DBS management heterogeneities, including symptom laterality, stimulation parameters, location of active contacts, and lead trajectories. This would contribute to improved treatment strategies such as personalized target selection, surgical planning, and postoperative management that ultimately benefit patients.
Collapse
Affiliation(s)
- Zhengyu Lin
- grid.412277.50000 0004 1760 6738Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Institute of Clinical Neuroscience, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- grid.412277.50000 0004 1760 6738Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Institute of Clinical Neuroscience, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.511008.dShanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Dianyou Li
- grid.412277.50000 0004 1760 6738Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Institute of Clinical Neuroscience, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- grid.412277.50000 0004 1760 6738Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Institute of Clinical Neuroscience, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Munoz MJ, Goelz LC, Pal GD, Karl JA, Verhagen Metman L, Sani S, Rosenow JM, Ciolino JD, Kurani AS, Corcos DM, David FJ. Increased Subthalamic Nucleus Deep Brain Stimulation Amplitude Impairs Inhibitory Control of Eye Movements in Parkinson's Disease. Neuromodulation 2021; 25:866-876. [PMID: 34139037 DOI: 10.1111/ner.13476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Bilateral subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson's disease (PD) can have detrimental effects on eye movement inhibitory control. To investigate this detrimental effect of bilateral STN DBS, we examined the effects of manipulating STN DBS amplitude on inhibitory control during the antisaccade task. The prosaccade error rate during the antisaccade task, that is, directional errors, was indicative of impaired inhibitory control. We hypothesized that as stimulation amplitude increased, the prosaccade error rate would increase. MATERIALS AND METHODS Ten participants with bilateral STN DBS completed the antisaccade task on six different stimulation amplitudes (including zero amplitude) after a 12-hour overnight withdrawal from antiparkinsonian medication. RESULTS We found that the prosaccade error rate increased as stimulation amplitude increased (p < 0.01). Additionally, prosaccade error rate increased as the modeled volume of tissue activated (VTA) and STN overlap decreased, but this relationship depended on stimulation amplitude (p = 0.04). CONCLUSIONS Our findings suggest that higher stimulation amplitude settings can be modulatory for inhibitory control. Some individual variability in the effect of stimulation amplitude can be explained by active contact location and VTA-STN overlap. Higher stimulation amplitudes are more deleterious if the active contacts fall outside of the STN resulting in a smaller VTA-STN overlap. This is clinically significant as it can inform clinical optimization of STN DBS parameters. Further studies are needed to determine stimulation amplitude effects on other aspects of cognition and whether inhibitory control deficits on the antisaccade task result in a meaningful impact on the quality of life.
Collapse
Affiliation(s)
- Miranda J Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Lisa C Goelz
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Gian D Pal
- Department of Neurological Science, Section of Parkinson Disease and Movement Disorders, Rush University Medical Center, Chicago, IL, USA
| | - Jessica A Karl
- Department of Neurological Science, Section of Parkinson Disease and Movement Disorders, Rush University Medical Center, Chicago, IL, USA
| | - Leo Verhagen Metman
- Department of Neurological Science, Section of Parkinson Disease and Movement Disorders, Rush University Medical Center, Chicago, IL, USA
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jody D Ciolino
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ajay S Kurani
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Fabian J David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
30
|
De Pretto M, Mouthon M, Debove I, Pollo C, Schüpbach M, Spierer L, Accolla EA. Proactive inhibition is not modified by deep brain stimulation for Parkinson's disease: An electrical neuroimaging study. Hum Brain Mapp 2021; 42:3934-3949. [PMID: 34110074 PMCID: PMC8288097 DOI: 10.1002/hbm.25530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/06/2022] Open
Abstract
In predictable contexts, motor inhibitory control can be deployed before the actual need for response suppression. The brain functional underpinnings of proactive inhibition, and notably the role of basal ganglia, are not entirely identified. We investigated the effects of deep brain stimulation of the subthalamic nucleus or internal globus pallidus on proactive inhibition in patients with Parkinson's disease. They completed a cued go/no-go proactive inhibition task ON and (unilateral) OFF stimulation while EEG was recorded. We found no behavioural effect of either subthalamic nucleus or internal globus pallidus deep brain stimulation on proactive inhibition, despite a general improvement of motor performance with subthalamic nucleus stimulation. In the non-operated and subthalamic nucleus group, we identified periods of topographic EEG modulation by the level of proactive inhibition. In the subthalamic nucleus group, source estimation analysis suggested the initial involvement of bilateral frontal and occipital areas, followed by a right lateralized fronto-basal network, and finally of right premotor and left parietal regions. Our results confirm the overall preservation of proactive inhibition capacities in both subthalamic nucleus and internal globus pallidus deep brain stimulation, and suggest a partly segregated network for proactive inhibition, with a preferential recruitment of the indirect pathway.
Collapse
Affiliation(s)
- Michael De Pretto
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ines Debove
- Movement Disorders Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital University Hospital Bern, Bern, Switzerland
| | - Michael Schüpbach
- Movement Disorders Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lucas Spierer
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ettore A Accolla
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Neurology Unit, Department of Medicine, HFR - Cantonal Hospital Fribourg, Fribourg, Switzerland
| |
Collapse
|
31
|
Openneer TJC, van der Meer D, Marsman JBC, Forde NJ, Akkermans SEA, Naaijen J, Buitelaar JK, Hoekstra PJ, Dietrich A. Impaired response inhibition during a stop-signal task in children with Tourette syndrome is related to ADHD symptoms: A functional magnetic resonance imaging study. World J Biol Psychiatry 2021; 22:350-361. [PMID: 32821008 DOI: 10.1080/15622975.2020.1813329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Tourette syndrome (TS) is characterised by the presence of sudden, rapid movements and vocalizations (tics). The nature of tics suggests impairments in inhibitory control. However, findings of impaired inhibitory control have so far been inconsistent, possibly due to small sample sizes, wide age ranges, or not taking medication use or attention-deficit/hyperactivity disorder (ADHD) comorbidity into account. METHODS We investigated group differences in response inhibition using an fMRI-based stop-signal task in 103 8 to 12-year-old children (n = 51 with TS, of whom n = 28 without comorbid ADHD [TS - ADHD] and n = 23 with comorbid ADHD [TS + ADHD]; and n = 52 healthy controls), and related these measures to tic and ADHD severity. RESULTS We observed an impaired response inhibition performance in children with TS + ADHD, but not in those with TS - ADHD, relative to healthy controls, as evidenced by a slower stop-signal reaction time, slower mean reaction times, and larger variability of reaction times. Dimensional analyses implicated ADHD severity as the driving force in these findings. Neural activation during failed inhibition was stronger in the inferior frontal gyrus and temporal and parietal areas in TS + ADHD compared to healthy controls. CONCLUSIONS Impaired inhibitory performance and increased neural activity in TS appear to manifest predominantly in relation to ADHD symptomatology.
Collapse
Affiliation(s)
- Thaïra J C Openneer
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dennis van der Meer
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jan-Bernard C Marsman
- Neuroimaging Center, Department of Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Natalie J Forde
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Sophie E A Akkermans
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jilly Naaijen
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Brockett AT, Roesch MR. Reactive and Proactive Adaptation of Cognitive and Motor Neural Signals during Performance of a Stop-Change Task. Brain Sci 2021; 11:617. [PMID: 34064876 PMCID: PMC8151620 DOI: 10.3390/brainsci11050617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
The ability to inhibit or suppress unwanted or inappropriate actions, is an essential component of executive function and cognitive health. The immense selective pressure placed on maintaining inhibitory control processes is exemplified by the relatively small number of instances in which these systems completely fail in the average person's daily life. Although mistakes and errors do inevitably occur, inhibitory control systems not only ensure that this number is low, but have also adapted behavioral strategies to minimize future failures. The ability of our brains to adapt our behavior and appropriately engage proper motor responses is traditionally depicted as the primary domain of frontal brain areas, despite evidence to the fact that numerous other brain areas contribute. Using the stop-signal task as a common ground for comparison, we review a large body of literature investigating inhibitory control processes across frontal, temporal, and midbrain structures, focusing on our recent work in rodents, in an effort to understand how the brain biases action selection and adapts to the experience of conflict.
Collapse
Affiliation(s)
- Adam T. Brockett
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| | - Matthew R. Roesch
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
33
|
Jana S, Gopal A, Murthy A. Computational Mechanisms Mediating Inhibitory Control of Coordinated Eye-Hand Movements. Brain Sci 2021; 11:607. [PMID: 34068477 PMCID: PMC8150398 DOI: 10.3390/brainsci11050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Significant progress has been made in understanding the computational and neural mechanisms that mediate eye and hand movements made in isolation. However, less is known about the mechanisms that control these movements when they are coordinated. Here, we outline our computational approaches using accumulation-to-threshold and race-to-threshold models to elucidate the mechanisms that initiate and inhibit these movements. We suggest that, depending on the behavioral context, the initiation and inhibition of coordinated eye-hand movements can operate in two modes-coupled and decoupled. The coupled mode operates when the task context requires a tight coupling between the effectors; a common command initiates both effectors, and a unitary inhibitory process is responsible for stopping them. Conversely, the decoupled mode operates when the task context demands weaker coupling between the effectors; separate commands initiate the eye and hand, and separate inhibitory processes are responsible for stopping them. We hypothesize that the higher-order control processes assess the behavioral context and choose the most appropriate mode. This computational mechanism can explain the heterogeneous results observed across many studies that have investigated the control of coordinated eye-hand movements and may also serve as a general framework to understand the control of complex multi-effector movements.
Collapse
Affiliation(s)
- Sumitash Jana
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Atul Gopal
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20814, USA
| | - Aditya Murthy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka 560012, India;
| |
Collapse
|
34
|
The Human Basal Ganglia Mediate the Interplay between Reactive and Proactive Control of Response through Both Motor Inhibition and Sensory Modulation. Brain Sci 2021; 11:brainsci11050560. [PMID: 33925153 PMCID: PMC8146223 DOI: 10.3390/brainsci11050560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
The basal ganglia (BG) have long been known for contributing to the regulation of motor behaviour by means of a complex interplay between tonic and phasic inhibitory mechanisms. However, after having focused for a long time on phasic reactive mechanisms, it is only recently that psychological research in healthy humans has modelled tonic proactive mechanisms of control. Mutual calibration between anatomo-functional and psychological models is still needed to better understand the unclear role of the BG in the interplay between proactive and reactive mechanisms of control. Here, we implemented an event-related fMRI design allowing proper analysis of both the brain activity preceding the target-stimulus and the brain activity induced by the target-stimulus during a simple go/nogo task, with a particular interest in the ambiguous role of the basal ganglia. Post-stimulus activity was evoked in the left dorsal striatum, the subthalamus nucleus and internal globus pallidus by any stimulus when the situation was unpredictable, pinpointing its involvement in reactive, non-selective inhibitory mechanisms when action restraint is required. Pre-stimulus activity was detected in the ventral, not the dorsal, striatum, when the situation was unpredictable, and was associated with changes in functional connectivity with the early visual, not the motor, cortex. This suggests that the ventral striatum supports modulatory influence over sensory processing during proactive control.
Collapse
|
35
|
Stimulation of Different Sectors of the Human Dorsal Premotor Cortex Induces a Shift from Reactive to Predictive Action Strategies and Changes in Motor Inhibition: A Dense Transcranial Magnetic Stimulation (TMS) Mapping Study. Brain Sci 2021; 11:brainsci11050534. [PMID: 33923217 PMCID: PMC8146001 DOI: 10.3390/brainsci11050534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Delayed motor tasks require timely interaction between immobility and action. The neural substrates of these processes probably reside in the premotor and motor circuits; however, fine-grained anatomical/functional information is still lacking. Participants performed a delayed simple reaction task, structured as a ready-set-go sequence, with a fixed, predictable, SET-period. Responses were given with lip movements. During the SET-period, we performed a systematic dense-mapping of the bilateral dorsal premotor region (dPM) by means of single transcranial magnetic stimulation (TMS) pulses on an 18-spot mapping grid, interleaved with sham TMS which served as a baseline. Reaction times (RTs) in TMS trials over each grid spot were compared to RTs in sham trials to build a statistical parametric z-map. The results reveal a rostro-caudal functional gradient in the dPM. TMS of the rostral dPM induced a shift from reactive towards predictive response strategies. TMS of the caudal dPM interfered with the SET-period duration. By means of dense TMS mapping, we have drawn a putative functional map of the role of the dPM during the SET-period. A higher-order rostral component is involved in setting action strategies and a caudal, lower-order, part is probably involved in the inhibitory control of motor output.
Collapse
|
36
|
Nguyen TV, Balachandran P, Muggleton NG, Liang WK, Juan CH. Dynamical EEG Indices of Progressive Motor Inhibition and Error-Monitoring. Brain Sci 2021; 11:brainsci11040478. [PMID: 33918711 PMCID: PMC8070019 DOI: 10.3390/brainsci11040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
Response inhibition has been widely explored using the stop signal paradigm in the laboratory setting. However, the mechanism that demarcates attentional capture from the motor inhibition process is still unclear. Error monitoring is also involved in the stop signal task. Error responses that do not complete, i.e., partial errors, may require different error monitoring mechanisms relative to an overt error. Thus, in this study, we included a “continue go” (Cont_Go) condition to the stop signal task to investigate the inhibitory control process. To establish the finer difference in error processing (partial vs. full unsuccessful stop (USST)), a grip-force device was used in tandem with electroencephalographic (EEG), and the time-frequency characteristics were computed with Hilbert–Huang transform (HHT). Relative to Cont_Go, HHT results reveal (1) an increased beta and low gamma power for successful stop trials, indicating an electrophysiological index of inhibitory control, (2) an enhanced theta and alpha power for full USST trials that may mirror error processing. Additionally, the higher theta and alpha power observed in partial over full USST trials around 100 ms before the response onset, indicating the early detection of error and the corresponding correction process. Together, this study extends our understanding of the finer motor inhibition control and its dynamic electrophysiological mechanisms.
Collapse
Affiliation(s)
- Trung Van Nguyen
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
| | - Prasad Balachandran
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
| | - Neil G. Muggleton
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City 32001, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City 32001, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City 32001, Taiwan
- Department of Psychology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Correspondence: ; Tel.: +88-(63)-427-4738; Fax: +88-(63)-426-3502
| |
Collapse
|
37
|
Guillaumin A, Serra GP, Georges F, Wallén-Mackenzie Å. Experimental investigation into the role of the subthalamic nucleus (STN) in motor control using optogenetics in mice. Brain Res 2021; 1755:147226. [PMID: 33358727 DOI: 10.1016/j.brainres.2020.147226] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
The subthalamic nucleus (STN) is critical for the execution of intended movements. Loss of its normal function is strongly associated with several movement disorders, including Parkinson's disease for which the STN is an important target area in deep brain stimulation (DBS) therapy. Classical basal ganglia models postulate that two parallel pathways, the direct and indirect pathways, exert opposing control over movement, with the STN acting within the indirect pathway. The STN is regulated by both inhibitory and excitatory input, and is itself excitatory. While most functional knowledge of this clinically relevant brain structure has been gained from pathological conditions and models, primarily parkinsonian, experimental evidence for its role in normal motor control has remained more sparse. The objective here was to tease out the selective impact of the STN on several motor parameters required to achieve intended movement, including locomotion, balance and motor coordination. Optogenetic excitation and inhibition using both bilateral and unilateral stimulations of the STN were implemented in freely-moving mice. The results demonstrate that selective optogenetic inhibition of the STN enhances locomotion while its excitation reduces locomotion. These findings lend experimental support to basal ganglia models of the STN in terms of locomotion. In addition, optogenetic excitation in freely-exploring mice induced self-grooming, disturbed gait and a jumping/escaping behavior, while causing reduced motor coordination in advanced motor tasks, independent of grooming and jumping. This study contributes experimentally validated evidence for a regulatory role of the STN in several aspects of motor control.
Collapse
Affiliation(s)
- Adriane Guillaumin
- Department of Organism Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Gian Pietro Serra
- Department of Organism Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - François Georges
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
38
|
van den Wildenberg WPM, van Wouwe NC, Ridderinkhof KR, Neimat JS, Elias WJ, Bashore TR, Wylie SA. Deep-brain stimulation of the subthalamic nucleus improves overriding motor actions in Parkinson's disease. Behav Brain Res 2021; 402:113124. [PMID: 33422595 DOI: 10.1016/j.bbr.2021.113124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Findings from previous research using the classic stop-signal task indicate that the subthalamic nucleus (STN) plays an important role in the ability to inhibit motor actions. Here we extend these findings using a stop-change task that requires voluntary action override to stop an ongoing motor response and change to an alternative response. Sixteen patients diagnosed with Parkinson's disease (PD) and 16 healthy control participants (HC) performed the stop-change task. PD patients completed the task when deep-brain stimulation (DBS) of the STN was turned on and when it was turned off. Behavioral results indicated that going, stopping, and changing latencies were shortened significantly among PD patients during STN DBS, the former two reductions replicating findings from previous DBS studies using the classic stop-signal task. The shortened go latencies observed among PD patients fell within the control range. In contrast, stopping latencies among PD patients, although reduced significantly, continued to be significantly longer than those of the HC. Like go latencies, stop-change latencies were reduced sufficiently among PD patients for them to fall within the control range, a novel finding. In conclusion, STN DBS produced a general, but differential, improvement in the ability of PD patients to override motor actions. Going, stopping, and stop-change latencies were all shortened, but only going and stop-change latencies were normalized.
Collapse
Affiliation(s)
- Wery P M van den Wildenberg
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, the Netherlands.
| | | | - K Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, the Netherlands
| | - Joseph S Neimat
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - W Jeffrey Elias
- Department of Neurosurgery, University of Virginia Health Systems, Charlottesville, VA, USA
| | - Theodore R Bashore
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA; School of Psychological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Scott A Wylie
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
39
|
van Wouwe NC, Neimat JS, van den Wildenberg WPM, Hughes SB, Lopez AM, Phibbs FT, Schall JD, Rodriguez WJ, Bradley EB, Dawant BM, Wylie SA. Subthalamic Nucleus Subregion Stimulation Modulates Inhibitory Control. Cereb Cortex Commun 2020; 1:tgaa083. [PMID: 33381760 PMCID: PMC7750129 DOI: 10.1093/texcom/tgaa083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 11/12/2022] Open
Abstract
Patients with Parkinson's disease (PD) often experience reductions in the proficiency to inhibit actions. The motor symptoms of PD can be effectively treated with deep brain stimulation (DBS) of the subthalamic nucleus (STN), a key structure in the frontal-striatal network that may be directly involved in regulating inhibitory control. However, the precise role of the STN in stopping control is unclear. The STN consists of functional subterritories linked to dissociable cortical networks, although the boundaries of the subregions are still under debate. We investigated whether stimulating the dorsal and ventral subregions of the STN would show dissociable effects on ability to stop. We studied 12 PD patients with STN DBS. Patients with two adjacent contacts positioned within the bounds of the dorsal and ventral STN completed two testing sessions (OFF medication) with low amplitude stimulation (0.4 mA) at either the dorsal or ventral contacts bilaterally, while performing the stop task. Ventral, but not dorsal, DBS improved stopping latencies. Go reactions were similar between dorsal and ventral DBS STN. Stimulation in the ventral, but not dorsal, subregion of the STN improved stopping speed, confirming the involvement of the STN in stopping control and supporting the STN functional subregions.
Collapse
Affiliation(s)
- Nelleke C van Wouwe
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202 USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph S Neimat
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202 USA
| | - Wery P M van den Wildenberg
- Department of Psychology, University of Amsterdam, Amsterdam 1018 WS, The Netherlands
- Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam 1001 NK, The Netherlands
| | - Shelby B Hughes
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexander M Lopez
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Fenna T Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey D Schall
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - William J Rodriguez
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Elise B Bradley
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Benoit M Dawant
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Scott A Wylie
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202 USA
| |
Collapse
|
40
|
Chen KH, Gogia AS, Tang A, Martin Del Campo-Vera R, Sebastian R, Nune G, Wong J, Liu C, Kellis S, Lee B. Beta-band modulation in the human hippocampus during a conflict response task. J Neural Eng 2020; 17. [PMID: 33059331 DOI: 10.1088/1741-2552/abc1b8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/15/2020] [Indexed: 02/02/2023]
Abstract
Objective Identify the role of beta-band (13-30 Hz) power modulation in the human hippocampus during conflict processing. Approach We investigated changes in the spectral power of the beta band (13-30 Hz) as measured by depth electrode leads in the hippocampus during a modified Stroop task in six patients with medically-refractory epilepsy. Previous work done with direct electrophysiological recordings in humans has shown hippocampal theta-band (3-8 Hz) modulation during conflict processing. Local field potentials (LFP) sampled at 2k Hz were used for analysis and a non-parametric cluster-permutation t-test was used to identify the time period and frequency ranges of significant power change during cue processing (i.e. post-stimulus, pre-response). Main Results In five of the six patients, we observe a statistically significant increase in hippocampal beta-band power during successful conflict processing in the incongruent trial condition (cluster-based correction for multiple comparisons, p < 0.05). There was no significant beta-band power change observed during the cue processing period of the congruent condition in the hippocampus of these patients. Significance The beta-power changes during conflict processing represented here are consistent with previous studies suggesting that the hippocampus plays a role in conflict processing, but it is the first time that the beta band has been shown to be involved in humans with direct electrophysiological evidence. We propose that beta-band modulation plays a role in successful conflict detection and automatic response inhibition in the human hippocampus as studied during a conflict response task.
Collapse
Affiliation(s)
- Kuang-Hsuan Chen
- Neurological Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, UNITED STATES
| | - Angad S Gogia
- University of Southern California Keck School of Medicine, Los Angeles, California, 90089-9034, UNITED STATES
| | - Austin Tang
- Neurological Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, 90089-9034, UNITED STATES
| | | | - Rinu Sebastian
- Neurological Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, UNITED STATES
| | - George Nune
- USC Keck School of Medicine, Los Angeles, California, UNITED STATES
| | - Janeline Wong
- University of Southern California, Los Angeles, 90089-0001, UNITED STATES
| | - Charles Liu
- Neuroresotoration Center and Department of Neurosurgery and Neurology, University of Southern California, Los Angeles, California, UNITED STATES
| | - Spencer Kellis
- Neurosurgery, USC Keck School of Medicine, Los Angeles, California, UNITED STATES
| | - Brian Lee
- Neuroresotoration Center and Department of Neurosurgery and Neurology, University of Southern California, Los Angeles, California, UNITED STATES
| |
Collapse
|
41
|
Drummond NM, Chen R. Deep brain stimulation and recordings: Insights into the contributions of subthalamic nucleus in cognition. Neuroimage 2020; 222:117300. [PMID: 32828919 DOI: 10.1016/j.neuroimage.2020.117300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Recent progress in targeted interrogation of basal ganglia structures and networks with deep brain stimulation in humans has provided insights into the complex functions the subthalamic nucleus (STN). Beyond the traditional role of the STN in modulating motor function, recognition of its role in cognition was initially fueled by side effects seen with STN DBS and later revealed with behavioral and electrophysiological studies. Anatomical, clinical, and electrophysiological data converge on the view that the STN is a pivotal node linking cognitive and motor processes. The goal of this review is to synthesize the literature to date that used DBS to examine the contributions of the STN to motor and non-motor cognitive functions and control. Multiple modalities of research have provided us with an enhanced understanding of the STN and reveal that it is critically involved in motor and non-motor inhibition, decision-making, motivation and emotion. Understanding the role of the STN in cognition can enhance the therapeutic efficacy and selectivity not only for existing applications of DBS, but also in the development of therapeutic strategies to stimulate aberrant circuits to treat non-motor symptoms of Parkinson's disease and other disorders.
Collapse
Affiliation(s)
- Neil M Drummond
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
42
|
Zhang F, Iwaki S. Correspondence Between Effective Connections in the Stop-Signal Task and Microstructural Correlations. Front Hum Neurosci 2020; 14:279. [PMID: 32848664 PMCID: PMC7396500 DOI: 10.3389/fnhum.2020.00279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fan Zhang
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sunao Iwaki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- *Correspondence: Sunao Iwaki
| |
Collapse
|
43
|
Yoo PE, Oxley TJ, Hagan MA, John S, Ronayne SM, Rind GS, Brinded AM, Opie NL, Moffat BA, Wong YT. Distinct Neural Correlates Underlie Inhibitory Mechanisms of Motor Inhibition and Motor Imagery Restraint. Front Behav Neurosci 2020; 14:77. [PMID: 32581737 PMCID: PMC7289151 DOI: 10.3389/fnbeh.2020.00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
There is evidence to suggest that motor execution and motor imagery both involve planning and execution of the same motor plan, however, in the latter the output is inhibited. Currently, little is known about the underlying neural mechanisms of motor output inhibition during motor imagery. Uncovering the distinctive characteristics of motor imagery may help us better understand how we abstract complex thoughts and acquire new motor skills. The current study aimed to dissociate the cognitive processes involved in two distinct inhibitory mechanisms of motor inhibition and motor imagery restraint. Eleven healthy participants engaged in an imagined GO/NO-GO task during a 7 Tesla fMRI experiment. Participants planned a specific type of motor imagery, then, imagined the movements during the GO condition and restrained from making a response during the NO-GO condition. The results revealed that specific sub-regions of the supplementary motor cortex (SMC) and the primary motor cortex (M1) were recruited during the imagination of specific movements and information flowed from the SMC to the M1. Such condition-specific recruitment was not observed when motor imagery was restrained. Instead, general recruitment of the posterior parietal cortex (PPC) was observed, while the BOLD activity in the SMC and the M1 decreased below the baseline at the same time. Information flowed from the PPC to the SMC, and recurrently between the M1 and the SMC, and the M1 and the PPC. These results suggest that motor imagery involves task-specific motor output inhibition partly imposed by the SMC to the M1, while the PPC globally inhibits motor plans before they are passed on for execution during the restraint of responses.
Collapse
Affiliation(s)
- Peter E Yoo
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Electrical & Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Thomas J Oxley
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Maureen A Hagan
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Sam John
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Electrical & Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Stephen M Ronayne
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Electrical & Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Gil S Rind
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Electrical & Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Nicholas L Opie
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Electrical & Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Bradford A Moffat
- Department of Anatomy and Neuroscience, The University of Melbourne, Kenneth Myer Building, Parkville, VIC, Australia
| | - Yan T Wong
- Department of Physiology, Monash University, Melbourne, VIC, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia.,Neuroscience Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Pickering JS, Leroi I, McBride J, Poliakoff E. Continuous force measurements reveal no inhibitory control deficits in Parkinson's disease. Exp Brain Res 2020; 238:1119-1132. [PMID: 32222777 PMCID: PMC7237404 DOI: 10.1007/s00221-020-05768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/03/2020] [Indexed: 11/26/2022]
Abstract
Suppression of unwanted motor responses can be disrupted by Parkinson's disease. People with Parkinson's (PwP) can show maladaptive reward-driven behaviours in the form of impulse control behaviours, which are associated with the use of the dopaminergic treatments used to alleviate the motor symptoms of the disease. However, the effects of Parkinson's itself on impulsive behaviour and control are unclear-empirical studies have yielded mixed findings, and some imaging studies have shown a functional deficit in the absence of a measurable change in behaviour. Here, we investigated the effects of Parkinson's on response activation and control by studying the dynamics of response in standard inhibitory control tasks-the Stop Signal and Simon tasks-using a continuous measure of response force. Our results are largely in favour of the conclusion that response inhibition appears to be intact in PwP, even when using a more sensitive measure of behavioural control relative to traditional button-press measures. Our findings provide some clarity as to the effects of Parkinson's on response inhibition and show continuous response force measurement can provide a sensitive means of detecting erroneous response activity in PwP, which could also be generalised to studying related processes in other populations.
Collapse
Affiliation(s)
- Jade S Pickering
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PL, UK
| | - Iracema Leroi
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PL, UK
- Global Brain Health Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer McBride
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PL, UK
| | - Ellen Poliakoff
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
45
|
León J, Sánchez-Kuhn A, Fernández-Martín P, Páez-Pérez M, Thomas C, Datta A, Sánchez-Santed F, Flores P. Transcranial direct current stimulation improves risky decision making in women but not in men: A sham-controlled study. Behav Brain Res 2020; 382:112485. [DOI: 10.1016/j.bbr.2020.112485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
|
46
|
Leontyev A, Yamauchi T. Mouse movement measures enhance the stop-signal task in adult ADHD assessment. PLoS One 2019; 14:e0225437. [PMID: 31770416 PMCID: PMC6880625 DOI: 10.1371/journal.pone.0225437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/05/2019] [Indexed: 02/03/2023] Open
Abstract
The accurate detection of attention-deficit/hyperactivity disorder (ADHD) symptoms, such as inattentiveness and behavioral disinhibition, is crucial for delivering timely assistance and treatment. ADHD is commonly diagnosed and studied with specialized questionnaires and behavioral tests such as the stop-signal task. However, in cases of late-onset or mild forms of ADHD, behavioral measures often fail to gauge the deficiencies well-highlighted by questionnaires. To improve the sensitivity of behavioral tests, we propose a novel version of the stop-signal task (SST), which integrates mouse cursor tracking. In two studies, we investigated whether introducing mouse movement measures to the stop-signal task improves associations with questionnaire-based measures, as compared to the traditional (keypress-based) version of SST. We also scrutinized the influence of different parameters of stop-signal tasks, such as the method of stop-signal delay setting or definition of response inhibition failure, on these associations. Our results show that a) SSRT has weak association with impulsivity, while mouse movement measures have strong and significant association with impulsivity; b) machine learning models trained on the mouse movement data from "known" participants using nested cross-validation procedure can accurately predict impulsivity ratings of "unknown" participants; c) mouse movement features such as maximum acceleration and maximum velocity are among the most important predictors for impulsivity; d) using preset stop-signal delays prompts behavior that is more indicative of impulsivity.
Collapse
Affiliation(s)
- Anton Leontyev
- Department of Psychological and Brain Sciences, Texas
A&M University,Texas, United States of America
| | - Takashi Yamauchi
- Department of Psychological and Brain Sciences, Texas
A&M University,Texas, United States of America
| |
Collapse
|
47
|
Di Caprio V, Modugno N, Mancini C, Olivola E, Mirabella G. Early‐Stage Parkinson's Patients Show Selective Impairment in Reactive But Not Proactive Inhibition. Mov Disord 2019; 35:409-418. [DOI: 10.1002/mds.27920] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 10/23/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Veronica Di Caprio
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli (IS) Italy
| | - Nicola Modugno
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli (IS) Italy
| | - Christian Mancini
- Department of Anatomy, Histology, Forensic Medicine & OrthopedicsSapienza University Rome Italy
| | - Enrica Olivola
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli (IS) Italy
| | - Giovanni Mirabella
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli (IS) Italy
- Department of Anatomy, Histology, Forensic Medicine & OrthopedicsSapienza University Rome Italy
| |
Collapse
|
48
|
Ji GJ, Wei JJ, Liu T, Li D, Zhu C, Yu F, Tian Y, Wang K, Zhang L, Hu P. Aftereffect and Reproducibility of Three Excitatory Repetitive TMS Protocols for a Response Inhibition Task. Front Neurosci 2019; 13:1155. [PMID: 31749674 PMCID: PMC6848026 DOI: 10.3389/fnins.2019.01155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022] Open
Abstract
A number of repetitive transcranial magnetic stimulation (rTMS) protocols have been developed for modulating brain function non-invasively. To identify the most powerful one, these protocols have been compared in the context of the motor system. However, to what extent the conclusions could be generalized to high-level functions is largely unknown. In this study, we compared the modulatory effect of three excitatory rTMS protocols on high-level cognition represented by response inhibition ability. Our first experiment revealed that intermittent theta-burst stimulation (iTBS) could significantly improve reaction time in a stop signal task, while 5-Hz and 25-Hz stimuli were ineffective. This iTBS effect was significantly higher than that for the sham simulation and only occurred in the second session of the stop signal task after iTBS in the first experiment. However, this aftereffect of iTBS was not reproduced in the second experiment, indicating high variability across subjects. Thus, on the one hand, our findings indicate that iTBS on the pre-SMA could improve inhibitory control, but on the other hand, the reliability and reproducibility of this effect needs further investigation.
Collapse
Affiliation(s)
- Gong-Jun Ji
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Jun-Jie Wei
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Tingting Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Laboratory of Cognitive Neuropsychology, Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Dandan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Laboratory of Cognitive Neuropsychology, Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Chunyan Zhu
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Fengqiong Yu
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Laboratory of Cognitive Neuropsychology, Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Laboratory of Cognitive Neuropsychology, Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Lei Zhang
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Laboratory of Cognitive Neuropsychology, Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| |
Collapse
|
49
|
Zhang F, Iwaki S. Common Neural Network for Different Functions: An Investigation of Proactive and Reactive Inhibition. Front Behav Neurosci 2019; 13:124. [PMID: 31231199 PMCID: PMC6568210 DOI: 10.3389/fnbeh.2019.00124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
Successful behavioral inhibition involves both proactive and reactive inhibition, allowing people to prepare for restraining actions, and cancel their actions if the response becomes inappropriate. In the present study, we utilized the stop-signal paradigm to examine whole-brain contrasts and functional connectivity for proactive and reactive inhibition. The results of our functional magnetic resonance imaging (fMRI) data analysis show that the inferior frontal gyrus (IFG), the supplementary motor area (SMA), the subthalamic nucleus (STN), and the primary motor cortex (M1) were activated by both proactive and reactive inhibition. We then created 70 dynamic causal models (DCMs) representing the alternative hypotheses of modulatory effects from proactive and reactive inhibition in the IFG-SMA-STN-M1 network. Bayesian model selection (BMS) showed that causal connectivity from the IFG to the SMA was modulated by both proactive and reactive inhibition. To further investigate the possible brain circuits involved in behavioral control, including proactive inhibitory processes, we compared 13 DCMs representing the alternative hypotheses of proactive modulation in the dorsolateral prefrontal cortex (DLPFC)-caudate-IFG-SMA neural circuits. BMS revealed that the effective connectivity from the caudate to the IFG is modulated only in the proactive inhibition condition but not in the reactive inhibition. Together, our results demonstrate how fronto-basal ganglia pathways are commonly involved in proactive and reactive inhibitory control, with a "longer" pathway (DLPFC-caudate-IFG-SMA-STN-M1) playing a modulatory role in proactive inhibitory control, and a "shorter" pathway (IFG-SMA-STN-M1) involved in reactive inhibition. These results provide causal evidence for the roles of indirect and hyperdirect pathways in mediating proactive and reactive inhibitory control.
Collapse
Affiliation(s)
- Fan Zhang
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sunao Iwaki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
50
|
Mancini C, Modugno N, Santilli M, Pavone L, Grillea G, Morace R, Mirabella G. Unilateral Stimulation of Subthalamic Nucleus Does Not Affect Inhibitory Control. Front Neurol 2019; 9:1149. [PMID: 30666229 PMCID: PMC6330317 DOI: 10.3389/fneur.2018.01149] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023] Open
Abstract
Despite the relevance of inhibitory control in shaping our behavior its neural substrates are still hotly debated. In this regard, it has been suggested that inhibitory control relies upon a right-lateralized network which involves the right subthalamic nucleus (STN). To assess the role of STN, we took advantage of a relatively rare model, i.e., advanced Parkinson's patients who received unilateral deep-brain stimulation (DBS) of the STN either of the left (n = 10) or of the right (n = 10) hemisphere. We gave them a stop-signal reaching task, and we compared patients' performance in two experimental conditions, DBS-ON and DBS-OFF. In addition, we also tested 22 age-matched healthy participants. As expected, we found that inhibitory control is impaired in Parkinson's patients with respect to healthy participants. However, neither reactive nor proactive inhibition is improved when either the right or the left DBS is active. We interpreted these findings in light of the fact that previous studies, exploiting exactly the same task, have shown that only bilateral STN DBS restores a near-normal inhibitory control. Thus, although null results have to be interpreted with caution, our current findings confirm that the right STN does not play a key role in suppressing pending actions. However, on the ground of previous studies, it is very likely that this subcortical structure is part of the brain network subserving inhibition but to implement this executive function both subthalamic nuclei must be simultaneously active. Our findings are of significance to other researchers studying the effects of STN DBS on key executive functions, such as impulsivity and inhibition and they are also of clinical relevance for determining the therapeutic benefits of STN DBS as they suggest that, at least as far as inhibitory control is concerned, it is better to implant DBS bilaterally than unilaterally.
Collapse
Affiliation(s)
- Christian Mancini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | | | | | | | | | | | - Giovanni Mirabella
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|