1
|
Meeker TJ, Quiton RL, Moulton EA. In memoriam: Joel D. Greenspan 1952 to 2021. Pain 2021; 162:2459-2463. [PMID: 37595319 DOI: 10.1097/j.pain.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Timothy J Meeker
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Raimi L Quiton
- Department of Psychology, University of Maryland, Baltimore, MD, United States
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
2
|
Li R, Ryu JH, Vincent P, Springer M, Kluger D, Levinsohn EA, Chen Y, Chen H, Blumenfeld H. The pulse: transient fMRI signal increases in subcortical arousal systems during transitions in attention. Neuroimage 2021; 232:117873. [PMID: 33647499 DOI: 10.1016/j.neuroimage.2021.117873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
Studies of attention emphasize cortical circuits for salience monitoring and top-down control. However, subcortical arousal systems have a major influence on dynamic cortical state. We hypothesize that task-related increases in attention begin with a "pulse" in subcortical arousal and cortical attention networks, which are reflected indirectly through transient fMRI signals. We conducted general linear model and model-free analyses of fMRI data from two cohorts and tasks with mixed block and event-related design. 46 adolescent subjects at our center and 362 normal adults from the Human Connectome Project participated. We identified a core shared network of transient fMRI increases in subcortical arousal and cortical salience/attention networks across cohorts and tasks. Specifically, we observed a transient pulse of fMRI increases both at task block onset and with individual task events in subcortical arousal areas including midbrain tegmentum, thalamus, nucleus basalis and striatum; cortical-subcortical salience network regions including the anterior insula/claustrum and anterior cingulate cortex/supplementary motor area; in dorsal attention network regions including dorsolateral frontal cortex and inferior parietal lobule; as well as in motor regions including cerebellum, and left hemisphere hand primary motor cortex. The transient pulse of fMRI increases in subcortical and cortical arousal and attention networks was consistent across tasks and study populations, whereas sustained activity in these same networks was more variable. The function of the transient pulse in these networks is unknown. However, given its anatomical distribution, it could participate in a neuromodulatory surge of activity in multiple parallel neurotransmitter systems facilitating dynamic changes in conscious attention.
Collapse
Affiliation(s)
- Rong Li
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Jun Hwan Ryu
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Peter Vincent
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Max Springer
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Dan Kluger
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Erik A Levinsohn
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Yu Chen
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Huafu Chen
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Hal Blumenfeld
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Departments of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Departments of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States.
| |
Collapse
|
3
|
Wang Q, Tao Y, Sun T, Sun F, Jiang Z, Jia Z, Ding Z, Sun J. Analysis of brain functional response to cutaneous prickling stimulation by single fiber. Skin Res Technol 2021; 27:494-500. [PMID: 33404143 DOI: 10.1111/srt.12965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND It is now well understood that, as an uncomfortable sensation evoked by special fabric, prickle derives from the mechanical stimulation of protruding hairiness from fabric surface against the human skin, in which some nociceptors are easy to be triggered by stiff fiber ends. However, up to now, the neural mechanism of the brain for perceiving fabric-evoked prickle is still unclear. MATERIALS AND METHODS In this work, A type of single-fiber stimulus made from nylon filament was used to repetitively prick the skin of volar forearm at a specific frequency, and the technology of functional magnetic resonance imaging (fMRI) was adopted to detect the brain response synchronously. RESULTS The results show that repetitive prickling stimulation from the single fiber applied to the volar forearm aroused distributed activation in several brain regions, such as primary somatosensory cortex, secondary somatosensory cortex, motor cortex, bilateral occipital lobe, insular cortex, and ipsilateral limbic lobe. Although the brain activation distribution is similar to pain, the single fiber-evoked prickle sensation possesses unique activation characteristics in several brain regions. CONCLUSION It is suggested that the sensation evoked by cutaneous prickling stimulation from single fiber belongs to a kind of multidimensional experience involving somatosensory, motor, emotional, cognitive, etc Our study constitutes an important step toward identifying the brain mechanism of fabric-evoked prickle.
Collapse
Affiliation(s)
- Qicai Wang
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, China
| | - Yuan Tao
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, China
| | - Tao Sun
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Fengxin Sun
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, China
| | - Zhaohui Jiang
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, China
| | - Zhao Jia
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, China
| | - Zuowei Ding
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, China
| | - Jie Sun
- National Textiles and Garment Quality Supervision Inspection Center (Zhejiang Tongxiang), Tongxiang, China
| |
Collapse
|
4
|
Kim D, Kay K, Shulman GL, Corbetta M. A New Modular Brain Organization of the BOLD Signal during Natural Vision. Cereb Cortex 2019; 28:3065-3081. [PMID: 28981593 DOI: 10.1093/cercor/bhx175] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
The resting blood oxygen level-dependent (BOLD) signal is synchronized in large-scale brain networks (resting-state networks, RSNs) defined by interregional temporal correlations (functional connectivity, FC). RSNs are thought to place strong constraints on task-evoked processing since they largely match the networks observed during task performance. However, this result may simply reflect the presence of spontaneous activity during both rest and task. Here, we examined the BOLD network structure of natural vision, as simulated by viewing of movies, using procedures that minimized the contribution of spontaneous activity. We found that the correlation between resting and movie-evoked FC (ρ = 0.60) was lower than previously reported. Hierarchical clustering and graph-theory analyses indicated a well-defined network structure during natural vision that differed from the resting structure, and emphasized functional groupings adaptive for natural vision. The visual network merged with a network for navigation, scene analysis, and scene memory. Conversely, the dorsal attention network was split and reintegrated into 2 groupings likely related to vision/scene and sound/action processing. Finally, higher order groupings from the clustering analysis combined internally directed and externally directed RSNs violating the large-scale distinction that governs resting-state organization. We conclude that the BOLD FC evoked by natural vision is only partly constrained by the resting network structure.
Collapse
Affiliation(s)
- DoHyun Kim
- Washington University in St. Louis, Saint Louis, MO, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Twin Cities, MN, USA
| | - Gordon L Shulman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maurizio Corbetta
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Neuroscience, University of Padua, Padova, Italy.,Padua Neuroscience Center (PNC), University of Padua, Padova, Italy
| |
Collapse
|
5
|
Dowdle LT, Borckardt JJ, Back SE, Morgan K, Adams D, Madan A, Balliet W, Hanlon CA. Sensitized brain response to acute pain in patients using prescription opiates for chronic pain: A pilot study. Drug Alcohol Depend 2019; 200:6-13. [PMID: 31071496 PMCID: PMC6914256 DOI: 10.1016/j.drugalcdep.2019.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic opiate use leads to a sensitized behavioral response to acute pain, which in turn, leads to escalating doses of opiates. This study was designed to test the hypothesis that chronic opiate usage is also associated with a sensitized neurobiological response to acute pain in individuals that have used prescription opiates for 6 or more months. METHODS Fourteen patients with non-alcoholic chronic pancreatitis that have been taking prescription opiates for 6 or more months and 14 gender matched, non-opiate using controls were enrolled. Functional neuroimaging data was acquired while participants received blocks of thermal stimulation to their wrist (individually-tailored to their pain threshold). RESULTS Self-reported pain was significantly greater in opiate using patients (3.4 ± 3.4) than controls (0.2 ± 0.8: Brief Pain Inventory p < 0.005), however no significant difference between groups was observed in the individually-tailored pain thresholds. Opiate using patients evidenced a significantly greater response to pain than controls in two established nodes of the "Pain Matrix": somatosensory cortex (pFWE≤0.001) and anterior cingulate cortex (p ≤ 0.01). This response was positively correlated with prescribed morphine equivalent dosages (average: 133.5 ± 94.8 mg/day). CONCLUSION The findings suggest that in chronic pancreatitis patients, a dose of opiates that normalizes their behavioral response to acute pain is associated with an amplified neural response to acute pain. Further longitudinal studies are needed to determine if this neural sensitization hastens a behavioral tolerance to opiates or the development of an opioid use disorder.
Collapse
Affiliation(s)
- Logan T. Dowdle
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA,Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeffrey J. Borckardt
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA,Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Sudie E. Back
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Katherine Morgan
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Adams
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alok Madan
- Houston Methodist Behavioral Health, Houston, Texas, USA
| | - Wendy Balliet
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Colleen A. Hanlon
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA,Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA,Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
6
|
Meeker TJ, Keaser ML, Khan SA, Gullapalli RP, Seminowicz DA, Greenspan JD. Non-invasive Motor Cortex Neuromodulation Reduces Secondary Hyperalgesia and Enhances Activation of the Descending Pain Modulatory Network. Front Neurosci 2019; 13:467. [PMID: 31139047 PMCID: PMC6519323 DOI: 10.3389/fnins.2019.00467] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 11/29/2022] Open
Abstract
Central sensitization is a driving mechanism in many chronic pain patients, and manifests as hyperalgesia and allodynia beyond any apparent injury. Recent studies have demonstrated analgesic effects of motor cortex (M1) stimulation in several chronic pain disorders, yet its neural mechanisms remain uncertain. We evaluated whether anodal M1 transcranial direct current stimulation (tDCS) would mitigate central sensitization as measured by indices of secondary hyperalgesia. We used a capsaicin-heat pain model to elicit secondary mechanical hyperalgesia in 27 healthy subjects. In an assessor and subject-blind randomized, sham-controlled, crossover trial, anodal M1 tDCS decreased the intensity of pinprick hyperalgesia more than cathodal or sham tDCS. To elucidate the mechanism driving analgesia, subjects underwent fMRI of painful mechanical stimuli prior to and following induction of the pain model, after receiving M1 tDCS. We hypothesized that anodal M1 tDCS would enhance engagement of a descending pain modulatory (DPM) network in response to mechanical stimuli. Anodal tDCS normalized the effects of central sensitization on neurophysiological responses to mechanical pain in the medial prefrontal cortex, pregenual anterior cingulate cortex, and periaqueductal gray, important regions in the DPM network. Taken together, these results provide support for the hypothesis that anodal M1-tDCS reduces central sensitization-induced hyperalgesia through the DPM network in humans.
Collapse
Affiliation(s)
- Timothy J. Meeker
- Department of Neurosurgery, Johns Hopkins Medicine, Baltimore, MD, United States
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Michael L. Keaser
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Shariq A. Khan
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Rao P. Gullapalli
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Joel D. Greenspan
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
7
|
How do morphological alterations caused by chronic pain distribute across the brain? A meta-analytic co-alteration study. NEUROIMAGE-CLINICAL 2017; 18:15-30. [PMID: 30023166 PMCID: PMC5987668 DOI: 10.1016/j.nicl.2017.12.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/19/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
•In chronic pain, gray matter (GM) alterations are not distributed randomly across the brain.•The pattern of co-alterations resembles that of brain connectivity.•The alterations' distribution partly rely on the pathways of functional connectivity.•This method allows us to identify tendencies in the distribution of GM co-alteration related to chronic pain.
Collapse
|
8
|
Abstract
The cerebellum has been traditionally considered a sensory-motor structure, but more recently has been related to other cognitive and affective functions. Previous research and meta-analytic studies suggested that it could be involved in pain processing. Our aim was to distinguish the functional networks subserved by the cerebellum during pain processing. We used functional magnetic resonance imaging (fMRI) on 12 subjects undergoing mechanical pain stimulation and resting state acquisition. For the analysis of data, we used fuzzy c-mean to cluster cerebellar activity of each participant during nociception. The mean time courses of the clusters were used as regressors in a general linear model (GLM) analysis to explore brain functional connectivity (FC) of the cerebellar clusters. We compared our results with the resting state FC of the same cluster and explored with meta-analysis the behavior profile of the FC networks. We identified three significant clusters: cluster V, involving the culmen and quadrangular lobules (vermis IV-V, hemispheres IV-V-VI); cluster VI, involving the posterior quadrangular lobule and superior semilunar lobule (hemisphere VI, crus 1, crus 2), and cluster VII, involving the inferior semilunar lobule (VIIb, crus1, crus 2). Cluster V was more connected during pain with sensory-motor areas, cluster VI with cognitive areas, and cluster VII with emotional areas. Our results indicate that during the application of mechanical punctate stimuli, the cerebellum is not only involved in sensory functions but also with areas typically associated with cognitive and affective functions. Cerebellum seems to be involved in various aspects of nociception, reflecting the multidimensionality of pain perception.
Collapse
|
9
|
Elliott JM, Owen M, Bishop MD, Sparks C, Tsao H, Walton DM, Weber KA, Wideman TH. Measuring Pain for Patients Seeking Physical Therapy: Can Functional Magnetic Resonance Imaging (fMRI) Help? Phys Ther 2017; 97:145-155. [PMID: 27470977 DOI: 10.2522/ptj.20160089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/19/2016] [Indexed: 11/17/2022]
Abstract
In the multidisciplinary fields of pain medicine and rehabilitation, advancing techniques such as functional magnetic resonance imaging (fMRI) are used to enhance our understanding of the pain experience. Given that such measures, in some circles, are expected to help us understand the brain in pain, future research in pain measurement is undeniably rich with possibility. However, pain remains intensely personal and represents a multifaceted experience, unique to each individual; no single measure in isolation, fMRI included, can prove or quantify its magnitude beyond the patient self-report. Physical therapists should be aware of cutting-edge advances in measuring the patient's pain experience, and they should work closely with professionals in other disciplines (eg, magnetic resonance physicists, biomedical engineers, radiologists, psychologists) to guide the exploration and development of multimodal pain measurement and management on a patient-by-patient basis. The primary purpose of this perspective article is to provide a brief overview of fMRI and inform physical therapist clinicians of the pros and cons when utilized as a measure of the patient's perception of pain. A secondary purpose is to describe current known factors that influence the quality of fMRI data and its analyses, as well as the potential for future clinical applications relevant to physical therapist practice. Lastly, the interested reader is introduced and referred to existing guidelines and recommendations for reporting fMRI research.
Collapse
|
10
|
Qi HX, Wang F, Liao CC, Friedman RM, Tang C, Kaas JH, Avison MJ. Spatiotemporal trajectories of reactivation of somatosensory cortex by direct and secondary pathways after dorsal column lesions in squirrel monkeys. Neuroimage 2016; 142:431-453. [PMID: 27523450 DOI: 10.1016/j.neuroimage.2016.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022] Open
Abstract
After lesions of the somatosensory dorsal column (DC) pathway, the cortical hand representation can become unresponsive to tactile stimuli, but considerable responsiveness returns over weeks of post-lesion recovery. The reactivation suggests that preserved subthreshold sensory inputs become potentiated and axon sprouting occurs over time to mediate recovery. Here, we studied the recovery process in 3 squirrel monkeys, using high-resolution cerebral blood volume-based functional magnetic resonance imaging (CBV-fMRI) mapping of contralateral somatosensory cortex responsiveness to stimulation of distal finger pads with low and high level electrocutaneous stimulation (ES) before and 2, 4, and 6weeks after a mid-cervical level contralateral DC lesion. Both low and high intensity ES of digits revealed the expected somatotopy of the area 3b hand representation in pre-lesion monkeys, while in areas 1 and 3a, high intensity stimulation was more effective in activating somatotopic patterns. Six weeks post-lesion, and irrespective of the severity of loss of direct DC inputs (98%, 79%, 40%), somatosensory cortical area 3b of all three animals showed near complete recovery in terms of somatotopy and responsiveness to low and high intensity ES. However there was significant variability in the patterns and amplitudes of reactivation of individual digit territories within and between animals, reflecting differences in the degree of permanent and/or transient silencing of primary DC and secondary inputs 2weeks post-lesion, and their spatio-temporal trajectories of recovery between 2 and 6weeks. Similar variations in the silencing and recovery of somatotopy and responsiveness to high intensity ES in areas 3a and 1 are consistent with individual differences in damage to and recovery of DC and spinocuneate pathways, and possibly the potentiation of spinothalamic pathways. Thus, cortical deactivation and subsequent reactivation depends not only on the degree of DC lesion, but also on the severity and duration of loss of secondary as well as primary inputs revealed by low and high intensity ES.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert M Friedman
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Chaohui Tang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Malcolm J Avison
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA; Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
11
|
Bennett MR, Hatton S, Hermens DF, Lagopoulos J. Behavior, neuropsychology and fMRI. Prog Neurobiol 2016; 145-146:1-25. [PMID: 27393370 DOI: 10.1016/j.pneurobio.2016.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/14/2016] [Accepted: 07/03/2016] [Indexed: 11/19/2022]
Abstract
Cognitive neuroscientists in the late 20th century began the task of identifying the part(s) of the brain concerned with normal behavior as manifest in the psychological capacities as affective powers, reasoning, behaving purposively and the pursuit of goals, following introduction of the 'functional magnetic resonance imaging' (fMRI) method for identifying brain activity. For this research program to be successful two questions require satisfactory answers. First, as the fMRI method can currently only be used on stationary subjects, to what extent can neuropsychological tests applicable to such stationary subjects be correlated with normal behavior. Second, to what extent can correlations between the various neuropsychological tests on the one hand, and sites of brain activity determined with fMRI on the other, be regarded as established. The extent to which these questions have yet received satisfactory answers is reviewed, and suggestions made both for improving correlations of neuropsychological tests with behavior as well as with the results of fMRI-based observations.
Collapse
Affiliation(s)
- Maxwell R Bennett
- Brain & Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia.
| | - Sean Hatton
- Brain & Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia.
| | - Daniel F Hermens
- Brain & Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia.
| | - Jim Lagopoulos
- Brain & Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia; Sunshine Coast Mind and Neuroscience - Thompson Institute, Birtinya, QLD, Australia.
| |
Collapse
|
12
|
Brönnimann B, Meier ML, Hou MY, Parkinson C, Ettlin DA. Novel Air Stimulation MR-Device for Intraoral Quantitative Sensory Cold Testing. Front Hum Neurosci 2016; 10:335. [PMID: 27445771 PMCID: PMC4928459 DOI: 10.3389/fnhum.2016.00335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/17/2016] [Indexed: 12/23/2022] Open
Abstract
The advent of neuroimaging in dental research provides exciting opportunities for relating excitation of trigeminal neurons to human somatosensory perceptions. Cold air sensitivity is one of the most frequent causes of dental discomfort or pain. Up to date, devices capable of delivering controlled cold air in an MR-environment are unavailable for quantitative sensory testing. This study therefore aimed at constructing and evaluating a novel MR-compatible, computer-controlled cold air stimulation apparatus (CASA) that produces graded air puffs. CASA consisted of a multi-injector air jet delivery system (AJS), a cold exchanger, a cooling agent, and a stimulus application construction. Its feasibility was tested by performing an fMRI stimulation experiment on a single subject experiencing dentine cold sensitivity. The novel device delivered repetitive, stable air stimuli ranging from room temperature (24.5°C ± 2°C) to -35°C, at flow rates between 5 and 17 liters per minute (l/min). These cold air puffs evoked perceptions similar to natural stimuli. Single-subject fMRI-analysis yielded brain activations typically associated with acute pain processing including thalamus, insular and cingulate cortices, somatosensory, cerebellar, and frontal brain regions. Thus, the novel CASA allowed for controlled, repetitive quantitative sensory testing by using air stimuli at graded temperatures (room temperature down to -35°C) while simultaneously recording brain responses. No MR-compatible stimulation device currently exists that is capable of providing non-contact natural-like stimuli at a wide temperature range to tissues in spatially restricted areas such as the mouth. The physical characteristics of this novel device thus holds promise for advancing the field of trigeminal and spinal somatosensory research, namely with respect to comparing therapeutic interventions for dentine hypersensitivity.
Collapse
Affiliation(s)
- Ben Brönnimann
- Pain Research Lab, Center of Dental Medicine, University of Zurich Zurich, Switzerland
| | - Michael L Meier
- Pain Research Lab, Center of Dental Medicine, University of ZurichZurich, Switzerland; Interdisciplinary Spinal Pain Research ISR, Balgrist University HospitalZurich, Switzerland
| | - Mei-Yin Hou
- Pain Research Lab, Center of Dental Medicine, University of Zurich Zurich, Switzerland
| | | | - Dominik A Ettlin
- Pain Research Lab, Center of Dental Medicine, University of Zurich Zurich, Switzerland
| |
Collapse
|
13
|
Gonzalez-Castillo J, Hoy CW, Handwerker DA, Roopchansingh V, Inati SJ, Saad ZS, Cox RW, Bandettini PA. Task Dependence, Tissue Specificity, and Spatial Distribution of Widespread Activations in Large Single-Subject Functional MRI Datasets at 7T. Cereb Cortex 2014; 25:4667-77. [PMID: 25405938 DOI: 10.1093/cercor/bhu148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It was recently shown that when large amounts of task-based blood oxygen level-dependent (BOLD) data are combined to increase contrast- and temporal signal-to-noise ratios, the majority of the brain shows significant hemodynamic responses time-locked with the experimental paradigm. Here, we investigate the biological significance of such widespread activations. First, the relationship between activation extent and task demands was investigated by varying cognitive load across participants. Second, the tissue specificity of responses was probed using the better BOLD signal localization capabilities of a 7T scanner. Finally, the spatial distribution of 3 primary response types--namely positively sustained (pSUS), negatively sustained (nSUS), and transient--was evaluated using a newly defined voxel-wise waveshape index that permits separation of responses based on their temporal signature. About 86% of gray matter (GM) became significantly active when all data entered the analysis for the most complex task. Activation extent scaled with task load and largely followed the GM contour. The most common response type was nSUS BOLD, irrespective of the task. Our results suggest that widespread activations associated with extremely large single-subject functional magnetic resonance imaging datasets can provide valuable information about the functional organization of the brain that goes undetected in smaller sample sizes.
Collapse
Affiliation(s)
| | - Colin W Hoy
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition
| | | | | | | | - Ziad S Saad
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Cox
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition Functional MRI Facility
| |
Collapse
|
14
|
Cauda F, Costa T, Diano M, Duca S, Torta DME. Beyond the "Pain Matrix," inter-run synchronization during mechanical nociceptive stimulation. Front Hum Neurosci 2014; 8:265. [PMID: 24955085 PMCID: PMC4017139 DOI: 10.3389/fnhum.2014.00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/10/2014] [Indexed: 12/26/2022] Open
Abstract
Pain is a complex experience that is thought to emerge from the activity of multiple brain areas, some of which are inconsistently detected using traditional fMRI analysis. One hypothesis is that the traditional analysis of pain-related cerebral responses, by relying on the correlation of a predictor and the canonical hemodynamic response function (HRF)- the general linear model (GLM)- may under-detect the activity of those areas involved in stimulus processing that do not present a canonical HRF. In this study, we employed an innovative data-driven processing approach- an inter-run synchronization (IRS) analysis- that has the advantage of not establishing any pre-determined predictor definition. With this method we were able to evidence the involvement of several brain regions that are not usually found when using predictor-based analysis. These areas are synchronized during the administration of mechanical punctate stimuli and are characterized by a BOLD response different from the canonical HRF. This finding opens to new approaches in the study of pain imaging.
Collapse
Affiliation(s)
- Franco Cauda
- GCS fMRI, Koelliker Hospital and Department of Psychology, University of Turin Turin, Italy ; Department of Psychology, University of Turin Turin, Italy
| | - Tommaso Costa
- Department of Psychology, University of Turin Turin, Italy
| | - Matteo Diano
- GCS fMRI, Koelliker Hospital and Department of Psychology, University of Turin Turin, Italy ; Department of Psychology, University of Turin Turin, Italy
| | - Sergio Duca
- GCS fMRI, Koelliker Hospital and Department of Psychology, University of Turin Turin, Italy
| | - Diana M E Torta
- GCS fMRI, Koelliker Hospital and Department of Psychology, University of Turin Turin, Italy ; Department of Psychology, University of Turin Turin, Italy
| |
Collapse
|
15
|
Cauda F, Palermo S, Costa T, Torta R, Duca S, Vercelli U, Geminiani G, Torta DME. Gray matter alterations in chronic pain: A network-oriented meta-analytic approach. NEUROIMAGE-CLINICAL 2014; 4:676-86. [PMID: 24936419 PMCID: PMC4053643 DOI: 10.1016/j.nicl.2014.04.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/25/2014] [Accepted: 04/12/2014] [Indexed: 01/18/2023]
Abstract
Several studies have attempted to characterize morphological brain changes due to chronic pain. Although it has repeatedly been suggested that longstanding pain induces gray matter modifications, there is still some controversy surrounding the direction of the change (increase or decrease in gray matter) and the role of psychological and psychiatric comorbidities. In this study, we propose a novel, network-oriented, meta-analytic approach to characterize morphological changes in chronic pain. We used network decomposition to investigate whether different kinds of chronic pain are associated with a common or specific set of altered networks. Representational similarity techniques, network decomposition and model-based clustering were employed: i) to verify the presence of a core set of brain areas commonly modified by chronic pain; ii) to investigate the involvement of these areas in a large-scale network perspective; iii) to study the relationship between altered networks and; iv) to find out whether chronic pain targets clusters of areas. Our results showed that chronic pain causes both core and pathology-specific gray matter alterations in large-scale networks. Common alterations were observed in the prefrontal regions, in the anterior insula, cingulate cortex, basal ganglia, thalamus, periaqueductal gray, post- and pre-central gyri and inferior parietal lobule. We observed that the salience and attentional networks were targeted in a very similar way by different chronic pain pathologies. Conversely, alterations in the sensorimotor and attention circuits were differentially targeted by chronic pain pathologies. Moreover, model-based clustering revealed that chronic pain, in line with some neurodegenerative diseases, selectively targets some large-scale brain networks. Altogether these findings indicate that chronic pain can be better conceived and studied in a network perspective. Chronic pain causes both core and pathology-specific. GM alterations in brain networks. Model-based clustering revealed that chronic pain selectively targets brain networks. Chronic pain can be better conceived and studied in a network perspective.
Collapse
Affiliation(s)
- Franco Cauda
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| | - Sara Palermo
- Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| | - Riccardo Torta
- Department of Neuroscience, AOU San Giovanni Battista, Turin, Italy ; Psycho-Oncology and Clinical Psychology Unit, University of Turin, Città della Salute e della Scienza, Turin, Italy
| | - Sergio Duca
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy
| | - Ugo Vercelli
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy
| | - Giuliano Geminiani
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| | - Diana M E Torta
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|