1
|
Kearney E, Brownsett SLE, Copland DA, Drummond KJ, Jeffree RL, Olson S, Murton E, Ong B, Robinson GA, Tolkacheva V, McMahon KL, de Zubicaray GI. Relationships between reading performance and regional spontaneous brain activity following surgical removal of primary left-hemisphere tumors: A resting-state fMRI study. Neuropsychologia 2023; 188:108631. [PMID: 37356540 DOI: 10.1016/j.neuropsychologia.2023.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Left-hemisphere intraparenchymal primary brain tumor patients are at risk of developing reading difficulties that may be stable, improve or deteriorate after surgery. Previous studies examining language organization in brain tumor patients have provided insights into neural plasticity supporting recovery. Only a single study, however, has examined the role of white matter tracts in preserving reading ability post-surgery and none have examined the functional reading network. The current study aimed to investigate the regional spontaneous brain activity associated with reading performance in a group of 36 adult patients 6-24 months following left-hemisphere tumor resection. Spontaneous brain activity was assessed using resting-state fMRI (rs-fMRI) regional homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF) metrics, which measure local functional connectivity and activity, respectively. ReHo in the left occipito-temporal and right superior parietal regions was negatively correlated with reading performance. fALFF in the putamen bilaterally and the left cerebellum was negatively correlated with reading performance, and positively correlated in the right superior parietal gyrus. These findings are broadly consistent with reading networks reported in healthy participants, indicating that reading ability following brain tumor surgery might not involve substantial functional re-organization.
Collapse
Affiliation(s)
- Elaine Kearney
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, 4059, Australia.
| | - Sonia L E Brownsett
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, 4072, Australia; Surgical Treatment and Rehabilitation Service (STARS), Education and Research Alliance, University of Queensland and Metro North Health, Queensland, Australia; Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia
| | - David A Copland
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, 4072, Australia; Surgical Treatment and Rehabilitation Service (STARS), Education and Research Alliance, University of Queensland and Metro North Health, Queensland, Australia; Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, 3050, Australia; Department of Surgery, University of Melbourne, Parkville, 3052, Australia
| | | | - Sarah Olson
- Princess Alexandra Hospital, Brisbane, 4102, Australia
| | - Emma Murton
- Department of Speech Pathology, Royal Melbourne Hospital, Parkville, 3050, Australia
| | - Benjamin Ong
- Princess Alexandra Hospital, Brisbane, 4102, Australia
| | - Gail A Robinson
- Queensland Brain Institute and School of Psychology, University of Queensland, Brisbane, 4072, Australia
| | - Valeriya Tolkacheva
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, 4059, Australia
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, 4059, Australia; Herston Imaging Research Facility, Royal Brisbane & Women's Hospital, Brisbane, 4029, Australia
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, 4059, Australia
| |
Collapse
|
2
|
Di Pietro SV, Karipidis II, Pleisch G, Brem S. Neurodevelopmental trajectories of letter and speech sound processing from preschool to the end of elementary school. Dev Cogn Neurosci 2023; 61:101255. [PMID: 37196374 DOI: 10.1016/j.dcn.2023.101255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Learning to read alphabetic languages starts with learning letter-speech-sound associations. How this process changes brain function during development is still largely unknown. We followed 102 children with varying reading skills in a mixed-longitudinal/cross-sectional design from the prereading stage to the end of elementary school over five time points (n = 46 with two and more time points, of which n = 16 fully-longitudinal) to investigate the neural trajectories of letter and speech sound processing using fMRI. Children were presented with letters and speech sounds visually, auditorily, and audiovisually in kindergarten (6.7yo), at the middle (7.3yo) and end of first grade (7.6yo), and in second (8.4yo) and fifth grades (11.5yo). Activation of the ventral occipitotemporal cortex for visual and audiovisual processing followed a complex trajectory, with two peaks in first and fifth grades. The superior temporal gyrus (STG) showed an inverted U-shaped trajectory for audiovisual letter processing, a development that in poor readers was attenuated in middle STG and absent in posterior STG. Finally, the trajectories for letter-speech-sound integration were modulated by reading skills and showed differing directionality in the congruency effect depending on the time point. This unprecedented study captures the development of letter processing across elementary school and its neural trajectories in children with varying reading skills.
Collapse
Affiliation(s)
- S V Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - I I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - G Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - S Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Li J, Yang Y, Viñas-Guasch N, Yang Y, Bi HY. Differences in brain functional networks for audiovisual integration during reading between children and adults. Ann N Y Acad Sci 2023; 1520:127-139. [PMID: 36478220 DOI: 10.1111/nyas.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Building robust letter-to-sound correspondences is a prerequisite for developing reading capacity. However, the neural mechanisms underlying the development of audiovisual integration for reading are largely unknown. This study used functional magnetic resonance imaging in a lexical decision task to investigate functional brain networks that support audiovisual integration during reading in developing child readers (10-12 years old) and skilled adult readers (20-28 years old). The results revealed enhanced connectivity in a prefrontal-superior temporal network (including the right medial frontal gyrus, right superior frontal gyrus, and left superior temporal gyrus) in adults relative to children, reflecting the development of attentional modulation of audiovisual integration involved in reading processing. Furthermore, the connectivity strength of this brain network was correlated with reading accuracy. Collectively, this study, for the first time, elucidates the differences in brain networks of audiovisual integration for reading between children and adults, promoting the understanding of the neurodevelopment of multisensory integration in high-level human cognition.
Collapse
Affiliation(s)
- Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Yinghui Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,China Welfare Institute Information and Research Center, Soong Ching Ling Children Development Center, Shanghai, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Romanovska L, Janssen R, Bonte M. Longitudinal changes in cortical responses to letter-speech sound stimuli in 8-11 year-old children. NPJ SCIENCE OF LEARNING 2022; 7:2. [PMID: 35079026 PMCID: PMC8789908 DOI: 10.1038/s41539-021-00118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/16/2021] [Indexed: 05/29/2023]
Abstract
While children are able to name letters fairly quickly, the automatisation of letter-speech sound mappings continues over the first years of reading development. In the current longitudinal fMRI study, we explored developmental changes in cortical responses to letters and speech sounds across 3 yearly measurements in a sample of 18 8-11 year old children. We employed a text-based recalibration paradigm in which combined exposure to text and ambiguous speech sounds shifts participants' later perception of the ambiguous sounds towards the text. Our results showed that activity of the left superior temporal and lateral inferior precentral gyri followed a non-linear developmental pattern across the measurement sessions. This pattern is reminiscent of previously reported inverted-u-shape developmental trajectories in children's visual cortical responses to text. Our findings suggest that the processing of letters and speech sounds involves non-linear changes in the brain's spoken language network possibly related to progressive automatisation of reading skills.
Collapse
Affiliation(s)
- Linda Romanovska
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Roef Janssen
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Milene Bonte
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Xia Z, Yang T, Cui X, Hoeft F, Liu H, Zhang X, Shu H, Liu X. Neurofunctional basis underlying audiovisual integration of print and speech sound in Chinese children. Eur J Neurosci 2022; 55:806-826. [PMID: 35032071 DOI: 10.1111/ejn.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/10/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
Effortless print-sound integration is essential to reading development, and the superior temporal cortex (STC) is the most critical brain region. However, to date, the conclusion is almost restricted to alphabetic orthographies. To examine the neural basis in non-alphabetic languages and its relationship with reading abilities, we conducted a functional magnetic resonance imaging study in typically developing Chinese children. Two neuroimaging-based indicators of audiovisual processing-additive enhancement (higher activation in the congruent than the average activation of unimodal conditions) and neural integration (different activations between the congruent versus incongruent conditions)-were used to investigate character-sounds (opaque) and pinyin-sounds (transparent) processing. We found additive enhancement in bilateral STCs processing both character and pinyin stimulations. Moreover, the neural integrations in the left STC for the two scripts were strongly correlated. In terms of differentiation, first, areas beyond the STCs showed additive enhancement in processing pinyin-sounds. Second, while the bilateral STCs, left inferior/middle frontal and parietal regions manifested a striking neural integration (incongruent > congruent) for character-sounds, no significant clusters were revealed for pinyin-sounds. Finally, the neural integration in the left middle frontal gyrus for characters was specifically associated with silent reading comprehension proficiency, indicating automatic semantic processing during implicit character-sound integration. In contrast, the neural integration in the left STC for pinyin was specifically associated with oral reading fluency that relies on grapho-phonological mapping. To summarize, this study revealed both script-universal and script-specific neurofunctional substrates of print-sound integration as well as their processing- and region-dependent associations with reading abilities in typical Chinese children.
Collapse
Affiliation(s)
- Zhichao Xia
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China.,School of Systems Science, Beijing Normal University, China
| | - Ting Yang
- Faculty of Psychology, Beijing Normal University, China.,Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, China
| | - Xin Cui
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China.,Haskins Laboratories, USA
| | - Fumiko Hoeft
- Haskins Laboratories, USA.,Department of Psychological Sciences and Brain Imaging Research Center, University of Connecticut, USA.,Department of Psychiatry and Weill Institute for Neurosciences and Dyslexia Center, University of California, San Francisco, USA.,Department of Neuropsychiatry, Keio University School of Medicine, Japan
| | - Hong Liu
- Faculty of Psychology, Beijing Normal University, China.,Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, China.,Department of Psychological Sciences and Brain Imaging Research Center, University of Connecticut, USA
| | - Xianglin Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China
| | - Xiangping Liu
- Faculty of Psychology, Beijing Normal University, China.,Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, China
| |
Collapse
|
6
|
Romanovska L, Bonte M. How Learning to Read Changes the Listening Brain. Front Psychol 2021; 12:726882. [PMID: 34987442 PMCID: PMC8721231 DOI: 10.3389/fpsyg.2021.726882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/23/2021] [Indexed: 01/18/2023] Open
Abstract
Reading acquisition reorganizes existing brain networks for speech and visual processing to form novel audio-visual language representations. This requires substantial cortical plasticity that is reflected in changes in brain activation and functional as well as structural connectivity between brain areas. The extent to which a child's brain can accommodate these changes may underlie the high variability in reading outcome in both typical and dyslexic readers. In this review, we focus on reading-induced functional changes of the dorsal speech network in particular and discuss how its reciprocal interactions with the ventral reading network contributes to reading outcome. We discuss how the dynamic and intertwined development of both reading networks may be best captured by approaching reading from a skill learning perspective, using audio-visual learning paradigms and longitudinal designs to follow neuro-behavioral changes while children's reading skills unfold.
Collapse
Affiliation(s)
| | - Milene Bonte
- *Correspondence: Linda Romanovska, ; Milene Bonte,
| |
Collapse
|
7
|
Karipidis II, Pleisch G, Di Pietro SV, Fraga-González G, Brem S. Developmental Trajectories of Letter and Speech Sound Integration During Reading Acquisition. Front Psychol 2021; 12:750491. [PMID: 34867636 PMCID: PMC8636811 DOI: 10.3389/fpsyg.2021.750491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Reading acquisition in alphabetic languages starts with learning the associations between speech sounds and letters. This learning process is related to crucial developmental changes of brain regions that serve visual, auditory, multisensory integration, and higher cognitive processes. Here, we studied the development of audiovisual processing and integration of letter-speech sound pairs with an audiovisual target detection functional MRI paradigm. Using a longitudinal approach, we tested children with varying reading outcomes before the start of reading acquisition (T1, 6.5 yo), in first grade (T2, 7.5 yo), and in second grade (T3, 8.5 yo). Early audiovisual integration effects were characterized by higher activation for incongruent than congruent letter-speech sound pairs in the inferior frontal gyrus and ventral occipitotemporal cortex. Audiovisual processing in the left superior temporal gyrus significantly increased from the prereading (T1) to early reading stages (T2, T3). Region of interest analyses revealed that activation in left superior temporal gyrus (STG), inferior frontal gyrus and ventral occipitotemporal cortex increased in children with typical reading fluency skills, while poor readers did not show the same development in these regions. The incongruency effect bilaterally in parts of the STG and insular cortex at T1 was significantly associated with reading fluency skills at T3. These findings provide new insights into the development of the brain circuitry involved in audiovisual processing of letters, the building blocks of words, and reveal early markers of audiovisual integration that may be predictive of reading outcomes.
Collapse
Affiliation(s)
- Iliana I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Georgette Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Sarah V Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Gorka Fraga-González
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,MR-Center of the University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Romanovska L, Janssen R, Bonte M. Cortical responses to letters and ambiguous speech vary with reading skills in dyslexic and typically reading children. NEUROIMAGE-CLINICAL 2021; 30:102588. [PMID: 33618236 PMCID: PMC7907898 DOI: 10.1016/j.nicl.2021.102588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/25/2022]
Abstract
Text recalibrates ambiguous speech perception in children with and without dyslexia. Dyslexia and poorer reading skills are linked to reduced left fusiform activation. Poorer letter-speech sound matching is linked to higher superior temporal activation.
One of the proposed issues underlying reading difficulties in dyslexia is insufficiently automatized letter-speech sound associations. In the current fMRI experiment, we employ text-based recalibration to investigate letter-speech sound mappings in 8–10 year-old children with and without dyslexia. Here an ambiguous speech sound /a?a/ midway between /aba/ and /ada/ is combined with disambiguating “aba” or “ada” text causing a perceptual shift of the ambiguous /a?a/ sound towards the text (recalibration). This perceptual shift has been found to be reduced in adults but not in children with dyslexia compared to typical readers. Our fMRI results show significantly reduced activation in the left fusiform in dyslexic compared to typical readers, despite comparable behavioural performance. Furthermore, enhanced audio-visual activation within this region was linked to better reading and phonological skills. In contrast, higher activation in bilateral superior temporal cortex was associated with lower letter-speech sound identification fluency. These findings reflect individual differences during the early stages of reading development with reduced recruitment of the left fusiform in dyslexic readers together with an increased involvement of the superior temporal cortex in children with less automatized letter-speech sound associations.
Collapse
Affiliation(s)
- Linda Romanovska
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Roef Janssen
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Milene Bonte
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
McNorgan C. The Connectivity Fingerprints of Highly-Skilled and Disordered Reading Persist Across Cognitive Domains. Front Comput Neurosci 2021; 15:590093. [PMID: 33643016 PMCID: PMC7907163 DOI: 10.3389/fncom.2021.590093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023] Open
Abstract
The capacity to produce and understand written language is a uniquely human skill that exists on a continuum, and foundational to other facets of human cognition. Multivariate classifiers based on support vector machines (SVM) have provided much insight into the networks underlying reading skill beyond what traditional univariate methods can tell us. Shallow models like SVM require large amounts of data, and this problem is compounded when functional connections, which increase exponentially with network size, are predictors of interest. Data reduction using independent component analyses (ICA) mitigates this problem, but conventionally assumes linear relationships. Multilayer feedforward networks, in contrast, readily find optimal low-dimensional encodings of complex patterns that include complex nonlinear or conditional relationships. Samples of poor and highly-skilled young readers were selected from two open access data sets using rhyming and mental multiplication tasks, respectively. Functional connectivity was computed for the rhyming task within a functionally-defined reading network and used to train multilayer feedforward classifier models to simultaneously associate functional connectivity patterns with lexicality (word vs. pseudoword) and reading skill (poor vs. highly-skilled). Classifiers identified validation set lexicality with significantly better than chance accuracy, and reading skill with near-ceiling accuracy. Critically, a series of replications used pre-trained rhyming-task models to classify reading skill from mental multiplication task participants' connectivity with near-ceiling accuracy. The novel deep learning approach presented here provides the clearest demonstration to date that reading-skill dependent functional connectivity within the reading network influences brain processing dynamics across cognitive domains.
Collapse
Affiliation(s)
- Chris McNorgan
- Department of Psychology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
10
|
Labache L, Mazoyer B, Joliot M, Crivello F, Hesling I, Tzourio-Mazoyer N. Typical and atypical language brain organization based on intrinsic connectivity and multitask functional asymmetries. eLife 2020; 9:e58722. [PMID: 33064079 PMCID: PMC7605859 DOI: 10.7554/elife.58722] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/16/2020] [Indexed: 01/23/2023] Open
Abstract
Based on the joint investigation in 287 healthy volunteers (150 left-Handers (LH)) of language task-induced asymmetries and intrinsic connectivity strength of the sentence-processing supramodal network, we show that individuals with atypical rightward language lateralization (N = 30, 25 LH) do not rely on an organization that simply mirrors that of typical leftward lateralized individuals. Actually, the resting-state organization in the atypicals showed that their sentence processing was underpinned by left and right networks both wired for language processing and highly interacting by strong interhemispheric intrinsic connectivity and larger corpus callosum volume. Such a loose hemispheric specialization for language permits the hosting of language in either the left and/or right hemisphere as assessed by a very high incidence of dissociations across various language task-induced asymmetries in this group.
Collapse
Affiliation(s)
- Loïc Labache
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- Université de Bordeaux, Institut de Mathématiques de Bordeaux, UMR 5251BordeauxFrance
- Bordeaux INP, Institut de Mathématiques de Bordeaux, UMR 5251BordeauxFrance
- INRIA Bordeaux Sud-Ouest, Institut de Mathématiques de Bordeaux, UMR 5251, Contrôle de Qualité et Fiabilité DynamiqueTalenceFrance
| | - Bernard Mazoyer
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- Centre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Marc Joliot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
| | - Fabrice Crivello
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
| | - Isabelle Hesling
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
| | - Nathalie Tzourio-Mazoyer
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
| |
Collapse
|
11
|
Wang F, Karipidis II, Pleisch G, Fraga-González G, Brem S. Development of Print-Speech Integration in the Brain of Beginning Readers With Varying Reading Skills. Front Hum Neurosci 2020; 14:289. [PMID: 32922271 PMCID: PMC7457077 DOI: 10.3389/fnhum.2020.00289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Learning print-speech sound correspondences is a crucial step at the beginning of reading acquisition and often impaired in children with developmental dyslexia. Despite increasing insight into audiovisual language processing, it remains largely unclear how integration of print and speech develops at the neural level during initial learning in the first years of schooling. To investigate this development, 32 healthy, German-speaking children at varying risk for developmental dyslexia (17 typical readers and 15 poor readers) participated in a longitudinal study including behavioral and fMRI measurements in first (T1) and second (T2) grade. We used an implicit audiovisual (AV) non-word target detection task aimed at characterizing differential activation to congruent (AVc) and incongruent (AVi) audiovisual non-word pairs. While children’s brain activation did not differ between AVc and AVi pairs in first grade, an incongruency effect (AVi > AVc) emerged in bilateral inferior temporal and superior frontal gyri in second grade. Of note, pseudoword reading performance improvements with time were associated with the development of the congruency effect (AVc > AVi) in the left posterior superior temporal gyrus (STG) from first to second grade. Finally, functional connectivity analyses indicated divergent development and reading expertise dependent coupling from the left occipito-temporal and superior temporal cortex to regions of the default mode (precuneus) and fronto-temporal language networks. Our results suggest that audiovisual integration areas as well as their functional coupling to other language areas and areas of the default mode network show a different development in poor vs. typical readers at varying familial risk for dyslexia.
Collapse
Affiliation(s)
- Fang Wang
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Iliana I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Georgette Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Gorka Fraga-González
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| |
Collapse
|
12
|
Wang J, Joanisse MF, Booth JR. Neural representations of phonology in temporal cortex scaffold longitudinal reading gains in 5- to 7-year-old children. Neuroimage 2020; 207:116359. [PMID: 31733372 PMCID: PMC8947253 DOI: 10.1016/j.neuroimage.2019.116359] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022] Open
Abstract
The objective of this study was to investigate whether phonological processes measured through brain activation are crucial for the development of reading skill (i.e. scaffolding hypothesis) and/or whether learning to read words fine-tunes phonology in the brain (i.e. refinement hypothesis). We specifically looked at how different grain sizes in two brain regions implicated in phonological processing played a role in this bidirectional relation. According to the dual-stream model of speech processing and previous empirical studies, the posterior superior temporal gyrus (STG) appears to be a perceptual region associated with phonological representations, whereas the dorsal inferior frontal gyrus (IFG) appears to be an articulatory region that accesses phonological representations in STG during more difficult tasks. 36 children completed a reading test outside the scanner and an auditory phonological task which included both small (i.e. onset) and large (i.e. rhyme) grain size conditions inside the scanner when they were 5.5-6.5 years old (Time 1) and once again approximately 1.5 years later (Time 2). To study the scaffolding hypothesis, a regression analysis was carried out by entering brain activation in either STG or IFG for either small (onset > perceptual) or large (rhyme > perceptual) grain size phonological processing at T1 as the predictors and reading skill at T2 as the dependent measure, with several covariates of no interest included. To study the refinement hypothesis, the regression analysis included reading skill at T1 as the predictor and brain activation in either STG or IFG for either small or large grain size phonological processing at T2 as the dependent measures, with several covariates of no interest included. We found that only posterior STG, regardless of grain size, was predictive of reading gains. Parallel models with only behavioral accuracy were not significant. Taken together, our results suggest that the representational quality of phonology in temporal cortex is crucial for reading development. Moreover, our study provides neural evidence supporting the scaffolding hypothesis, suggesting that brain measures of phonology could be helpful in early identification of reading difficulties.
Collapse
Affiliation(s)
- Jin Wang
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA.
| | - Marc F Joanisse
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
13
|
Lytle MN, McNorgan C, Booth JR. A longitudinal neuroimaging dataset on multisensory lexical processing in school-aged children. Sci Data 2019; 6:329. [PMID: 31862878 PMCID: PMC6925263 DOI: 10.1038/s41597-019-0338-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022] Open
Abstract
Here we describe the open access dataset entitled “Longitudinal Brain Correlates of Multisensory Lexical Processing in Children” hosted on OpenNeuro.org. This dataset examines reading development through a longitudinal multimodal neuroimaging and behavioral approach, including diffusion-weighted and T1-weighted structural magnetic resonance imaging (MRI), task based functional MRI, and a battery of psycho-educational assessments and parental questionnaires. Neuroimaging, psycho-educational testing, and functional task behavioral data were collected from 188 typically developing children when they were approximately 10.5 years old (session T1). Seventy children returned approximately 2.5 years later (session T2), of which all completed longitudinal follow-ups of psycho-educational testing, and 49 completed neuroimaging and functional tasks. At session T1 participants completed auditory, visual, and audio-visual word and pseudo-word rhyming judgment tasks in the scanner. At session T2 participants completed visual word and pseudo-word rhyming judgement tasks in the scanner. Measurement(s) | reading and spelling ability • intelligence • brain • brain physiology trait | Technology Type(s) | psychoeducational test administration • magnetic resonance imaging • functional magnetic resonance imaging • Diffusion Weighted Imaging | Factor Type(s) | age • reading disability • type of task • parental educational level | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11298188
Collapse
Affiliation(s)
- Marisa N Lytle
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA.
| | - Chris McNorgan
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, USA
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
14
|
Randazzo M, Greenspon EB, Booth JR, McNorgan C. Children With Reading Difficulty Rely on Unimodal Neural Processing for Phonemic Awareness. Front Hum Neurosci 2019; 13:390. [PMID: 31798430 PMCID: PMC6868065 DOI: 10.3389/fnhum.2019.00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/21/2019] [Indexed: 11/26/2022] Open
Abstract
Phonological awareness skills in children with reading difficulty (RD) may reflect impaired automatic integration of orthographic and phonological representations. However, little is known about the underlying neural mechanisms involved in phonological awareness for children with RD. Eighteen children with RD, ages 9–13, participated in a functional magnetic resonance imaging (fMRI) study designed to assess the relationship of two constructs of phonological awareness, phoneme synthesis, and phoneme analysis, with crossmodal rhyme judgment. Participants completed a rhyme judgment task presented in two modality conditions; unimodal auditory only and crossmodal audiovisual. Measures of phonological awareness were correlated with unimodal, but not crossmodal, lexical processing. Moreover, these relationships were found only in unisensory brain regions, and not in multisensory brain areas. The results of this study suggest that children with RD rely on unimodal representations and unisensory brain areas, and provide insight into the role of phonemic awareness in mapping between auditory and visual modalities during literacy acquisition.
Collapse
Affiliation(s)
- Melissa Randazzo
- Department of Communication Sciences and Disorders, Adelphi University, Garden City, NY, United States
| | - Emma B Greenspon
- Department of Psychology, State University at Buffalo, New York, NY, United States.,Department of Psychology, Monmouth University, New Jersey, NJ, United States
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Tennessee, TN, United States
| | - Chris McNorgan
- Department of Psychology, State University at Buffalo, New York, NY, United States
| |
Collapse
|
15
|
Hesling I, Labache L, Joliot M, Tzourio-Mazoyer N. Large-scale plurimodal networks common to listening to, producing and reading word lists: an fMRI study combining task-induced activation and intrinsic connectivity in 144 right-handers. Brain Struct Funct 2019; 224:3075-3094. [PMID: 31494717 PMCID: PMC6875148 DOI: 10.1007/s00429-019-01951-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
We aimed at identifying plurimodal large-scale networks for producing, listening to and reading word lists based on the combined analyses of task-induced activation and resting-state intrinsic connectivity in 144 healthy right-handers. In the first step, we identified the regions in each hemisphere showing joint activation and joint asymmetry during the three tasks. In the left hemisphere, 14 homotopic regions of interest (hROIs) located in the left Rolandic sulcus, precentral gyrus, cingulate gyrus, cuneus and inferior supramarginal gyrus (SMG) met this criterion, and 7 hROIs located in the right hemisphere were located in the preSMA, medial superior frontal gyrus, precuneus and superior temporal sulcus (STS). In a second step, we calculated the BOLD temporal correlations across these 21 hROIs at rest and conducted a hierarchical clustering analysis to unravel their network organization. Two networks were identified, including the WORD-LIST_CORE network that aggregated 14 motor, premotor and phonemic areas in the left hemisphere plus the right STS that corresponded to the posterior human voice area (pHVA). The present results revealed that word-list processing is based on left articulatory and storage areas supporting the action-perception cycle common not only to production and listening but also to reading. The inclusion of the right pHVA acting as a prosodic integrative area highlights the importance of prosody in the three modalities and reveals an intertwining across hemispheres between prosodic (pHVA) and phonemic (left SMG) processing. These results are consistent with the motor theory of speech postulating that articulatory gestures are the central motor units on which word perception, production, and reading develop and act together.
Collapse
Affiliation(s)
- Isabelle Hesling
- University of Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France. .,CNRS, IMN, UMR 5293, 33000, Bordeaux, France. .,CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France. .,IMN Institut des Maladies Neurodégénératives UMR 5293, Team 5: GIN Groupe d'imagerie Neurofonctionnelle, CEA-CNRS, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine-3ème étage, 146 rue Léo-Saignat-CS 61292-Case 28, 33076, Bordeaux CEDEX, France.
| | - L Labache
- University of Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France.,CNRS, IMN, UMR 5293, 33000, Bordeaux, France.,CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France.,University of Bordeaux, IMB, UMR 5251, 33405, Talence, France.,INRIA Bordeaux Sud-Ouest, CQFD, INRIA, UMR 5251, 33405, Talence, France
| | - M Joliot
- University of Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France.,CNRS, IMN, UMR 5293, 33000, Bordeaux, France.,CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France
| | - N Tzourio-Mazoyer
- University of Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France.,CNRS, IMN, UMR 5293, 33000, Bordeaux, France.,CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France
| |
Collapse
|
16
|
Word inversion sensitivity as a marker of visual word form area lateralization: An application of a novel multivariate measure of laterality. Neuroimage 2019; 191:493-502. [PMID: 30807821 DOI: 10.1016/j.neuroimage.2019.02.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/01/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
An area within the ventral occipitotemporal cortex (vOTC), the "visual word form area" (VWFA), typically exhibits a strongly left-lateralized response to orthographic stimuli in skilled readers. While individual variation in VWFA lateralization has been observed, the behavioral significance of laterality differences remains unclear. Here, we test the hypothesis that differences in VWFA lateralization reflect differing preferences for holistic orthographic analysis. To examine this hypothesis, we implemented a new multivariate method that uses machine learning to assess functional lateralization, along with a traditional univariate lateralization method. We related these neural metrics to behavioral indices of holistic orthographic analysis (inversion sensitivity). The multivariate measure successfully detected the lateralization of orthographic processing in the VWFA, and as hypothesized, predicted behavioral differences in holistic orthographic analysis. An exploratory whole brain analysis identified further regions with a relationship between inversion sensitivity and lateralization: one near the junction of the inferior frontal and precentral sulci, and another along the superior temporal gyrus. We conclude that proficient native readers of English exhibit differences in cortical lateralization of the VWFA that have significant implications for reading behavior.
Collapse
|
17
|
Reading-induced shifts of perceptual speech representations in auditory cortex. Sci Rep 2017; 7:5143. [PMID: 28698606 PMCID: PMC5506038 DOI: 10.1038/s41598-017-05356-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/30/2017] [Indexed: 11/08/2022] Open
Abstract
Learning to read requires the formation of efficient neural associations between written and spoken language. Whether these associations influence the auditory cortical representation of speech remains unknown. Here we address this question by combining multivariate functional MRI analysis and a newly-developed ‘text-based recalibration’ paradigm. In this paradigm, the pairing of visual text and ambiguous speech sounds shifts (i.e. recalibrates) the perceptual interpretation of the ambiguous sounds in subsequent auditory-only trials. We show that it is possible to retrieve the text-induced perceptual interpretation from fMRI activity patterns in the posterior superior temporal cortex. Furthermore, this auditory cortical region showed significant functional connectivity with the inferior parietal lobe (IPL) during the pairing of text with ambiguous speech. Our findings indicate that reading-related audiovisual mappings can adjust the auditory cortical representation of speech in typically reading adults. Additionally, they suggest the involvement of the IPL in audiovisual and/or higher-order perceptual processes leading to this adjustment. When applied in typical and dyslexic readers of different ages, our text-based recalibration paradigm may reveal relevant aspects of perceptual learning and plasticity during successful and failing reading development.
Collapse
|
18
|
Audiovisual speech integration in the superior temporal region is dysfunctional in dyslexia. Neuroscience 2017; 356:1-10. [DOI: 10.1016/j.neuroscience.2017.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/29/2017] [Accepted: 05/09/2017] [Indexed: 12/29/2022]
|
19
|
Moberget T, Hilland E, Andersson S, Lundar T, Due-Tønnessen BJ, Heldal A, Ivry RB, Endestad T. Patients with focal cerebellar lesions show reduced auditory cortex activation during silent reading. BRAIN AND LANGUAGE 2016; 161:18-27. [PMID: 26341544 PMCID: PMC4775464 DOI: 10.1016/j.bandl.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Functional neuroimaging studies consistently report language-related cerebellar activations, but evidence from the clinical literature is less conclusive. Here, we attempt to bridge this gap by testing the effect of focal cerebellar lesions on cerebral activations in a reading task previously shown to involve distinct cerebellar regions. Patients (N=10) had lesions primarily affecting medial cerebellum, overlapping cerebellar regions activated during the presentation of random word sequences, but distinct from activations related to semantic prediction generation and prediction error processing. In line with this pattern of activation-lesion overlap, patients did not differ from matched healthy controls (N=10) in predictability-related activations. However, whereas controls showed increased activation in bilateral auditory cortex and parietal operculum when silently reading familiar words relative to viewing letter strings, this effect was absent in the patients. Our results highlight the need for careful lesion mapping and suggest possible roles for the cerebellum in visual-to-auditory mapping and/or inner speech.
Collapse
Affiliation(s)
| | - Eva Hilland
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Stein Andersson
- Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway
| | - Tryggve Lundar
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | | | - Aasta Heldal
- Department of Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway
| | - Richard B Ivry
- Psychology Department, University of California, Berkeley, Berkeley, CA, USA
| | - Tor Endestad
- Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
20
|
Oron A, Wolak T, Zeffiro T, Szelag E. Cross-modal comparisons of stimulus specificity and commonality in phonological processing. BRAIN AND LANGUAGE 2016; 155-156:12-23. [PMID: 26994741 DOI: 10.1016/j.bandl.2016.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 02/14/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Phonological processing is a fundamental ability which underlies language comprehension. Functional neuroanatomy of phonology constitutes a matter of ongoing debate. In the present study, subjects performed visual (rhyme detection) and auditory (identification of spoken words starting with a given consonant) tasks that were contrasted with matched nonverbal tasks. We identified regions critical for phonological processing which were either stimulus specific or supramodal. The results revealed a high degree of modality specificity in both visual and auditory networks. Moreover, we observed a modality independent region in the left middle temporal gyrus (MTG)/superior temporal sulcus (STS), between a more anterior temporal area with auditory specificity and a more posterior temporal area with visual specificity. This dissociation in functional neuroanatomy suggests that this area may be a core region for supramodal phonological processing, acting as a gateway between spatially separate, but stimulus specific, phonological processes and more general linguistic functions.
Collapse
Affiliation(s)
- A Oron
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - T Wolak
- The Institute of Physiology and Pathology of Hearing, 17 Mokra Street, Kajetany, 05-830 Nadarzyn, Poland
| | | | - E Szelag
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland; University of Social Sciences and Humanities, 19/31 Chodakowska Street, 03-815 Warsaw, Poland.
| |
Collapse
|
21
|
McNorgan C, Booth JR. Skill dependent audiovisual integration in the fusiform induces repetition suppression. BRAIN AND LANGUAGE 2015; 141:110-123. [PMID: 25585276 PMCID: PMC4303511 DOI: 10.1016/j.bandl.2014.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/27/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
Learning to read entails mapping existing phonological representations to novel orthographic representations and is thus an ideal context for investigating experience driven audiovisual integration. Because two dominant brain-based theories of reading development hinge on the sensitivity of the visual-object processing stream to phonological information, we were interested in how reading skill relates to audiovisual integration in this area. Thirty-two children between 8 and 13 years of age spanning a range of reading skill participated in a functional magnetic resonance imaging experiment. Participants completed a rhyme judgment task to word pairs presented unimodally (auditory- or visual-only) and cross-modally (auditory followed by visual). Skill-dependent sub-additive audiovisual modulation was found in left fusiform gyrus, extending into the putative visual word form area, and was correlated with behavioral orthographic priming. These results suggest learning to read promotes facilitatory audiovisual integration in the ventral visual-object processing stream and may optimize this region for orthographic processing.
Collapse
Affiliation(s)
| | - James R Booth
- Northwestern University, United States; The University of Texas at Austin, United States
| |
Collapse
|
22
|
Žarić G, Fraga González G, Tijms J, van der Molen MW, Blomert L, Bonte M. Reduced neural integration of letters and speech sounds in dyslexic children scales with individual differences in reading fluency. PLoS One 2014; 9:e110337. [PMID: 25329388 PMCID: PMC4199667 DOI: 10.1371/journal.pone.0110337] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/20/2014] [Indexed: 11/18/2022] Open
Abstract
The acquisition of letter-speech sound associations is one of the basic requirements for fluent reading acquisition and its failure may contribute to reading difficulties in developmental dyslexia. Here we investigated event-related potential (ERP) measures of letter-speech sound integration in 9-year-old typical and dyslexic readers and specifically test their relation to individual differences in reading fluency. We employed an audiovisual oddball paradigm in typical readers (n = 20), dysfluent (n = 18) and severely dysfluent (n = 18) dyslexic children. In one auditory and two audiovisual conditions the Dutch spoken vowels/a/and/o/were presented as standard and deviant stimuli. In audiovisual blocks, the letter ‘a’ was presented either simultaneously (AV0), or 200 ms before (AV200) vowel sound onset. Across the three children groups, vowel deviancy in auditory blocks elicited comparable mismatch negativity (MMN) and late negativity (LN) responses. In typical readers, both audiovisual conditions (AV0 and AV200) led to enhanced MMN and LN amplitudes. In both dyslexic groups, the audiovisual LN effects were mildly reduced. Most interestingly, individual differences in reading fluency were correlated with MMN latency in the AV0 condition. A further analysis revealed that this effect was driven by a short-lived MMN effect encompassing only the N1 window in severely dysfluent dyslexics versus a longer MMN effect encompassing both the N1 and P2 windows in the other two groups. Our results confirm and extend previous findings in dyslexic children by demonstrating a deficient pattern of letter-speech sound integration depending on the level of reading dysfluency. These findings underscore the importance of considering individual differences across the entire spectrum of reading skills in addition to group differences between typical and dyslexic readers.
Collapse
Affiliation(s)
- Gojko Žarić
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
- * E-mail:
| | - Gorka Fraga González
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Rudolf Berlin Center, Amsterdam, Netherlands
| | - Jurgen Tijms
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- IWAL Institute for Dyslexia, Amsterdam, Netherlands
- Rudolf Berlin Center, Amsterdam, Netherlands
| | - Maurits W. van der Molen
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Rudolf Berlin Center, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Leo Blomert
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
| | - Milene Bonte
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
| |
Collapse
|
23
|
van Atteveldt N, Ansari D. How symbols transform brain function: A review in memory of Leo Blomert. Trends Neurosci Educ 2014. [DOI: 10.1016/j.tine.2014.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Holloway ID, van Atteveldt N, Blomert L, Ansari D. Orthographic dependency in the neural correlates of reading: evidence from audiovisual integration in English readers. Cereb Cortex 2013; 25:1544-53. [PMID: 24351976 DOI: 10.1093/cercor/bht347] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reading skills are indispensible in modern technological societies. In transparent alphabetic orthographies, such as Dutch, reading skills build on associations between letters and speech sounds (LS pairs). Previously, we showed that the superior temporal cortex (STC) of Dutch readers is sensitive to the congruency of LS pairs. Here, we used functional magnetic resonance imaging to investigate whether a similar congruency sensitivity exists in STC of readers of the more opaque English orthography, where the relation among LS pairs is less reliable. Eighteen subjects passively perceived congruent and incongruent audiovisual pairs of different levels of transparency in English: letters and speech sounds (LS; irregular), letters and letter names (LN; fairly transparent), and numerals and number names (NN; transparent). In STC, we found congruency effects for NN and LN, but no effects in the predicted direction (congruent > incongruent) for LS pairs. These findings contrast with previous results obtained from Dutch readers. These data indicate that, through education, the STC becomes tuned to the congruency of transparent audiovisual pairs, but suggests a different neural processing of irregular mappings. The orthographic dependency of LS integration underscores cross-linguistic differences in the neural basis of reading and potentially has important implications for dyslexia interventions across languages.
Collapse
Affiliation(s)
- Ian D Holloway
- Department of Psychology and Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Nienke van Atteveldt
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Leo Blomert
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Daniel Ansari
- Department of Psychology and Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
25
|
McNorgan C, Randazzo-Wagner M, Booth JR. Cross-modal integration in the brain is related to phonological awareness only in typical readers, not in those with reading difficulty. Front Hum Neurosci 2013; 7:388. [PMID: 23888137 PMCID: PMC3719029 DOI: 10.3389/fnhum.2013.00388] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/04/2013] [Indexed: 11/13/2022] Open
Abstract
Fluent reading requires successfully mapping between visual orthographic and auditory phonological representations and is thus an intrinsically cross-modal process, though reading difficulty has often been characterized as a phonological deficit. However, recent evidence suggests that orthographic information influences phonological processing in typical developing (TD) readers, but that this effect may be blunted in those with reading difficulty (RD), suggesting that the core deficit underlying reading difficulties may be a failure to integrate orthographic and phonological information. Twenty-six (13 TD and 13 RD) children between 8 and 13 years of age participated in a functional magnetic resonance imaging (fMRI) experiment designed to assess the role of phonemic awareness in cross-modal processing. Participants completed a rhyme judgment task for word pairs presented unimodally (auditory only) and cross-modally (auditory followed by visual). For typically developing children, correlations between elision and neural activation were found for the cross-modal but not unimodal task, whereas in children with RD, no correlation was found. The results suggest that elision taps both phonemic awareness and cross-modal integration in typically developing readers, and that these processes are decoupled in children with reading difficulty.
Collapse
Affiliation(s)
- Chris McNorgan
- Developmental Cognitive Neuroscience Laboratory, Department of Communication Studies and Disorders, Northwestern UniversityEvanston, IL, USA
| | | | | |
Collapse
|