1
|
NGF Eye Administration Recovers the TrkB and Glutamate/GABA Marker Deficit in the Adult Visual Cortex Following Optic Nerve Crush. Int J Mol Sci 2021; 22:ijms221810014. [PMID: 34576177 PMCID: PMC8471133 DOI: 10.3390/ijms221810014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Eye-drop recombinant human nerve growth factor (ed-rhNGF) has proved to recover the retina and optic nerve damage in animal models, including the unilateral optic nerve crush (ONC), and to improve visual acuity in humans. These data, associated with evidence that ed-rhNGF stimulates the brain derived neurotrophic factor (BDNF) in retina and cortex, suggests that NGF might exert retino-fugal effects by affecting BDNF and its receptor TrkB. To address these questions, their expression and relationship with the GABAergic and glutamatergic transmission markers, GAD65 and GAD67, vesicular inhibitory amino acid transporter (VGAT), and vesicular glutamate transporters 1 and 2 (VGLUT-1 and VGLUT-2) were investigated in adult ONC rats contralateral and ipsilateral visual cortex (VCx). Ed-rhNGF recovers the ONC-induced alteration of GABAergic and glutamatergic markers in contralateral VCx, induces an upregulation of TrkB, which is positively correlated with BDNF precursor (proBDNF) decrease in both VCx sides, and strongly enhances TrkB+ cell soma and neuronal endings surrounded by GAD65 immuno-reactive afferents. These findings contribute to enlarging the knowledge on the mechanism of actions and cellular targets of exogenously administrated NGF, and suggest that ed-rhNGF might act by potentiating the activity-dependent TrkB expression in GAD+ cells in VCx following retina damage and/or ONC.
Collapse
|
2
|
Groleau M, Nazari-Ahangarkolaee M, Vanni MP, Higgins JL, Vézina Bédard AS, Sabel BA, Mohajerani MH, Vaucher E. Mesoscopic cortical network reorganization during recovery of optic nerve injury in GCaMP6s mice. Sci Rep 2020; 10:21472. [PMID: 33293617 PMCID: PMC7723052 DOI: 10.1038/s41598-020-78491-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022] Open
Abstract
As the residual vision following a traumatic optic nerve injury can spontaneously recover over time, we explored the spontaneous plasticity of cortical networks during the early post-optic nerve crush (ONC) phase. Using in vivo wide-field calcium imaging on awake Thy1-GCaMP6s mice, we characterized resting state and evoked cortical activity before, during, and 31 days after ONC. The recovery of monocular visual acuity and depth perception was evaluated in parallel. Cortical responses to an LED flash decreased in the contralateral hemisphere in the primary visual cortex and in the secondary visual areas following the ONC, but was partially rescued between 3 and 5 days post-ONC, remaining stable thereafter. The connectivity between visual and non-visual regions was disorganized after the crush, as shown by a decorrelation, but correlated activity was restored 31 days after the injury. The number of surviving retinal ganglion cells dramatically dropped and remained low. At the behavioral level, the ONC resulted in visual acuity loss on the injured side and an increase in visual acuity with the non-injured eye. In conclusion, our results show a reorganization of connectivity between visual and associative cortical areas after an ONC, which is indicative of spontaneous cortical plasticity.
Collapse
Affiliation(s)
- Marianne Groleau
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, H3T 1P1, Canada
| | - Mojtaba Nazari-Ahangarkolaee
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Matthieu P Vanni
- Laboratoire de Neurophotonique, École d'Optométrie, Université de Montréal, Montréal, QC, H3T 1P1, Canada
| | - Jacqueline L Higgins
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, H3T 1P1, Canada
| | - Anne-Sophie Vézina Bédard
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, H3T 1P1, Canada
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-V.-Guericke University of Magdeburg, 39120, Magdeburg, Germany
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, H3T 1P1, Canada.
| |
Collapse
|
3
|
Vasalauskaite A, Morgan JE, Sengpiel F. Plasticity in Adult Mouse Visual Cortex Following Optic Nerve Injury. Cereb Cortex 2019; 29:1767-1777. [PMID: 30668659 PMCID: PMC6418869 DOI: 10.1093/cercor/bhy347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/10/2018] [Accepted: 12/23/2018] [Indexed: 12/25/2022] Open
Abstract
Optic nerve (ON) injury is an established model of axonal injury which results in retrograde degeneration and death of retinal ganglion cells as well anterograde loss of transmission and Wallerian degeneration of the injured axons. While the local impact of ON crush has been extensively documented we know comparatively little about the functional changes that occur in higher visual structures such as primary visual cortex (V1). We explored the extent of adult cortical plasticity using ON crush in aged mice. V1 function of the contralateral hemisphere was assessed longitudinally by intrinsic signal imaging and 2-photon calcium imaging before and after ON crush. Functional imaging demonstrated an immediate shift in V1 ocular dominance towards the ipsilateral, intact eye, due to the expected almost complete loss of responses to contralateral eye stimulation. Surprisingly, within 2 weeks we observed a delayed increase in ipsilateral eye responses. Additionally, spontaneous activity in V1 was reduced, similar to the lesion projection zone after retinal lesions. The observed changes in V1 activity indicate that severe ON injury in adulthood evokes cortical plasticity not only cross-modally but also within the visual cortex; this plasticity may be best compared with that seen after retinal lesions.
Collapse
Affiliation(s)
| | - James E Morgan
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, UK
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
- Neuroscience & Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff, UK
| |
Collapse
|
4
|
Sergeeva EG, Espinosa-Garcia C, Atif F, Pardue MT, Stein DG. Neurosteroid allopregnanolone reduces ipsilateral visual cortex potentiation following unilateral optic nerve injury. Exp Neurol 2018; 306:138-148. [PMID: 29729249 DOI: 10.1016/j.expneurol.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 10/17/2022]
Abstract
In adult mice with unilateral optic nerve crush injury (ONC), we studied visual response plasticity in the visual cortex following stimulation with sinusoidal grating. We examined visually evoked potentials (VEP) in the primary visual cortex ipsilateral and contralateral to the crushed nerve. We found that unilateral ONC induces enhancement of visual response on the side ipsilateral to the injury that is evoked by visual stimulation to the intact eye. This enhancement was associated with supranormal spatial frequency thresholds in the intact eye when tested using optomotor response. To probe whether injury-induced disinhibition caused the potentiation, we treated animals with the neurosteroid allopregnanolone, a potent agonist of the GABAA receptor, one hour after crush and on post-injury days 3, 8, 13, and 18. Allopregnanolone diminished enhancement of the VEP and this effect was associated with the upregulated synthesis of the δ-subunit of the GABAA receptor. Our study shows a new aspect of experience-dependent plasticity following unilateral ONC. This hyper-activity in the ipsilateral visual cortex is prevented by upregulation of GABA inhibition with allopregnanolone. Our findings suggest the therapeutic potential of allopregnanolone for modulation of plasticity in certain eye and brain disorders and a possible role for disinhibition in ipsilateral hyper-activity following unilateral ONC.
Collapse
Affiliation(s)
- Elena G Sergeeva
- Department of Emergency Medicine, Emory University, 1365B Clifton Road NE, Suite 5100, Atlanta, GA 30322, USA.
| | - Claudia Espinosa-Garcia
- Department of Emergency Medicine, Emory University, 1365B Clifton Road NE, Suite 5100, Atlanta, GA 30322, USA
| | - Fahim Atif
- Department of Emergency Medicine, Emory University, 1365B Clifton Road NE, Suite 5100, Atlanta, GA 30322, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, 1365B Clifton Road NE, Suite 5100, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Cholinergic Potentiation of Restoration of Visual Function after Optic Nerve Damage in Rats. Neural Plast 2017; 2017:6928489. [PMID: 28928986 PMCID: PMC5592016 DOI: 10.1155/2017/6928489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/26/2017] [Accepted: 06/04/2017] [Indexed: 01/03/2023] Open
Abstract
Enhancing cortical plasticity and brain connectivity may improve residual vision following a visual impairment. Since acetylcholine plays an important role in attention and neuronal plasticity, we explored whether potentiation of the cholinergic transmission has an effect on the visual function restoration. To this end, we evaluated for 4 weeks the effect of the acetylcholinesterase inhibitor donepezil on brightness discrimination, visually evoked potentials, and visual cortex reactivity after a bilateral and partial optic nerve crush in adult rats. Donepezil administration enhanced brightness discrimination capacity after optic nerve crush compared to nontreated animals. The visually evoked activation of the primary visual cortex was not restored, as measured by evoked potentials, but the cortical neuronal activity measured by thallium autometallography was not significantly affected four weeks after the optic nerve crush. Altogether, the results suggest a role of the cholinergic system in postlesion cortical plasticity. This finding agrees with the view that restoration of visual function may involve mechanisms beyond the area of primary damage and opens a new perspective for improving visual rehabilitation in humans.
Collapse
|
6
|
Wanger T, Wetzel W, Scheich H, Ohl FW, Goldschmidt J. Spatial patterns of neuronal activity in rat cerebral cortex during non-rapid eye movement sleep. Brain Struct Funct 2015; 220:3469-84. [PMID: 25113606 PMCID: PMC4575691 DOI: 10.1007/s00429-014-0867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/29/2014] [Indexed: 11/06/2022]
Abstract
It is commonly assumed that cortical activity in non-rapid eye movement sleep (NREMS) is spatially homogeneous on the mesoscopic scale. This is partly due to the limited observational scope of common metabolic or imaging methods in sleep. We used the recently developed technique of thallium-autometallography (TlAMG) to visualize mesoscopic patterns of activity in the sleeping cortex with single-cell resolution. We intravenously injected rats with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC) during spontaneously occurring periods of NREMS and mapped the patterns of neuronal uptake of the potassium (K+) probe thallium (Tl+). Using this method, we show that cortical activity patterns are not spatially homogeneous during discrete 5-min episodes of NREMS in unrestrained rats-rather, they are complex and spatially diverse. Along with a relative predominance of infragranular layer activation, we find pronounced differences in metabolic activity of neighboring neuronal assemblies, an observation which lends support to the emerging paradigm that sleep is a distributed process with regulation on the local scale.
Collapse
Affiliation(s)
- Tim Wanger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany.
| | - Wolfram Wetzel
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Henning Scheich
- Emeritus Group Lifelong Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
- Otto-von-Guericke University, 39106, Magdeburg, Germany
- Center for Behavioral Brain Science (CBBS), Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
- Otto-von-Guericke University, 39106, Magdeburg, Germany
| |
Collapse
|
7
|
Neuronal mechanisms underlying transhemispheric diaschisis following focal cortical injuries. Brain Struct Funct 2014; 220:1649-64. [DOI: 10.1007/s00429-014-0750-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 03/03/2014] [Indexed: 12/18/2022]
|
8
|
Stöber F, Baldauf K, Ziabreva I, Harhausen D, Zille M, Neubert J, Reymann KG, Scheich H, Dirnagl U, Schröder UH, Wunder A, Goldschmidt J. Single-cell resolution mapping of neuronal damage in acute focal cerebral ischemia using thallium autometallography. J Cereb Blood Flow Metab 2014; 34:144-52. [PMID: 24129748 PMCID: PMC3887354 DOI: 10.1038/jcbfm.2013.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/16/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
Neuronal damage shortly after onset or after brief episodes of cerebral ischemia has remained difficult to assess with clinical and preclinical imaging techniques as well as with microscopical methods. We here show, in rodent models of middle cerebral artery occlusion (MCAO), that neuronal damage in acute focal cerebral ischemia can be mapped with single-cell resolution using thallium autometallography (TlAMG), a histochemical technique for the detection of the K(+)-probe thallium (Tl(+)) in the brain. We intravenously injected rats and mice with thallium diethyldithiocarbamate (TlDDC), a lipophilic chelate complex that releases Tl(+) after crossing the blood-brain barrier. We found, within the territories of the affected arteries, areas of markedly reduced neuronal Tl(+) uptake in all animals at all time points studied ranging from 15 minutes to 24 hours after MCAO. In large lesions at early time points, areas with neuronal and astrocytic Tl(+) uptake below thresholds of detection were surrounded by putative penumbral zones with preserved but diminished Tl(+) uptake. At 24 hours, the areas of reduced Tl(+)uptake matched with areas delineated by established markers of neuronal damage. The results suggest the use of (201)TlDDC for preclinical and clinical single-photon emission computed tomography (SPECT) imaging of hyperacute alterations in brain K(+) metabolism and prediction of tissue viability in cerebral ischemia.
Collapse
Affiliation(s)
- Franziska Stöber
- 1] Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany [2] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kathrin Baldauf
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Partner site Magdeburg, Magdeburg, Germany
| | - Iryna Ziabreva
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Research Institute for Applied Neurosciences (FAN) GmbH, Magdeburg, Germany [3] Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Denise Harhausen
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Marietta Zille
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Jenni Neubert
- 1] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Institute of Cell Biology and Neurobiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Klaus G Reymann
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Partner site Magdeburg, Magdeburg, Germany
| | - Henning Scheich
- 1] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Partner site Magdeburg, Magdeburg, Germany [3] Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Ulrich Dirnagl
- 1] Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany [2] German Centre for Neurodegenerative Diseases (DZNE), Partner site Berlin, Berlin, Germany
| | - Ulrich H Schröder
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Research Institute for Applied Neurosciences (FAN) GmbH, Magdeburg, Germany
| | - Andreas Wunder
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Jürgen Goldschmidt
- 1] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Clinic for Neurology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
9
|
Wanger T, Scheich H, Ohl FW, Goldschmidt J. The use of thallium diethyldithiocarbamate for mapping CNS potassium metabolism and neuronal activity: Tl+-redistribution, Tl+-kinetics and Tl+-equilibrium distribution. J Neurochem 2012; 122:106-14. [DOI: 10.1111/j.1471-4159.2012.07757.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|