1
|
Liu Y, Bech P, Tamura K, Délez LT, Crochet S, Petersen CCH. Cell class-specific long-range axonal projections of neurons in mouse whisker-related somatosensory cortices. eLife 2024; 13:RP97602. [PMID: 39392390 PMCID: PMC11469677 DOI: 10.7554/elife.97602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Long-range axonal projections of diverse classes of neocortical excitatory neurons likely contribute to brain-wide interactions processing sensory, cognitive and motor signals. Here, we performed light-sheet imaging of fluorescently labeled axons from genetically defined neurons located in posterior primary somatosensory barrel cortex and supplemental somatosensory cortex. We used convolutional networks to segment axon-containing voxels and quantified their distribution within the Allen Mouse Brain Atlas Common Coordinate Framework. Axonal density was analyzed for different classes of glutamatergic neurons using transgenic mouse lines selectively expressing Cre recombinase in layer 2/3 intratelencephalic projection neurons (Rasgrf2-dCre), layer 4 intratelencephalic projection neurons (Scnn1a-Cre), layer 5 intratelencephalic projection neurons (Tlx3-Cre), layer 5 pyramidal tract projection neurons (Sim1-Cre), layer 5 projection neurons (Rbp4-Cre), and layer 6 corticothalamic neurons (Ntsr1-Cre). We found distinct axonal projections from the different neuronal classes to many downstream brain areas, which were largely similar for primary and supplementary somatosensory cortices. Functional connectivity maps obtained from optogenetic activation of sensory cortex and wide-field imaging revealed topographically organized evoked activity in frontal cortex with neurons located more laterally in somatosensory cortex signaling to more anteriorly located regions in motor cortex, consistent with the anatomical projections. The current methodology therefore appears to quantify brain-wide axonal innervation patterns supporting brain-wide signaling.
Collapse
Affiliation(s)
- Yanqi Liu
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Pol Bech
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Keita Tamura
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- International Research Center for Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Lucas T Délez
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Carl CH Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
2
|
Huang J, Crochet S, Sandi C, Petersen CC. Dopamine dynamics in nucleus accumbens across reward-based learning of goal-directed whisker-to-lick sensorimotor transformations in mice. Heliyon 2024; 10:e37831. [PMID: 39323852 PMCID: PMC11422591 DOI: 10.1016/j.heliyon.2024.e37831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The synaptic and neuronal circuit mechanisms underlying reward-based learning remain to be fully determined. In the mammalian brain, dopamine release in nucleus accumbens is thought to contribute importantly to reward signals for learning and promoting synaptic plasticity. Here, through longitudinal fiber photometry of a genetically-encoded fluorescent sensor, we investigated dopamine signals in the nucleus accumbens of thirsty head-restrained mice as they learned to lick a liquid reward spout in response to single deflections of the C2 whisker across varying reward contingencies. Reward delivery triggered by well-timed licking drove fast transient dopamine increases in nucleus accumbens. On the other hand, unrewarded licking was overall associated with reduced dopamine sensor fluorescence, especially in trials where reward was unexpectedly omitted. The dopamine reward signal upon liquid delivery decreased within individual sessions as mice became sated. As mice learned to lick the reward spout in response to whisker deflection, a fast transient sensory-evoked dopamine signal developed, correlating with the learning of the whisker detection task across consecutive training days, as well as within single learning sessions. The well-defined behavioral paradigm involving a unitary stimulus of a single whisker as a reward-predicting cue along with precisely quantified licking allows untangling of sensory, motor and reward-related dopamine signals and how they evolve across the learning of whisker-dependent goal-directed sensorimotor transformations. Our longitudinal measurements of dopamine dynamics across reward-based learning are overall consistent with the hypothesis that dopamine could play an important role as a reward signal for reinforcement learning.
Collapse
Affiliation(s)
- Jun Huang
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C.H. Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
3
|
Levitan D, Gilad A. Amygdala and Cortex Relationships during Learning of a Sensory Discrimination Task. J Neurosci 2024; 44:e0125242024. [PMID: 39025676 PMCID: PMC11340284 DOI: 10.1523/jneurosci.0125-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
During learning of a sensory discrimination task, the cortical and subcortical regions display complex spatiotemporal dynamics. During learning, both the amygdala and cortex link stimulus information to its appropriate association, for example, a reward. In addition, both structures are also related to nonsensory parameters such as body movements and licking during the reward period. However, the emergence of the cortico-amygdala relationships during learning is largely unknown. To study this, we combined wide-field cortical imaging with fiber photometry to simultaneously record cortico-amygdala population dynamics as male mice learn a whisker-dependent go/no-go task. We were able to simultaneously record neuronal populations from the posterior cortex and either the basolateral amygdala (BLA) or central/medial amygdala (CEM). Prior to learning, the somatosensory and associative cortex responded during sensation, while amygdala areas did not show significant responses. As mice became experts, amygdala responses emerged early during the sensation period, increasing in the CEM, while decreasing in the BLA. Interestingly, amygdala and cortical responses were associated with task-related body movement, displaying significant responses ∼200 ms before movement initiation which led to licking for the reward. A correlation analysis between the cortex and amygdala revealed negative and positive correlation with the BLA and CEM, respectively, only in the expert case. These results imply that learning induces an involvement of the cortex and amygdala which may aid to link sensory stimuli with appropriate associations.
Collapse
Affiliation(s)
- David Levitan
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ariel Gilad
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
4
|
Huang Y, Zhang X, Li W. Involvement of primary somatosensory cortex in motor learning and task execution. Neurosci Lett 2024; 828:137753. [PMID: 38554843 DOI: 10.1016/j.neulet.2024.137753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The primary somatosensory cortex (S1) is responsible for processing information related to tactile stimulation, motor learning and control. Despite its significance, the connection between S1 and the primary motor cortex (M1), as well as its role in motor learning, remains a topic of ongoing exploration. In the present study, we silenced S1 by the GABA receptor agonist muscimol to study the potential roles of S1 in motor learning and task execution. Our results show that the inhibition of S1 leads to an immediate impairment in performance during the training session and also a substantial reduction in performance improvement during post-test session on the subsequent day. To understand the underlying mechanism, we used intravital two-photon imaging to investigate the dynamics of dendritic spines of layer V pyramidal neurons and the calcium activities of pyramidal neurons in M1 after inhibition of S1. Notably, S1 inhibition reduces motor training-induced spine formation and facilitates the elimination of existing spines of layer V pyramidal neurons in M1. The calcium activities in M1 exhibit a significant decrease during both resting and running periods following S1 inhibition. Furthermore, inhibition of S1, but not M1, significantly impairs the execution of the acquired motor task in the well-trained animals. Together, these findings reveal that S1 plays important roles in motor learning and task execution.
Collapse
Affiliation(s)
- Yunxuan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyu Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
5
|
Columnar Lesions in Barrel Cortex Persistently Degrade Object Location Discrimination Performance. eNeuro 2022; 9:ENEURO.0393-22.2022. [PMID: 36316120 PMCID: PMC9665881 DOI: 10.1523/eneuro.0393-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Primary sensory cortices display functional topography, suggesting that even small cortical volumes may underpin perception of specific stimuli. Traditional loss-of-function approaches have a relatively large radius of effect (>1 mm), and few studies track recovery following loss-of-function perturbations. Consequently, the behavioral necessity of smaller cortical volumes remains unclear. In the mouse primary vibrissal somatosensory cortex (vS1), "barrels" with a radius of ∼150 μm receive input predominantly from a single whisker, partitioning vS1 into a topographic map of well defined columns. Here, we train animals implanted with a cranial window over vS1 to perform single-whisker perceptual tasks. We then use high-power laser exposure centered on the barrel representing the spared whisker to produce lesions with a typical volume of one to two barrels. These columnar-scale lesions impair performance in an object location discrimination task for multiple days without disrupting vibrissal kinematics. Animals with degraded location discrimination performance can immediately perform a whisker touch detection task with high accuracy. Animals trained de novo on both simple and complex whisker touch detection tasks showed no permanent behavioral deficits following columnar-scale lesions. Thus, columnar-scale lesions permanently degrade performance in object location discrimination tasks.
Collapse
|
6
|
Learning-related congruent and incongruent changes of excitation and inhibition in distinct cortical areas. PLoS Biol 2022; 20:e3001667. [PMID: 35639787 PMCID: PMC9187120 DOI: 10.1371/journal.pbio.3001667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/10/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
Excitatory and inhibitory neurons in diverse cortical regions are likely to contribute differentially to the transformation of sensory information into goal-directed motor plans. Here, we investigate the relative changes across mouse sensorimotor cortex in the activity of putative excitatory and inhibitory neurons—categorized as regular spiking (RS) or fast spiking (FS) according to their action potential (AP) waveform—comparing before and after learning of a whisker detection task with delayed licking as perceptual report. Surprisingly, we found that the whisker-evoked activity of RS versus FS neurons changed in opposite directions after learning in primary and secondary whisker motor cortices, while it changed similarly in primary and secondary orofacial motor cortices. Our results suggest that changes in the balance of excitation and inhibition in local circuits concurrent with changes in the long-range synaptic inputs in distinct cortical regions might contribute to performance of delayed sensory-to-motor transformation. A study of mouse sensorimotor cortex during a whisker detection task shows that learning of a goal-directed sensorimotor transformation is accompanied by differential changes in excitation and inhibition in distinct neocortical regions, helping to link sensory cortex and motor cortex for correct task performance.
Collapse
|
7
|
Waiblinger C, McDonnell ME, Reedy AR, Borden PY, Stanley GB. Emerging experience-dependent dynamics in primary somatosensory cortex reflect behavioral adaptation. Nat Commun 2022; 13:534. [PMID: 35087056 PMCID: PMC8795122 DOI: 10.1038/s41467-022-28193-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Behavioral experience and flexibility are crucial for survival in a constantly changing environment. Despite evolutionary pressures to develop adaptive behavioral strategies in a dynamically changing sensory landscape, the underlying neural correlates have not been well explored. Here, we use genetically encoded voltage imaging to measure signals in primary somatosensory cortex (S1) during sensory learning and behavioral adaptation in the mouse. In response to changing stimulus statistics, mice adopt a strategy that modifies their detection behavior in a context dependent manner as to maintain reward expectation. Surprisingly, neuronal activity in S1 shifts from simply representing stimulus properties to transducing signals necessary for adaptive behavior in an experience dependent manner. Our results suggest that neuronal signals in S1 are part of an adaptive framework that facilitates flexible behavior as individuals gain experience, which could be part of a general scheme that dynamically distributes the neural correlates of behavior during learning. Waiblinger et al. investigate the role of primary sensory cortex in flexible behaviors. They show that neuronal signals in S1 are part of an adaptive and dynamic framework that facilitates flexible behavior as an individual gains experience, indicating a role for S1 in long-term adaptive strategies.
Collapse
Affiliation(s)
- Christian Waiblinger
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Megan E McDonnell
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - April R Reedy
- Integrated Cellular Imaging Core, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Peter Y Borden
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Lee CCY, Kheradpezhouh E, Diamond ME, Arabzadeh E. State-Dependent Changes in Perception and Coding in the Mouse Somatosensory Cortex. Cell Rep 2021; 32:108197. [PMID: 32997984 DOI: 10.1016/j.celrep.2020.108197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/07/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
An animal's behavioral state is reflected in the dynamics of cortical population activity and its capacity to process sensory information. To better understand the relationship between behavioral states and information processing, mice are trained to detect varying amplitudes of whisker-deflection under two-photon calcium imaging. Layer 2/3 neurons in the vibrissal primary somatosensory cortex are imaged across different behavioral states, defined based on detection performance (low to high-state) and pupil diameter. The neurometric curve in each behavioral state mirrors the corresponding psychometric performance, with calcium signals predictive of the animal's choice. High behavioral states are associated with lower network synchrony, extending over shorter cortical distances. The decrease in correlation across neurons in high state results in enhanced information transmission capacity at the population level. The observed state-dependent changes suggest that the coding regime within the first stage of cortical processing may underlie adaptive routing of relevant information through the sensorimotor system.
Collapse
Affiliation(s)
- Conrad C Y Lee
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia.
| | - Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia
| | - Mathew E Diamond
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia; Cognitive Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia
| |
Collapse
|
9
|
Esmaeili V, Tamura K, Muscinelli SP, Modirshanechi A, Boscaglia M, Lee AB, Oryshchuk A, Foustoukos G, Liu Y, Crochet S, Gerstner W, Petersen CCH. Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron 2021; 109:2183-2201.e9. [PMID: 34077741 PMCID: PMC8285666 DOI: 10.1016/j.neuron.2021.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 01/16/2023]
Abstract
The neuronal mechanisms generating a delayed motor response initiated by a sensory cue remain elusive. Here, we tracked the precise sequence of cortical activity in mice transforming a brief whisker stimulus into delayed licking using wide-field calcium imaging, multiregion high-density electrophysiology, and time-resolved optogenetic manipulation. Rapid activity evoked by whisker deflection acquired two prominent features for task performance: (1) an enhanced excitation of secondary whisker motor cortex, suggesting its important role connecting whisker sensory processing to lick motor planning; and (2) a transient reduction of activity in orofacial sensorimotor cortex, which contributed to suppressing premature licking. Subsequent widespread cortical activity during the delay period largely correlated with anticipatory movements, but when these were accounted for, a focal sustained activity remained in frontal cortex, which was causally essential for licking in the response period. Our results demonstrate key cortical nodes for motor plan generation and timely execution in delayed goal-directed licking.
Collapse
Affiliation(s)
- Vahid Esmaeili
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Keita Tamura
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Samuel P Muscinelli
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alireza Modirshanechi
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marta Boscaglia
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ashley B Lee
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anastasiia Oryshchuk
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Georgios Foustoukos
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yanqi Liu
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Wulfram Gerstner
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
10
|
Zeiger WA, Marosi M, Saggi S, Noble N, Samad I, Portera-Cailliau C. Barrel cortex plasticity after photothrombotic stroke involves potentiating responses of pre-existing circuits but not functional remapping to new circuits. Nat Commun 2021; 12:3972. [PMID: 34172735 PMCID: PMC8233353 DOI: 10.1038/s41467-021-24211-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/01/2021] [Indexed: 01/14/2023] Open
Abstract
Recovery after stroke is thought to be mediated by adaptive circuit plasticity, whereby surviving neurons assume the roles of those that died. However, definitive longitudinal evidence of neurons changing their response selectivity after stroke is lacking. We sought to directly test whether such functional “remapping” occurs within mouse primary somatosensory cortex after a stroke that destroys the C1 barrel. Using in vivo calcium imaging to longitudinally record sensory-evoked activity under light anesthesia, we did not find any increase in the number of C1 whisker-responsive neurons in the adjacent, spared D3 barrel after stroke. To promote plasticity after stroke, we also plucked all whiskers except C1 (forced use therapy). This led to an increase in the reliability of sensory-evoked responses in C1 whisker-responsive neurons but did not increase the number of C1 whisker-responsive neurons in spared surround barrels over baseline levels. Our results argue against remapping of functionality after barrel cortex stroke, but support a circuit-based mechanism for how rehabilitation may improve recovery. Definitive evidence for functional remapping after stroke remains lacking. Here, the authors performed in vivo intrinsic signal imaging and two-photon calcium imaging of sensory-evoked responses before and after photothrombotic stroke and found no evidence of remapping of lost functionalities to new circuits in peri-infarct cortex.
Collapse
Affiliation(s)
- William A Zeiger
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Máté Marosi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Satvir Saggi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Natalie Noble
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Isa Samad
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Yang H, Bari BA, Cohen JY, O'Connor DH. Locus coeruleus spiking differently correlates with S1 cortex activity and pupil diameter in a tactile detection task. eLife 2021; 10:64327. [PMID: 33721552 PMCID: PMC7963470 DOI: 10.7554/elife.64327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/02/2021] [Indexed: 01/03/2023] Open
Abstract
We examined the relationships between activity in the locus coeruleus (LC), activity in the primary somatosensory cortex (S1), and pupil diameter in mice performing a tactile detection task. While LC spiking consistently preceded S1 membrane potential depolarization and pupil dilation, the correlation between S1 and pupil was more heterogeneous. Furthermore, the relationships between LC, S1, and pupil varied on timescales of sub-seconds to seconds within trials. Our data suggest that pupil diameter can be dissociated from LC spiking and cannot be used as a stationary index of LC activity.
Collapse
Affiliation(s)
- Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
| | - Bilal A Bari
- Department of Neuroscience, Brain Science Institute, and Kavli Neuroscience Discovery Institute, Johns Hopkins School of Medicine, Baltimore, United States
| | - Jeremiah Y Cohen
- Department of Neuroscience, Brain Science Institute, and Kavli Neuroscience Discovery Institute, Johns Hopkins School of Medicine, Baltimore, United States
| | - Daniel H O'Connor
- Department of Neuroscience, Brain Science Institute, and Kavli Neuroscience Discovery Institute, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
12
|
Bale MR, Bitzidou M, Giusto E, Kinghorn P, Maravall M. Sequence Learning Induces Selectivity to Multiple Task Parameters in Mouse Somatosensory Cortex. Curr Biol 2021; 31:473-485.e5. [PMID: 33186553 PMCID: PMC7883307 DOI: 10.1016/j.cub.2020.10.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022]
Abstract
Sequential temporal ordering and patterning are key features of natural signals, used by the brain to decode stimuli and perceive them as sensory objects. To explore how cortical neuronal activity underpins sequence discrimination, we developed a task in which mice distinguished between tactile "word" sequences constructed from distinct vibrations delivered to the whiskers, assembled in different orders. Animals licked to report the presence of the target sequence. Mice could respond to the earliest possible cues allowing discrimination, effectively solving the task as a "detection of change" problem, but enhanced their performance when responding later. Optogenetic inactivation showed that the somatosensory cortex was necessary for sequence discrimination. Two-photon imaging in layer 2/3 of the primary somatosensory "barrel" cortex (S1bf) revealed that, in well-trained animals, neurons had heterogeneous selectivity to multiple task variables including not just sensory input but also the animal's action decision and the trial outcome (presence or absence of the predicted reward). Many neurons were activated preceding goal-directed licking, thus reflecting the animal's learned action in response to the target sequence; these neurons were found as soon as mice learned to associate the rewarded sequence with licking. In contrast, learning evoked smaller changes in sensory response tuning: neurons responding to stimulus features were found in naive mice, and training did not generate neurons with enhanced temporal integration or categorical responses. Therefore, in S1bf, sequence learning results in neurons whose activity reflects the learned association between target sequence and licking rather than a refined representation of sensory features.
Collapse
Affiliation(s)
- Michael R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Malamati Bitzidou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Elena Giusto
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Paul Kinghorn
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
13
|
Cortical Localization of the Sensory-Motor Transformation in a Whisker Detection Task in Mice. eNeuro 2021; 8:ENEURO.0004-21.2021. [PMID: 33495240 PMCID: PMC7901152 DOI: 10.1523/eneuro.0004-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Responding to a stimulus requires transforming an internal sensory representation into an internal motor representation. Where and how this sensory-motor transformation occurs is a matter of vigorous debate. Here, we trained male and female mice in a whisker detection go/no-go task in which they learned to respond (lick) following a transient whisker deflection. Using single unit recordings, we quantified sensory-related, motor-related, and choice-related activities in whisker primary somatosensory cortex (S1), whisker region of primary motor cortex (wMC), and anterior lateral motor cortex (ALM), three regions that have been proposed to be critical for the sensory-motor transformation in whisker detection. We observed strong sensory encoding in S1 and wMC, with enhanced encoding in wMC, and a lack of sensory encoding in ALM. We observed strong motor encoding in all three regions, yet largest in wMC and ALM. We observed the earliest choice probability in wMC, despite earliest sensory responses in S1. Based on the criteria of having both strong sensory and motor representations and early choice probability, we identify whisker motor cortex as the cortical region most directly related to the sensory-motor transformation. Our data support a model of sensory encoding originating in S1, sensory amplification and sensory-motor transformation occurring within wMC, and motor signals emerging in ALM after the sensory-motor transformation.
Collapse
|
14
|
Ruediger S, Scanziani M. Learning speed and detection sensitivity controlled by distinct cortico-fugal neurons in visual cortex. eLife 2020; 9:e59247. [PMID: 33284107 PMCID: PMC7748414 DOI: 10.7554/elife.59247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
Vertebrates can change their behavior upon detection of visual stimuli according to the outcome their actions produce. Such goal-directed behavior involves evolutionary conserved brain structures like the striatum and optic tectum, which receive ascending visual input from the periphery. In mammals, however, these structures also receive descending visual input from visual cortex (VC), via neurons that give rise to cortico-fugal projections. The function of cortico-fugal neurons in visually guided, goal-directed behavior remains unclear. Here, we address the impact of two populations of cortico-fugal neurons in mouse VC in the learning and performance of a visual detection task. We show that the ablation of striatal projecting neurons reduces learning speed, whereas the ablation of superior colliculus projecting neurons does not impact learning but reduces detection sensitivity. This functional dissociation between distinct cortico-fugal neurons in controlling learning speed and detection sensitivity suggests an adaptive contribution of cortico-fugal pathways even in simple goal-directed behavior.
Collapse
Affiliation(s)
- Sarah Ruediger
- Center for Neural Circuits and Behavior, Neurobiology Section and Department of Neuroscience, University of California, San DiegoLa JollaUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Massimo Scanziani
- Center for Neural Circuits and Behavior, Neurobiology Section and Department of Neuroscience, University of California, San DiegoLa JollaUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
15
|
Voigts J, Deister CA, Moore CI. Layer 6 ensembles can selectively regulate the behavioral impact and layer-specific representation of sensory deviants. eLife 2020; 9:48957. [PMID: 33263283 PMCID: PMC7817180 DOI: 10.7554/elife.48957] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
Predictive models can enhance the salience of unanticipated input. Here, we tested a key potential node in neocortical model formation in this process, layer (L) 6, using behavioral, electrophysiological and imaging methods in mouse primary somatosensory neocortex. We found that deviant stimuli enhanced tactile detection and were encoded in L2/3 neural tuning. To test the contribution of L6, we applied weak optogenetic drive that changed which L6 neurons were sensory responsive, without affecting overall firing rates in L6 or L2/3. This stimulation selectively suppressed behavioral sensitivity to deviant stimuli, without impacting baseline performance. This stimulation also eliminated deviance encoding in L2/3 but did not impair basic stimulus responses across layers. In contrast, stronger L6 drive inhibited firing and suppressed overall sensory function. These findings indicate that, despite their sparse activity, specific ensembles of stimulus-driven L6 neurons are required to form neocortical predictions, and to realize their behavioral benefit.
Collapse
Affiliation(s)
- Jakob Voigts
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, United States.,Department of Brain and Cognitive Sciences, MIT, Cambridge, United States
| | - Christopher A Deister
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, United States
| | - Christopher I Moore
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, United States
| |
Collapse
|
16
|
Esmaeili V, Tamura K, Foustoukos G, Oryshchuk A, Crochet S, Petersen CC. Cortical circuits for transforming whisker sensation into goal-directed licking. Curr Opin Neurobiol 2020; 65:38-48. [PMID: 33065332 DOI: 10.1016/j.conb.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Animals can learn to use sensory stimuli to generate motor actions in order to obtain rewards. However, the precise neuronal circuits driving learning and execution of a specific goal-directed sensory-to-motor transformation remain to be elucidated. Here, we review progress in understanding the contribution of cortical neuronal circuits to a task in which head-restrained water-restricted mice learn to lick a reward spout in response to whisker deflection. We first examine 'innate' pathways for whisker sensory processing and licking motor control, and then discuss how these might become linked through reward-based learning, perhaps enabled by cholinergic-gated and dopaminergic-gated plasticity. The aim is to uncover the synaptically connected neuronal pathways that mediate reward-based learning and execution of a well-defined sensory-to-motor transformation.
Collapse
Affiliation(s)
- Vahid Esmaeili
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Keita Tamura
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Georgios Foustoukos
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Anastasiia Oryshchuk
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Carl Ch Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
17
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
18
|
Vavladeli A, Daigle T, Zeng H, Crochet S, Petersen CCH. Projection-specific Activity of Layer 2/3 Neurons Imaged in Mouse Primary Somatosensory Barrel Cortex During a Whisker Detection Task. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa008. [PMID: 35330741 PMCID: PMC8788860 DOI: 10.1093/function/zqaa008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023]
Abstract
The brain processes sensory information in a context- and learning-dependent manner for adaptive behavior. Through reward-based learning, relevant sensory stimuli can become linked to execution of specific actions associated with positive outcomes. The neuronal circuits involved in such goal-directed sensory-to-motor transformations remain to be precisely determined. Studying simple learned sensorimotor transformations in head-restrained mice offers the opportunity for detailed measurements of cellular activity during task performance. Here, we trained mice to lick a reward spout in response to a whisker deflection and an auditory tone. Through two-photon calcium imaging of retrogradely labeled neurons, we found that neurons located in primary whisker somatosensory barrel cortex projecting to secondary whisker somatosensory cortex had larger calcium signals than neighboring neurons projecting to primary whisker motor cortex in response to whisker deflection and auditory stimulation, as well as before spontaneous licking. Longitudinal imaging of the same neurons revealed that these projection-specific responses were relatively stable across 3 days. In addition, the activity of neurons projecting to secondary whisker somatosensory cortex was more highly correlated than for neurons projecting to primary whisker motor cortex. The large and correlated activity of neurons projecting to secondary whisker somatosensory cortex might enhance the pathway-specific signaling of important sensory information contributing to task execution. Our data support the hypothesis that communication between primary and secondary somatosensory cortex might be an early critical step in whisker sensory perception. More generally, our data suggest the importance of investigating projection-specific neuronal activity in distinct populations of intermingled excitatory neocortical neurons during task performance.
Collapse
Affiliation(s)
- Angeliki Vavladeli
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tanya Daigle
- Allen Institute for Brain Science, Seattle, Washington, DC, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington, DC, USA
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,Corresponding author. E-mail:
| |
Collapse
|
19
|
Gilad A, Helmchen F. Spatiotemporal refinement of signal flow through association cortex during learning. Nat Commun 2020; 11:1744. [PMID: 32269226 PMCID: PMC7142160 DOI: 10.1038/s41467-020-15534-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Association areas in neocortex encode novel stimulus-outcome relationships, but the principles of their engagement during task learning remain elusive. Using chronic wide-field calcium imaging, we reveal two phases of spatiotemporal refinement of layer 2/3 cortical activity in mice learning whisker-based texture discrimination in the dark. Even before mice reach learning threshold, association cortex-including rostro-lateral (RL), posteromedial (PM), and retrosplenial dorsal (RD) areas-is generally suppressed early during trials (between auditory start cue and whisker-texture touch). As learning proceeds, a spatiotemporal activation sequence builds up, spreading from auditory areas to RL immediately before texture touch (whereas PM and RD remain suppressed) and continuing into barrel cortex, which eventually efficiently discriminates between textures. Additional correlation analysis substantiates this diverging learning-related refinement within association cortex. Our results indicate that a pre-learning phase of general suppression in association cortex precedes a learning-related phase of task-specific signal flow enhancement.
Collapse
Affiliation(s)
- Ariel Gilad
- Brain Research Institute, University of Zurich, CH-8057, Zurich, Switzerland
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, 9112001, Jerusalem, Israel
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, CH-8057, Zurich, Switzerland.
- Neuroscience Center Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
20
|
Tang L, Higley MJ. Layer 5 Circuits in V1 Differentially Control Visuomotor Behavior. Neuron 2020; 105:346-354.e5. [PMID: 31757603 PMCID: PMC6981039 DOI: 10.1016/j.neuron.2019.10.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/03/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Neocortical sensory areas are thought to act as distribution hubs, transmitting information about the external environment to downstream areas. Within primary visual cortex, various populations of pyramidal neurons (PNs) send axonal projections to distinct targets, suggesting multiple cellular networks may be independently engaged during behavior. We investigated whether PN subpopulations differentially support visual detection by training mice on a novel eyeblink conditioning task. Applying 2-photon calcium imaging and optogenetic manipulation of anatomically defined PNs, we show that layer 5 corticopontine neurons strongly encode sensory and motor task information and are selectively necessary for performance. Our findings support a model in which target-specific cortical subnetworks form the basis for adaptive behavior by directing relevant information to distinct brain areas. Overall, this work highlights the potential for neurons to form physically interspersed but functionally segregated networks capable of parallel, independent control of perception and behavior.
Collapse
Affiliation(s)
- Lan Tang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
21
|
Mayrhofer JM, El-Boustani S, Foustoukos G, Auffret M, Tamura K, Petersen CCH. Distinct Contributions of Whisker Sensory Cortex and Tongue-Jaw Motor Cortex in a Goal-Directed Sensorimotor Transformation. Neuron 2019; 103:1034-1043.e5. [PMID: 31402199 PMCID: PMC6859494 DOI: 10.1016/j.neuron.2019.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/29/2019] [Accepted: 07/09/2019] [Indexed: 01/14/2023]
Abstract
The neural circuits underlying goal-directed sensorimotor transformations in the mammalian brain are incompletely understood. Here, we compared the role of primary tongue-jaw motor cortex (tjM1) and primary whisker sensory cortex (wS1) in head-restrained mice trained to lick a reward spout in response to whisker deflection. Two-photon microscopy combined with microprisms allowed imaging of neuronal network activity across cortical layers in transgenic mice expressing a genetically encoded calcium indicator. Early-phase activity in wS1 encoded the whisker sensory stimulus and was necessary for detection of whisker stimuli. Activity in tjM1 encoded licking direction during task execution and was necessary for contralateral licking. Pre-stimulus activity in tjM1, but not wS1, was predictive of lick direction and contributed causally to small preparatory jaw movements. Our data reveal a shift in coding scheme from wS1 to tjM1, consistent with the hypothesis that these areas represent cortical start and end points for this goal-directed sensorimotor transformation.
Collapse
Affiliation(s)
- Johannes M Mayrhofer
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Sami El-Boustani
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Georgios Foustoukos
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthieu Auffret
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Keita Tamura
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
22
|
Poulet JFA, Crochet S. The Cortical States of Wakefulness. Front Syst Neurosci 2019; 12:64. [PMID: 30670952 PMCID: PMC6331430 DOI: 10.3389/fnsys.2018.00064] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2018] [Indexed: 11/15/2022] Open
Abstract
Cortical neurons process information on a background of spontaneous, ongoing activity with distinct spatiotemporal profiles defining different cortical states. During wakefulness, cortical states alter constantly in relation to behavioral context, attentional level or general motor activity. In this review article, we will discuss our current understanding of cortical states in awake rodents, how they are controlled, their impact on sensory processing, and highlight areas for future research. A common observation in awake rodents is the rapid change in spontaneous cortical activity from high-amplitude, low-frequency (LF) fluctuations, when animals are quiet, to faster and smaller fluctuations when animals are active. This transition is typically thought of as a change in global brain state but recent work has shown variation in cortical states across regions, indicating the presence of a fine spatial scale control system. In sensory areas, the cortical state change is mediated by at least two convergent inputs, one from the thalamus and the other from cholinergic inputs in the basal forebrain. Cortical states have a major impact on the balance of activity between specific subtypes of neurons, on the synchronization between nearby neurons, as well as the functional coupling between distant cortical areas. This reorganization of the activity of cortical networks strongly affects sensory processing. Thus cortical states provide a dynamic control system for the moment-by-moment regulation of cortical processing.
Collapse
Affiliation(s)
- James F. A. Poulet
- Neural Circuits and Behaviour, Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, University Lyon 1, Lyon, France
| |
Collapse
|
23
|
Sensation, movement and learning in the absence of barrel cortex. Nature 2018; 561:542-546. [PMID: 30224746 PMCID: PMC6173956 DOI: 10.1038/s41586-018-0527-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 07/27/2018] [Indexed: 11/29/2022]
Abstract
For many of our senses, the role of the cerebral cortex in detecting stimuli is controversial1–17. Here, we examine the effects of both acute and chronic inactivation of primary somatosensory cortex (S1) in mice trained to move their large facial whiskers to detect an object via touch and respond with a lever to obtain a water reward. Using transgenic animals, we expressed inhibitory opsins in excitatory cortical neurons. Transient optogenetic inactivation of S1, as well as permanent lesions, initially produced both movement and sensory deficits that impaired detection behavior, demonstrating the inextricable link between sensory and motor systems during active sensing. Surprisingly, lesioned mice rapidly recovered full behavioral capabilities by the subsequent session. Recovery was experience-dependent, and early re-exposure to the task after lesion facilitated recovery. Furthermore, primary sensory cortex ablation prior to learning did not affect task acquisition. This combined optogenetic and lesion approach suggests that manipulations of sensory cortex may be only temporarily disruptive to other brain structures, which are themselves capable of coordinating multiple, arbitrary movements with sensation. Thus, the somatosensory cortex may be dispensable for active detection of objects in the environment.
Collapse
|
24
|
Crochet S, Lee SH, Petersen CCH. Neural Circuits for Goal-Directed Sensorimotor Transformations. Trends Neurosci 2018; 42:66-77. [PMID: 30201180 DOI: 10.1016/j.tins.2018.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022]
Abstract
Precisely wired neuronal circuits process sensory information in a learning- and context-dependent manner in order to govern behavior. Simple sensory decision-making tasks in rodents are now beginning to reveal the contributions of distinct cell types and brain regions participating in the conversion of sensory information into learned goal-directed motor output. Task learning is accompanied by target-specific routing of sensory information to specific downstream cortical regions, with higher-order cortical regions such as the posterior parietal cortex, medial prefrontal cortex, and hippocampus appearing to play important roles in learning- and context-dependent processing of sensory input. An important challenge for future research is to connect cell-type-specific activity in these brain regions with motor neurons responsible for action initiation.
Collapse
Affiliation(s)
- Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Seung-Hee Lee
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
25
|
Gilad A, Gallero-Salas Y, Groos D, Helmchen F. Behavioral Strategy Determines Frontal or Posterior Location of Short-Term Memory in Neocortex. Neuron 2018; 99:814-828.e7. [PMID: 30100254 DOI: 10.1016/j.neuron.2018.07.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/29/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023]
Abstract
The location of short-term memory in mammalian neocortex remains elusive. Here we show that distinct neocortical areas maintain short-term memory depending on behavioral strategy. Using wide-field and single-cell calcium imaging, we measured layer 2/3 neuronal activity in mice performing a whisker-based texture discrimination task with delayed response. Mice either deployed an active strategy-engaging their body toward the approaching texture-or passively awaited the touch. Independent of strategy, whisker-related posterior areas encoded choice early after touch. During the delay, in contrast, persistent cortical activity was located medio-frontally in active trials but in a lateral posterior area in passive trials. Perturbing these areas impaired performance for the associated strategy and also provoked strategy switches. Frontally maintained information related to future action, whereas activity in the posterior cortex reflected past stimulus identity. Thus, depending on behavioral strategy, cortical activity is routed differentially to hold information either frontally or posteriorly before converging to similar action.
Collapse
Affiliation(s)
- Ariel Gilad
- Brain Research Institute, University of Zurich, Zurich 8057, Switzerland.
| | - Yasir Gallero-Salas
- Brain Research Institute, University of Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich, Zurich 8057, Switzerland
| | - Dominik Groos
- Brain Research Institute, University of Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich, Zurich 8057, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich, Zurich 8057, Switzerland.
| |
Collapse
|
26
|
Single-Cell Stimulation in Barrel Cortex Influences Psychophysical Detection Performance. J Neurosci 2018; 38:2057-2068. [PMID: 29358364 DOI: 10.1523/jneurosci.2155-17.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/20/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023] Open
Abstract
A single whisker stimulus elicits action potentials in a sparse subset of neurons in somatosensory cortex. The precise contribution of these neurons to the animal's perception of a whisker stimulus is unknown. Here we show that single-cell stimulation in rat barrel cortex of both sexes influences the psychophysical detection of a near-threshold whisker stimulus in a cell type-dependent manner, without affecting false alarm rate. Counterintuitively, stimulation of single fast-spiking putative inhibitory neurons increased detection performance. Single-cell stimulation of putative excitatory neurons failed to change detection performance, except for a small subset of deep-layer neurons that were highly sensitive to whisker stimulation and that had an unexpectedly strong impact on detection performance. These findings indicate that the perceptual impact of excitatory barrel cortical neurons relates to their firing response to whisker stimulation and that strong activity in a single highly sensitive neuron in barrel cortex can already enhance sensory detection. Our data suggest that sensory detection is based on a decoding mechanism that lends a disproportionally large weight to interneurons and to deep-layer neurons showing a strong response to sensory stimulation.SIGNIFICANCE STATEMENT Rat whisker somatosensory cortex contains a variety of neuronal cell types with distinct anatomical and physiological characteristics. How each of these different cell types contribute to the animal's perception of whisker stimuli is unknown. We explored this question by using a powerful electrophysiological stimulation technique that allowed us to target and stimulate single neurons with different sensory response types in whisker cortex. In awake, behaving animals, trained to detect whisker stimulation, only costimulation of single fast-spiking inhibitory neurons or single deep-layer excitatory neurons with strong responses to whisker stimulation enhanced detection performance. Our data demonstrate that single cortical neurons can have measurable impact on the detection of sensory stimuli and suggest a decoding mechanism based on select cell types.
Collapse
|
27
|
Barrel Cortex: What is it Good for? Neuroscience 2018; 368:3-16. [DOI: 10.1016/j.neuroscience.2017.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022]
|
28
|
Le Merre P, Esmaeili V, Charrière E, Galan K, Salin PA, Petersen CCH, Crochet S. Reward-Based Learning Drives Rapid Sensory Signals in Medial Prefrontal Cortex and Dorsal Hippocampus Necessary for Goal-Directed Behavior. Neuron 2017; 97:83-91.e5. [PMID: 29249287 PMCID: PMC5766832 DOI: 10.1016/j.neuron.2017.11.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 11/26/2022]
Abstract
The neural circuits underlying learning and execution of goal-directed behaviors remain to be determined. Here, through electrophysiological recordings, we investigated fast sensory processing across multiple cortical areas as mice learned to lick a reward spout in response to a brief deflection of a single whisker. Sensory-evoked signals were absent from medial prefrontal cortex and dorsal hippocampus in naive mice, but developed with task learning and correlated with behavioral performance in mice trained in the detection task. The sensory responses in medial prefrontal cortex and dorsal hippocampus occurred with short latencies of less than 50 ms after whisker deflection. Pharmacological and optogenetic inactivation of medial prefrontal cortex or dorsal hippocampus impaired behavioral performance. Neuronal activity in medial prefrontal cortex and dorsal hippocampus thus appears to contribute directly to task performance, perhaps providing top-down control of learned, context-dependent transformation of sensory input into goal-directed motor output.
Collapse
Affiliation(s)
- Pierre Le Merre
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon 1, Forgetting and Cortical Dynamics Team, Lyon Cedex 08 F-69000, France; Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon 1, Integrative Physiology of the Brain Arousal System Team, Lyon Cedex 08 F-69000, France
| | - Vahid Esmaeili
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Eloïse Charrière
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Katia Galan
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Paul-A Salin
- Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon 1, Forgetting and Cortical Dynamics Team, Lyon Cedex 08 F-69000, France
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon 1, Integrative Physiology of the Brain Arousal System Team, Lyon Cedex 08 F-69000, France.
| |
Collapse
|
29
|
Kole K, Scheenen W, Tiesinga P, Celikel T. Cellular diversity of the somatosensory cortical map plasticity. Neurosci Biobehav Rev 2017; 84:100-115. [PMID: 29183683 DOI: 10.1016/j.neubiorev.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Sensory maps are representations of the sensory epithelia in the brain. Despite the intuitive explanatory power behind sensory maps as being neuronal precursors to sensory perception, and sensory cortical plasticity as a neural correlate of perceptual learning, molecular mechanisms that regulate map plasticity are not well understood. Here we perform a meta-analysis of transcriptional and translational changes during altered whisker use to nominate the major molecular correlates of experience-dependent map plasticity in the barrel cortex. We argue that brain plasticity is a systems level response, involving all cell classes, from neuron and glia to non-neuronal cells including endothelia. Using molecular pathway analysis, we further propose a gene regulatory network that could couple activity dependent changes in neurons to adaptive changes in neurovasculature, and finally we show that transcriptional regulations observed in major brain disorders target genes that are modulated by altered sensory experience. Thus, understanding the molecular mechanisms of experience-dependent plasticity of sensory maps might help to unravel the cellular events that shape brain plasticity in health and disease.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Wim Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Ni J, Chen JL. Long-range cortical dynamics: a perspective from the mouse sensorimotor whisker system. Eur J Neurosci 2017; 46:2315-2324. [PMID: 28921729 DOI: 10.1111/ejn.13698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 01/28/2023]
Abstract
In the mammalian neocortex, the capacity to dynamically route and coordinate the exchange of information between areas is a critical feature of cognitive function, enabling processes such as higher-level sensory processing and sensorimotor integration. Despite the importance attributed to long-range connections between cortical areas, their exact operations and role in cortical function remain an open question. In recent years, progress has been made in understanding long-range cortical circuits through work focused on the mouse sensorimotor whisker system. In this review, we examine recent studies dissecting long-range circuits involved in whisker sensorimotor processing as an entry point for understanding the rules that govern long-range cortical circuit function.
Collapse
Affiliation(s)
- Jianguang Ni
- Department of Biology, Boston University, Boston, MA, 02215, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Jerry L Chen
- Department of Biology, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
31
|
Kyriakatos A, Sadashivaiah V, Zhang Y, Motta A, Auffret M, Petersen CCH. Voltage-sensitive dye imaging of mouse neocortex during a whisker detection task. NEUROPHOTONICS 2017; 4:031204. [PMID: 27921068 PMCID: PMC5120151 DOI: 10.1117/1.nph.4.3.031204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Sensorimotor processing occurs in a highly distributed manner in the mammalian neocortex. The spatiotemporal dynamics of electrical activity in the dorsal mouse neocortex can be imaged using voltage-sensitive dyes (VSDs) with near-millisecond temporal resolution and [Formula: see text] spatial resolution. Here, we trained mice to lick a water reward spout after a 1-ms deflection of the C2 whisker, and we imaged cortical dynamics during task execution with VSD RH1691. Responses to whisker deflection were highly dynamic and spatially highly distributed, exhibiting high variability from trial to trial in amplitude and spatiotemporal dynamics. We differentiated trials based on licking and whisking behavior. Hit trials, in which the mouse licked after the whisker stimulus, were accompanied by overall greater depolarization compared to miss trials, with the strongest hit versus miss differences being found in frontal cortex. Prestimulus whisking decreased behavioral performance by increasing the fraction of miss trials, and these miss trials had attenuated cortical sensorimotor responses. Our data suggest that the spatiotemporal dynamics of depolarization in mouse sensorimotor cortex evoked by a single brief whisker deflection are subject to important behavioral modulation during the execution of a simple, learned, goal-directed sensorimotor transformation.
Collapse
|
32
|
Bilateral Discrimination of Tactile Patterns without Whisking in Freely Running Rats. J Neurosci 2017; 37:7567-7579. [PMID: 28663200 DOI: 10.1523/jneurosci.0528-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/22/2017] [Accepted: 06/17/2017] [Indexed: 11/21/2022] Open
Abstract
A majority of whisker discrimination tasks in rodents are performed on head-fixed animals to facilitate tracking or control of the sensory inputs. However, head fixation critically restrains the behavior and thus the incoming stimuli compared with those occurring in natural conditions. In this study, we investigated whether freely behaving rats can discriminate fine tactile patterns while running, in particular when stimuli are presented simultaneously on both sides of the snout. We developed a two-alternative forced-choice task in an automated modified T-maze. Stimuli were either a surface with no bars (smooth) or with vertical bars spaced irregularly or regularly. While running at full speed, rats encountered simultaneously the two discriminanda placed on the two sides of the central aisle. Rats learned to recognize regular bars versus a smooth surface in 8 weeks. They solved the task while running at an average speed of 1 m/s, so that the contact with the stimulus lasted <1 typical whisking cycle, precluding the use of active whisking. Whisker-tracking analysis revealed an asymmetry in the position of the whiskers: they oriented toward the rewarded stimulus during successful trials as early as 60 ms after the first possible contact. We showed that the whiskers and activity in the primary somatosensory cortex are involved during the discrimination process. Finally, we identified irregular patterns of bars that the rats can discriminate from the regular one. This novel task shows that freely moving rodents can make simultaneous bilateral tactile discrimination without whisking.SIGNIFICANCE STATEMENT The whisker system of rodents is a widely used model to study tactile processing. Rats show remarkable abilities in discriminating surfaces by actively moving their whiskers (whisking) against stimuli, typically sampling them several times. This motor strategy affects considerably the way that tactile information is acquired and thus the way that neuronal networks process the information. However, when rats run at high speed, they protract their whiskers in front of the snout without large movements. Here, we investigated whether rats are able to discriminate regular and irregular patterns of vertical bars while running without whisking. We found that the animals can perform a bilateral simultaneous discrimination without whisking and that this involves both whiskers and barrel cortex activity.
Collapse
|
33
|
Pitas A, Albarracín AL, Molano-Mazón M, Maravall M. Variable Temporal Integration of Stimulus Patterns in the Mouse Barrel Cortex. Cereb Cortex 2017; 27:1758-1764. [PMID: 26838770 DOI: 10.1093/cercor/bhw006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Making sense of the world requires distinguishing temporal patterns and sequences lasting hundreds of milliseconds or more. How cortical circuits integrate over time to represent specific sensory sequences remains elusive. Here we assessed whether neurons in the barrel cortex (BC) integrate information about temporal patterns of whisker movements. We performed cell-attached recordings in anesthetized mice while delivering whisker deflections at variable intervals and compared the information carried by neurons about the latest interstimulus interval (reflecting sensitivity to instantaneous frequency) and earlier intervals (reflecting integration over timescales up to several hundred milliseconds). Neurons carried more information about the latest interval than earlier ones. The amount of temporal integration varied with neuronal responsiveness and with the cortical depth of the recording site, that is, with laminar location. A subset of neurons in the upper layers displayed the strongest integration. Highly responsive neurons in the deeper layers encoded the latest interval but integrated particularly weakly. Under these conditions, BC neurons act primarily as encoders of current stimulation parameters; however, our results suggest that temporal integration over hundreds of milliseconds can emerge in some neurons within BC.
Collapse
Affiliation(s)
- Anna Pitas
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Ana Lía Albarracín
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.,Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán-Consejo Superior de Investigaciones Científicas y Técnicas, Tucumán, Argentina
| | - Manuel Molano-Mazón
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.,Laboratory of Neural Computation, Istituto Italiano di Tecnologia Rovereto, 38068 Rovereto, Italy
| | - Miguel Maravall
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
34
|
McGuire LM, Telian G, Laboy-Juárez KJ, Miyashita T, Lee DJ, Smith KA, Feldman DE. Short Time-Scale Sensory Coding in S1 during Discrimination of Whisker Vibrotactile Sequences. PLoS Biol 2016; 14:e1002549. [PMID: 27574970 PMCID: PMC5004814 DOI: 10.1371/journal.pbio.1002549] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022] Open
Abstract
Rodent whisker input consists of dense microvibration sequences that are often temporally integrated for perceptual discrimination. Whether primary somatosensory cortex (S1) participates in temporal integration is unknown. We trained rats to discriminate whisker impulse sequences that varied in single-impulse kinematics (5–20-ms time scale) and mean speed (150-ms time scale). Rats appeared to use the integrated feature, mean speed, to guide discrimination in this task, consistent with similar prior studies. Despite this, 52% of S1 units, including 73% of units in L4 and L2/3, encoded sequences at fast time scales (≤20 ms, mostly 5–10 ms), accurately reflecting single impulse kinematics. 17% of units, mostly in L5, showed weaker impulse responses and a slow firing rate increase during sequences. However, these units did not effectively integrate whisker impulses, but instead combined weak impulse responses with a distinct, slow signal correlated to behavioral choice. A neural decoder could identify sequences from fast unit spike trains and behavioral choice from slow units. Thus, S1 encoded fast time scale whisker input without substantial temporal integration across whisker impulses. Recordings in whisker somatosensory cortex of rats during discrimination of rapid whisker deflection sequences show that whisker input is encoded at very short time scales (less than 20 ms). Sensory input is rich in temporal patterns, but how the brain processes this temporal information is not well understood. This process is important in the whisker tactile system of rodents, in which active whisking on objects generates dense streams of stick-slip and contact events. Rats can discriminate vibrotactile sequences applied to the whiskers, and prior studies show that this often involves behavioral integration over time to calculate mean whisker-speed. How the brain represents and integrates vibrotactile input is not known. We recorded neural activity in primary somatosensory cortex as rats discriminated rapid vibrotactile sequences. We found that neurons in the primary somatosensory cortex encoded whisker sensory information at very fast time scales (<20 ms), without evidence for substantial temporal integration. A subset of neurons encoded relatively little stimulus information but strongly encoded the rat’s behavioral choice on each trial. Thus, primary sensory cortex represents immediate sensory input, suggesting that temporal integration occurs in downstream brain areas.
Collapse
Affiliation(s)
- Leah M. McGuire
- Department of Molecular and Cellular Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Gregory Telian
- Department of Molecular and Cellular Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Keven J. Laboy-Juárez
- Department of Molecular and Cellular Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Toshio Miyashita
- Department of Molecular and Cellular Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Daniel J. Lee
- Department of Molecular and Cellular Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Katherine A. Smith
- Department of Molecular and Cellular Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Daniel E. Feldman
- Department of Molecular and Cellular Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Lee CCY, Diamond ME, Arabzadeh E. Sensory Prioritization in Rats: Behavioral Performance and Neuronal Correlates. J Neurosci 2016; 36:3243-53. [PMID: 26985034 PMCID: PMC6705526 DOI: 10.1523/jneurosci.3636-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 11/21/2022] Open
Abstract
Operating with some finite quantity of processing resources, an animal would benefit from prioritizing the sensory modality expected to provide key information in a particular context. The present study investigated whether rats dedicate attentional resources to the sensory modality in which a near-threshold event is more likely to occur. We manipulated attention by controlling the likelihood with which a stimulus was presented from one of two modalities. In a whisker session, 80% of trials contained a brief vibration stimulus applied to whiskers and the remaining 20% of trials contained a brief change of luminance. These likelihoods were reversed in a visual session. When a stimulus was presented in the high-likelihood context, detection performance increased and was faster compared with the same stimulus presented in the low-likelihood context. Sensory prioritization was also reflected in neuronal activity in the vibrissal area of primary somatosensory cortex: single units responded differentially to the whisker vibration stimulus when presented with higher probability compared with lower probability. Neuronal activity in the vibrissal cortex displayed signatures of multiplicative gain control and enhanced response to vibration stimuli during the whisker session. In conclusion, rats allocate priority to the more likely stimulus modality and the primary sensory cortex may participate in the redistribution of resources. SIGNIFICANCE STATEMENT Detection of low-amplitude events is critical to survival; for example, to warn prey of predators. To formulate a response, decision-making systems must extract minute neuronal signals from the sensory modality that provides key information. Here, we identify the behavioral and neuronal correlates of sensory prioritization in rats. Rats were trained to detect whisker vibrations or visual flickers. Stimuli were embedded in two contexts in which either visual or whisker modality was more likely to occur. When a stimulus was presented in the high-likelihood context, detection was faster and more reliable. Neuronal recording from the vibrissal cortex revealed enhanced representation of vibrations in the prioritized context. These results establish the rat as an alternative model organism to primates for studying attention.
Collapse
Affiliation(s)
- Conrad C Y Lee
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia, Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory 2601, Australia, and
| | - Mathew E Diamond
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory 2601, Australia, and International School for Advanced Studies, SISSA-ISAS, Trieste 34100, Italy
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia, Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory 2601, Australia, and
| |
Collapse
|
36
|
Sofroniew NJ, Vlasov YA, Hires SA, Freeman J, Svoboda K. Neural coding in barrel cortex during whisker-guided locomotion. eLife 2015; 4. [PMID: 26701910 PMCID: PMC4764557 DOI: 10.7554/elife.12559] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/21/2015] [Indexed: 11/15/2022] Open
Abstract
Animals seek out relevant information by moving through a dynamic world, but sensory systems are usually studied under highly constrained and passive conditions that may not probe important dimensions of the neural code. Here, we explored neural coding in the barrel cortex of head-fixed mice that tracked walls with their whiskers in tactile virtual reality. Optogenetic manipulations revealed that barrel cortex plays a role in wall-tracking. Closed-loop optogenetic control of layer 4 neurons can substitute for whisker-object contact to guide behavior resembling wall tracking. We measured neural activity using two-photon calcium imaging and extracellular recordings. Neurons were tuned to the distance between the animal snout and the contralateral wall, with monotonic, unimodal, and multimodal tuning curves. This rich representation of object location in the barrel cortex could not be predicted based on simple stimulus-response relationships involving individual whiskers and likely emerges within cortical circuits. DOI:http://dx.doi.org/10.7554/eLife.12559.001 Mice are primarily nocturnal animals that rely on their whiskers to navigate dark underground burrows and winding corridors. When a whisker touches an object, cells called neurons at the base of the whiskers produce electrical signals that are relayed to other neurons in an area of the brain called the barrel cortex. However, it is not clear how information is encoded in these electrical signals, in part, because it is technically challenging to collect data about neuron activity and behavior while the mice move around. To overcome these difficulties, Sofroniew, Vlasov et al. used a touch-based (or 'tactile') virtual reality system to study how mice navigate along corridors. The system simulated the contact the whiskers would have with the walls of a winding corridor. This was achieved by moving the walls with motors while holding the mouse still enough to be able to measure the activity of neurons in the barrel cortex and observe the behavior of the animal. The experiments show that the electrical signals in the barrel cortex encode information about motion as well as the distance between the mouse and the wall. For example, some neurons in the barrel cortex were only activated when a mouse was a particular distance from the walls. The experiments suggest that the barrel cortex processes signals received from several whiskers to build an overall picture of the locations and shapes of objects. Sofroniew, Vlasov et al. also used a technique called optogenetics to deliberately activate particular neurons in a manner that mimics their activity patterns during interactions with walls. In the absence of walls, the optogenetic stimuli guided the behavior of the mice so that they tracked along the paths of 'illusory' corridors. Together, these findings reveal the neural code in the barrel cortex that allows mice to navigate by touch. DOI:http://dx.doi.org/10.7554/eLife.12559.002
Collapse
Affiliation(s)
| | - Yurii A Vlasov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,IBM Thomas J. Watson Research Center, New York, United States
| | - Samuel Andrew Hires
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jeremy Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
37
|
Montijn JS, Goltstein PM, Pennartz CMA. Mouse V1 population correlates of visual detection rely on heterogeneity within neuronal response patterns. eLife 2015; 4:e10163. [PMID: 26646184 PMCID: PMC4739777 DOI: 10.7554/elife.10163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/06/2015] [Indexed: 01/23/2023] Open
Abstract
Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations. DOI:http://dx.doi.org/10.7554/eLife.10163.001 Seeing is not the same as perceiving, where an object is recognized and information about it is interpreted by the brain. Things might be in your field of view, but not actively perceived; for example, when daydreaming with your eyes open. Many researchers have investigated how the brain responds differently to a perceived object compared with something that is seen but not perceived. However, using relatively coarse techniques, only small differences in brain activity have been found. Many of the techniques used to investigate brain activity only look at the average activity of a group of neurons – the cells in the brain that process information. This raises the possibility that the perception of an object relies on more subtle or complex interactions in brain activity. To investigate this, Montijn et al. trained mice to lick a reward spout that gave out sugar water when they perceived a particular image. A technique called two-photon calcium imaging was then used to simultaneously record the activity of tens to hundreds of neurons in part of the brain called the visual cortex as the mice performed the perception task. This revealed that the average activation of a group of neurons was only weakly related to whether a mouse had perceived the image. However, differences in the strength of the responses of the individual neurons in the group reflected perception more strongly: when a mouse perceived the image and licked in response, a heterogeneous (non-uniform) set of neuronal responses occurred. The diversity of the neuronal responses could also be used to predict how quickly a mouse would respond to an image. These activity differences would not be picked up by techniques that detect the average activity of many neurons, explaining why these effects had not previously been seen. These findings shed light on which patterns of activity in the visual region of the brain lead to objects being perceived or not. Whether similar mechanisms operate in different regions of the brain remains to be investigated. DOI:http://dx.doi.org/10.7554/eLife.10163.002
Collapse
Affiliation(s)
- Jorrit S Montijn
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pieter M Goltstein
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands.,Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Pais-Vieira M, Kunicki C, Tseng PH, Martin J, Lebedev M, Nicolelis MAL. Cortical and thalamic contributions to response dynamics across layers of the primary somatosensory cortex during tactile discrimination. J Neurophysiol 2015; 114:1652-76. [PMID: 26180115 PMCID: PMC4567613 DOI: 10.1152/jn.00108.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/12/2015] [Indexed: 11/22/2022] Open
Abstract
Tactile information processing in the rodent primary somatosensory cortex (S1) is layer specific and involves modulations from both thalamocortical and cortico-cortical loops. However, the extent to which these loops influence the dynamics of the primary somatosensory cortex while animals execute tactile discrimination remains largely unknown. Here, we describe neural dynamics of S1 layers across the multiple epochs defining a tactile discrimination task. We observed that neuronal ensembles within different layers of the S1 cortex exhibited significantly distinct neurophysiological properties, which constantly changed across the behavioral states that defined a tactile discrimination. Neural dynamics present in supragranular and granular layers generally matched the patterns observed in the ventral posterior medial nucleus of the thalamus (VPM), whereas the neural dynamics recorded from infragranular layers generally matched the patterns from the posterior nucleus of the thalamus (POM). Selective inactivation of contralateral S1 specifically switched infragranular neural dynamics from POM-like to those resembling VPM neurons. Meanwhile, ipsilateral M1 inactivation profoundly modulated the firing suppression observed in infragranular layers. This latter effect was counterbalanced by contralateral S1 block. Tactile stimulus encoding was layer specific and selectively affected by M1 or contralateral S1 inactivation. Lastly, causal information transfer occurred between all neurons in all S1 layers but was maximal from infragranular to the granular layer. These results suggest that tactile information processing in the S1 of awake behaving rodents is layer specific and state dependent and that its dynamics depend on the asynchronous convergence of modulations originating from ipsilateral M1 and contralateral S1.
Collapse
Affiliation(s)
- Miguel Pais-Vieira
- Department of Neurobiology, Duke University, Durham, North Carolina; Center for Neuroengineering, Duke University, Durham, North Carolina; and
| | - Carolina Kunicki
- Edmond and Lily Safra International Institute for Neuroscience of Natal, Natal, Brazil
| | - Po-He Tseng
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Joel Martin
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Mikhail Lebedev
- Department of Neurobiology, Duke University, Durham, North Carolina; Center for Neuroengineering, Duke University, Durham, North Carolina; and
| | - Miguel A L Nicolelis
- Department of Neurobiology, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Center for Neuroengineering, Duke University, Durham, North Carolina; and Edmond and Lily Safra International Institute for Neuroscience of Natal, Natal, Brazil
| |
Collapse
|
39
|
McDonald JS, Adibi M, Clifford CWG, Arabzadeh E. Sampling time and performance in rat whisker sensory system. PLoS One 2014; 9:e116357. [PMID: 25551373 PMCID: PMC4281132 DOI: 10.1371/journal.pone.0116357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/27/2014] [Indexed: 11/19/2022] Open
Abstract
We designed a behavioural paradigm for vibro-tactile detection to characterise the sampling time and performance in the rat whisker sensory system. Rats initiated a trial by nose-poking into an aperture where their whiskers came into contact with two meshes. A continuous nose-poke for a random duration triggered stimulus presentation. Stimuli were a sequence of discrete Gaussian deflections of the mesh that increased in amplitude over time – across 5 conditions, time to maximum amplitude varied from 0.5 to 8 seconds. Rats indicated the detected stimulus by choosing between two reward spouts. Two rats completed more than 500 trials per condition. Rats' stimulus sampling duration increased and performance dropped with increasing task difficulty. For all conditions the median reaction time was longer for correct trials than incorrect trials. Higher rates of increment in stimulus amplitude resulted in faster rise in performance as a function of stimulus sampling duration. Rats' behaviour indicated a dynamic stimulus sampling whereby nose-poke was maintained until a stimulus was correctly identified or the rat experienced a false alarm. The perception was then manifested in behaviour after a motor delay. We thus modelled the results with 3 parameters: signal detection, false alarm, and motor delay. The model captured the main features of the data and produced parameter estimates that were biologically plausible and highly similar across the two rats.
Collapse
Affiliation(s)
- James S. McDonald
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
- * E-mail:
| | - Mehdi Adibi
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence for Integrative Brain Function, Australian National University Node, Canberra, ACT, Australia
| | | | - Ehsan Arabzadeh
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence for Integrative Brain Function, Australian National University Node, Canberra, ACT, Australia
| |
Collapse
|
40
|
Georgieva P, Brugger D, Schwarz C. Are spatial frequency cues used for whisker-based active discrimination? Front Behav Neurosci 2014; 8:379. [PMID: 25404903 PMCID: PMC4217502 DOI: 10.3389/fnbeh.2014.00379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/16/2014] [Indexed: 11/13/2022] Open
Abstract
Rats are highly skilled in discriminating objects and textures by palpatory movements of their whiskers. If they used spatial frequency cues, they would be able to optimize performance in a stimulus dependent way-by moving their whisker faster or slower across the texture surface, thereby shifting the frequency content of the neuronal signal toward an optimal working range for perception. We tested this idea by measuring discrimination performance of head-fixed rats that were trained to actively sample from virtual grids. The virtual grid mimicked discrete and repetitive whisker deflections generated by real objects (e.g., grove patterns) with single electrical microstimulation pulses delivered directly to the barrel cortex, and provided the critical advantage that stimuli could be controlled at highest precision. Surprisingly, rats failed to use the spatial frequency cue for discrimination as a matter of course, and also failed to adapt whisking patterns in order to optimally exploit frequency differences. In striking contrast they could be easily trained to discriminate stimuli differing in electrical pulse amplitudes, a stimulus property that is not malleable by whisking. Intermingling these "easy-to-discriminate" discriminanda with others that solely offered frequency/positional cues, rats could be guided to base discrimination on frequency and/or position, albeit on a lower level of performance. Following this training, abolishment of electrical amplitude cues and reducing positional cues led to initial good performance which, however, was unstable and ran down to very low levels over the course of hundreds of trials. These results clearly demonstrate that frequency cues, while definitely perceived by rats, are of minor importance and they are not able to support consistent modulation of whisking patterns to optimize performance.
Collapse
Affiliation(s)
- Petya Georgieva
- Systems Neurophysiology, Werner Reichardt Center for Integrative Neuroscience, University Tübingen Tübingen, Germany ; Department for Cognitive Neurology, Hertie-Institute for Clinical Brain Research, University Tübingen Tübingen, Germany
| | - Dominik Brugger
- Systems Neurophysiology, Werner Reichardt Center for Integrative Neuroscience, University Tübingen Tübingen, Germany ; Department for Cognitive Neurology, Hertie-Institute for Clinical Brain Research, University Tübingen Tübingen, Germany
| | - Cornelius Schwarz
- Systems Neurophysiology, Werner Reichardt Center for Integrative Neuroscience, University Tübingen Tübingen, Germany ; Department for Cognitive Neurology, Hertie-Institute for Clinical Brain Research, University Tübingen Tübingen, Germany
| |
Collapse
|
41
|
Siegle JH, Pritchett DL, Moore CI. Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli. Nat Neurosci 2014; 17:1371-9. [PMID: 25151266 PMCID: PMC4229565 DOI: 10.1038/nn.3797] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/29/2014] [Indexed: 12/15/2022]
Abstract
We tested the sensory impact of repeated synchronization of fast-spiking interneurons (FS), an activity pattern thought to underlie neocortical gamma oscillations. We optogenetically drove 'FS-gamma' while mice detected naturalistic vibrissal stimuli and found enhanced detection of less salient stimuli and impaired detection of more salient ones. Prior studies have predicted that the benefit of FS-gamma is generated when sensory neocortical excitation arrives in a specific temporal window 20-25 ms after FS synchronization. To systematically test this prediction, we aligned periodic tactile and optogenetic stimulation. We found that the detection of less salient stimuli was improved only when peripheral drive led to the arrival of excitation 20-25 ms after synchronization and that other temporal alignments either had no effects or impaired detection. These results provide causal evidence that FS-gamma can enhance processing of less salient stimuli, those that benefit from the allocation of attention.
Collapse
Affiliation(s)
- Joshua H Siegle
- 1] Department of Neuroscience and Institute for Brain Science, Brown University, Providence, Rhode Island, USA. [2] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dominique L Pritchett
- 1] Department of Neuroscience and Institute for Brain Science, Brown University, Providence, Rhode Island, USA. [2] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [3]
| | - Christopher I Moore
- Department of Neuroscience and Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
42
|
A somatosensory circuit for cooling perception in mice. Nat Neurosci 2014; 17:1560-6. [PMID: 25262494 DOI: 10.1038/nn.3828] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/03/2014] [Indexed: 12/14/2022]
Abstract
The temperature of an object provides important somatosensory information for animals performing tactile tasks. Humans can perceive skin cooling of less than one degree, but the sensory afferents and central circuits that they engage to enable the perception of surface temperature are poorly understood. To address these questions, we examined the perception of glabrous skin cooling in mice. We found that mice were also capable of perceiving small amplitude skin cooling and that primary somatosensory (S1) cortical neurons were required for cooling perception. Moreover, the absence of the menthol-gated transient receptor potential melastatin 8 ion channel in sensory afferent fibers eliminated the ability to perceive cold and the corresponding activation of S1 neurons. Our results identify parts of a neural circuit underlying cold perception in mice and provide a new model system for the analysis of thermal processing and perception and multimodal integration.
Collapse
|
43
|
Maravall M, Diamond ME. Algorithms of whisker-mediated touch perception. Curr Opin Neurobiol 2014; 25:176-86. [PMID: 24549178 DOI: 10.1016/j.conb.2014.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 11/18/2022]
Abstract
Comparison of the functional organization of sensory modalities can reveal the specialized mechanisms unique to each modality as well as processing algorithms that are common across modalities. Here we examine the rodent whisker system. The whisker's mechanical properties shape the forces transmitted to specialized receptors. The sensory and motor systems are intimately interconnected, giving rise to two forms of sensation: generative and receptive. The sensory pathway is a test bed for fundamental concepts in computation and coding: hierarchical feature detection, sparseness, adaptive representations, and population coding. The central processing of signals can be considered a sequence of filters. At the level of cortex, neurons represent object features by a coordinated population code which encompasses cells with heterogeneous properties.
Collapse
Affiliation(s)
- Miguel Maravall
- Instituto de Neurociencias de Alicante UMH-CSIC, Campus de San Juan, Apartado 18, 03550 Sant Joan d'Alacant, Spain
| | - Mathew E Diamond
- Tactile Perception and Learning Lab, International School for Advanced Studies-SISSA, Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
44
|
Voller J, Potužáková B, Šimeček V, Vožeh F. The role of whiskers in compensation of visual deficit in a mouse model of retinal degeneration. Neurosci Lett 2014; 558:149-53. [PMID: 24246903 DOI: 10.1016/j.neulet.2013.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 11/29/2022]
Abstract
Sensory deprivation in one modality can enhance the development of the remaining modalities via mechanisms of synaptic plasticity. Mice of the C3H strain suffer from RD1 retinal degeneration that leads to visual impairment at weaning age. We examined a role of whiskers in compensation of the visual deficit. In order to differentiate the contribution of the whiskers from other mechanisms that can take part in the compensation, we investigated the effect of both chronic and acute tactile deprivation. Three-month-old mice were used. We examined motor skills (rotarod, beam walking test), gait control (CatWalk system), spontaneous motor activity (open field) and CNS excitability to an acoustic stimulus for assessment of compensatory changes in auditory system (audiogenic epilepsy). In the sighted mice, the only effect was a decline in their rotarod test performance after acute whisker removal. In the blind animals, chronic tactile deprivation caused changes in their gait and impaired the performance in motor tests. Some other compensatory mechanisms were involved but the whiskers are essential for the compensation as it emerged from more marked change of gait and the worsening of the motor performance after the acute whisker removal. Both chronic and acute tactile deprivation induced anxiety-like behaviour. Only a combination of blindness and chronic tactile deprivation led to an increased sense of hearing.
Collapse
Affiliation(s)
- Jaroslav Voller
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague, Lidická 1, 301 66 Plzeň, Czech Republic; Sikl's Department of Pathology, University Hospital Pilsen, Charles University, Dr. E. Beneše 13, 305 66 Plzeň, Czech Republic.
| | - Barbora Potužáková
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague, Lidická 1, 301 66 Plzeň, Czech Republic
| | - Vojtěch Šimeček
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague, Lidická 1, 301 66 Plzeň, Czech Republic
| | - František Vožeh
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague, Lidická 1, 301 66 Plzeň, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Plzeň, Czech Republic
| |
Collapse
|
45
|
Waiblinger C, Brugger D, Schwarz C. Vibrotactile discrimination in the rat whisker system is based on neuronal coding of instantaneous kinematic cues. Cereb Cortex 2013; 25:1093-106. [PMID: 24169940 PMCID: PMC4380004 DOI: 10.1093/cercor/bht305] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Which physical parameter of vibrissa deflections is extracted by the rodent tactile system for discrimination? Particularly, it remains unclear whether perception has access to instantaneous kinematic parameters (i.e., the details of the trajectory) or relies on temporally integration of the movement trajectory such as frequency (e.g., spectral information) and intensity (e.g., mean speed). Here, we use a novel detection of change paradigm in head-fixed rats, which presents pulsatile vibrissa stimuli in seamless sequence for discrimination. This procedure ensures that processes of decision making can directly tap into sensory signals (no memory functions involved). We find that discrimination performance based on instantaneous kinematic cues far exceeds the ones provided by frequency and intensity. Neuronal modeling based on barrel cortex single units shows that small populations of sensitive neurons provide a transient signal that optimally fits the characteristic of the subject's perception. The present study is the first to show that perceptual read-out is superior in situations allowing the subject to base perception on detailed trajectory cues, that is, instantaneous kinematic variables. A possible impact of this finding on tactile systems of other species is suggested by evidence for instantaneous coding also in primates.
Collapse
Affiliation(s)
- Christian Waiblinger
- Werner Reichardt Center for Integrative Neuroscience, Systems Neuroscience, Hertie Institute for Clinical Brain Research, Department of Cognitive Neurology, Eberhard Karls University, Tübingen, Germany
| | - Dominik Brugger
- Werner Reichardt Center for Integrative Neuroscience, Systems Neuroscience, Hertie Institute for Clinical Brain Research, Department of Cognitive Neurology, Eberhard Karls University, Tübingen, Germany
| | - Cornelius Schwarz
- Werner Reichardt Center for Integrative Neuroscience, Systems Neuroscience, Hertie Institute for Clinical Brain Research, Department of Cognitive Neurology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
46
|
Sachidhanandam S, Sreenivasan V, Kyriakatos A, Kremer Y, Petersen CCH. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat Neurosci 2013; 16:1671-7. [DOI: 10.1038/nn.3532] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022]
|