1
|
Scheliga S, Dohrn MF, Kellermann T, Lampert A, Rolke R, Namer B, Peschke GZ, van den Braak N, Lischka A, Spehr M, Jo HG, Habel U. Painful stimulation increases functional connectivity between supplementary motor area and thalamus in patients with small fibre neuropathy. Eur J Pain 2024. [PMID: 39193929 DOI: 10.1002/ejp.4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The lead symptom of small fibre neuropathy (SFN) is neuropathic pain. Recent functional magnetic resonance imaging (fMRI) studies have indicated central changes in SFN patients of different etiologies. However, less is known about brain functional connectivity during acute pain processing in idiopathic SFN. METHODS We conducted fMRI with thermal heat pain application (left volar forearm) in 32 idiopathic SFN patients and 31 healthy controls. We performed functional connectivity analyses with right supplementary motor area (SMA), left insula, and left caudate nucleus (CN) as seed regions, respectively. Since pathogenic gain-of-function variants in voltage gated sodium channels (Nav) have been linked to SFN pathophysiology, explorative connectivity analyses were performed in a homogenous subsample of patients carrying rare heterozygous missense variants. RESULTS For right SMA, we found significantly higher connectivity with the right thalamus in SFN patients compared to controls. This connectivity correlated significantly with intraepidermal nerve fibre density, suggesting a link between peripheral and central pain processing. We found significantly reduced connections between right SMA and right middle frontal gyrus in patients with Nav variants. Likewise, connectivity between left CN and right frontal pole was decreased. CONCLUSIONS Aberrant functional connectivity in SFN is in line with previous research on other chronic pain syndromes. Functional connectivity changes may be linked to SFN, highlighting the need to determine if they result from peripheral changes causing abnormal somatosensory processing. This understanding may be crucial for assessing their impact on painful symptoms and therapy response. SIGNIFICANCE STATEMENT We found increased functional connectivity between SMA and thalamus during painful stimulation in patients with idiopathic SFN. Connectivity correlated significantly with intraepidermal nerve fibre density, suggesting a link between peripheral and central pain processing. Our findings emphasize the importance of investigating functional connectivity changes as a potential feature of SFN.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Maike F Dohrn
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Wilhelm-Johnen-Straβe, Jülich, Germany
| | - Angelika Lampert
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Roman Rolke
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Palliative Medicine, Medical Faculty RWTH, Aachen University, Aachen, Germany
| | - Barbara Namer
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Greta Z Peschke
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nortje van den Braak
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Annette Lischka
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marc Spehr
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Chemosensation, RWTH Aachen University, Institute for Biology II, Aachen, Germany
| | - Han-Gue Jo
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
- School of Computer Science & Engineering, Kunsan National University, Gunsan, Republic of Korea
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen, SCNAachen, Uniklinik RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Wilhelm-Johnen-Straβe, Jülich, Germany
| |
Collapse
|
2
|
Qiu Y, Lian YN, Wu C, Liu L, Zhang C, Li XY. Coordination between midcingulate cortex and retrosplenial cortex in pain regulation. Front Mol Neurosci 2024; 17:1405532. [PMID: 39165718 PMCID: PMC11333351 DOI: 10.3389/fnmol.2024.1405532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction The cingulate cortex, with its subregions ACC, MCC, and RSC, is key in pain processing. However, the detailed interactions among these regions in modulating pain sensation have remained unclear. Methods In this study, chemogenetic tools were employed to selectively activate or inhibit neuronal activity in the MCC and RSC of rodents to elucidate their roles in pain regulation.Results: Our results showed that chemogenetic activation in both the RSC and MCC heightened pain sensitivity. Suppression of MCC activity disrupted the RSC's regulation of both mechanical and thermal pain, while RSC inhibition specifically affected the MCC's regulation of thermal pain. Discussion The findings indicate a complex interplay between the MCC and RSC, with the MCC potentially governing the RSC's pain regulatory mechanisms. The RSC, in turn, is crucial for the MCC's control over thermal sensation, revealing a collaborative mechanism in pain processing. Conclusion This study provides evidence for the MCC and RSC's collaborative roles in pain regulation, highlighting the importance of their interactions for thermal and mechanical pain sensitivity. Understanding these mechanisms could aid in developing targeted therapies for pain disorders.
Collapse
Affiliation(s)
- Yunya Qiu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Yan-Na Lian
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Cheng Wu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Beijing Key Laboratory of Neural Regeneration and Repair & Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Xiang-Yao Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
3
|
Zheng P, Shi Y, Qu H, Han ML, Wang ZQ, Zeng Q, Zheng M, Fan T. Effect of ultrasound-guided injection of botulinum toxin type A into shoulder joint cavity on shoulder pain in poststroke patients: study protocol for a randomized controlled trial. Trials 2024; 25:418. [PMID: 38937804 PMCID: PMC11212400 DOI: 10.1186/s13063-024-08258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Hemiplegic shoulder pain (HSP) is a common complication after stroke. It severely affects the recovery of upper limb motor function. Early shoulder pain in hemiplegic patients is mainly neuropathic caused by central nerve injury or neuroplasticity. Commonly used corticosteroid injections in the shoulder joint can reduce shoulder pain; however, the side effects also include soft tissue degeneration or increased tendon fragility, and the long-term effects remain controversial. Botulinum toxin injections are relatively new and are thought to block the transmission of pain receptors in the shoulder joint cavity and inhibit the production of neuropathogenic substances to reduce neurogenic inflammation. Some studies suggest that the shoulder pain of hemiplegia after stroke is caused by changes in the central system related to shoulder joint pain, and persistent pain may induce the reorganization of the cortical sensory center or motor center. However, there is no conclusive evidence as to whether or not the amelioration of pain by botulinum toxin affects brain function. In previous studies of botulinum toxin versus glucocorticoids (triamcinolone acetonide injection) in the treatment of shoulder pain, there is a lack of observation of differences in changes in brain function. As the content of previous assessments of pain improvement was predominantly subjective, objective quantitative assessment indicators were lacking. Functional near-infrared imaging (fNIRS) can remedy this problem. METHODS This study protocol is designed for a double-blind, randomized controlled clinical trial of patients with post-stroke HSP without biceps longus tenosynovitis or acromion bursitis. Seventy-eight patients will be randomly assigned to either the botulinum toxin type A or glucocorticoid group. At baseline, patients in each group will receive shoulder cavity injections of either botulinum toxin or glucocorticoids and will be followed for 1 and 4 weeks. The primary outcome is change in shoulder pain on the visual analog scale (VAS). The secondary outcome is the assessment of changes in oxyhemoglobin levels in the corresponding brain regions by fNIRS imaging, shoulder flexion, external rotation range of motion, upper extremity Fugl-Meyer, and modified Ashworth score. DISCUSSION Ultrasound-guided botulinum toxin type A shoulder joint cavity injections may provide evidence of pain improvement in patients with HSP. The results of this trial are also help to analyze the correlation between changes in shoulder pain and changes in cerebral hemodynamics and shoulder joint motor function. TRIAL REGISTRATION Chinese clinical Trial Registry, ChiCTR2300070132. Registered 03 April 2023, https://www.chictr.org.cn/showproj.html?proj=193722 .
Collapse
Affiliation(s)
- Peng Zheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Shi
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hang Qu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng Lin Han
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi Qiang Wang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Manxu Zheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Tao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Galgiani JE, French MA, Morton SM. Acute pain impairs retention of locomotor learning. J Neurophysiol 2024; 131:678-688. [PMID: 38381551 PMCID: PMC11305642 DOI: 10.1152/jn.00343.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
Despite abundant evidence that pain alters movement performance, considerably less is known about the potential effects of pain on motor learning. Some of the brain regions involved in pain processing are also responsible for specific aspects of motor learning, indicating that the two functions have the potential to interact, yet it is unclear if they do. In experiment 1, we compared the acquisition and retention of a novel locomotor pattern in young, healthy individuals randomized to either experience pain via capsaicin and heat applied to the lower leg during learning or no stimulus. On day 1, participants learned a new asymmetric walking pattern using distorted visual feedback, a paradigm known to involve mostly explicit re-aiming processes. Retention was tested 24 h later. Although there were no differences in day 1 acquisition between groups, individuals who experienced pain on day 1 demonstrated reduced retention on day 2. Furthermore, the degree of forgetting between days correlated with pain ratings during learning. In experiment 2, we examined the effects of a heat stimulus alone, which served as a control for (nonpainful) cutaneous stimulation, and found no effects on either acquisition or retention of learning. Thus, pain experienced during explicit, strategic locomotor learning interferes with motor memory consolidation processes and does so most likely through a pain mechanism and not an effect of distraction. These findings have important implications for understanding basic motor learning processes and for clinical rehabilitation, in which painful conditions are often treated through motor learning-based interventions.NEW & NOTEWORTHY Pain is a highly prevalent and burdensome experience that rehabilitation practitioners often treat using motor learning-based interventions. Here, we showed that experimental acute pain, but not a heat stimulus, during locomotor learning impaired 24-h retention of the newly learned walking pattern. The degree of retention loss was related to the perceived pain level during learning. These findings suggest important links between pain and motor learning that have significant implications for clinical rehabilitation.
Collapse
Affiliation(s)
- Jessica E Galgiani
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Interdisciplinary Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, Delaware, United States
| | - Margaret A French
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Interdisciplinary Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, Delaware, United States
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Interdisciplinary Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
5
|
Suñol M, Dudley J, Payne MF, Tong H, Ting TV, Kashikar-Zuck S, Coghill RC, López-Solà M. Reduced Cortico-Cortical Resting-State Connectivity in Sensory Systems Related to Bodily Pain in Juvenile Fibromyalgia. Arthritis Rheumatol 2024; 76:293-303. [PMID: 37661912 PMCID: PMC10841360 DOI: 10.1002/art.42691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE Juvenile-onset fibromyalgia (JFM) is a paradigmatic chronic pain condition for which the underlying neurobiological substrates are poorly understood. This study examined, for the first time, data-driven resting-state functional connectivity (rsFC) alterations in 37 female adolescents with JFM compared with 43 healthy female adolescents and identified associations with bodily pain. METHODS Whole-brain voxel-wise rsFC alterations were assessed using the intrinsic connectivity contrast, a measure of node centrality at each voxel, and seed-based analyses for interpretability. We studied the relationship between rsFC alterations in somatosensory systems and the location and extension of bodily pain. RESULTS Adolescents with JFM had voxel-wise rsFC reductions in the paracentral lobule (PCL)/primary somatosensory cortex (S1) (T = 4.89, family-wise error corrected p-value (pFWE) < 0.001) and left midcingulate cortex (T = 4.67, pFWE = 0.043). Post hoc analyses revealed reduced rsFC spanning major cortical sensory hubs (T > 4.4, pFWE < 0.030). Cortico-cortical rsFC reductions within PCL/S1 in JFM occurred in locations innervated by bodily areas where the pain was most frequent (F = 3.15; positive false discovery rate = 0.029) and predicted widespread pain (T > 4.4, pFWE < 0.045). Conversely, adolescents with JFM had increases in PCL/S1-thalamus (T = 4.75, pFWE = 0.046) and PCL/S1-anterior insula rsFC (T = 5.13, pFWE = 0.039). CONCLUSION Reduced cortico-cortical sensory integration involving PCL/S1 and spanning the sensory systems may underly critical pain sensory features in youth with JFM. Reduced sensory integration is paralleled by augmented cross-talk between sensory and affective/salience-processing regions, potentially indicating a shift toward more affectively colored sensory experiences to the detriment of specific sensory discrimination.
Collapse
Affiliation(s)
- Maria Suñol
- Institute of Neurosciences, Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Jon Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael F. Payne
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Han Tong
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Tracy V. Ting
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Susmita Kashikar-Zuck
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Robert C. Coghill
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Marina López-Solà
- Institute of Neurosciences, Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Wang L, Chen X, Zheng W, Yang Y, Yang B, Chen Q, Li X, Liang T, Li B, Hu Y, Du J, Lu J, Chen N. The possible neural mechanism of neuropathic pain evoked by motor imagery in pediatric patients with complete spinal cord injury: A preliminary brain structure study based on VBM. Heliyon 2024; 10:e24569. [PMID: 38312693 PMCID: PMC10835172 DOI: 10.1016/j.heliyon.2024.e24569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
In this study, we observed pediatric complete spinal cord injury (CSCI) patients receiving MI training and divided them into different groups according to the effect of motor imagery (MI) training on neuropathic pain (NP). Then, we retrospectively analysed the differences in brain structure of these groups before the MI training, identifying brain regions that may predict the effect of MI on NP. Thirty pediatric CSCI patients were included, including 12 patients who experienced NP during MI and 18 patients who did not experience NP during MI according to the MI training follow-up. The 3D high-resolution T1-weighted images of all subjects were obtained using a 3.0 T MRI system before MI training. A two-sample t-test was performed to evaluate the differences in gray matter volume (GMV) between patients who experienced NP and those who did not experience NP during MI. Receiver operating characteristic (ROC) analysis was performed to compute the sensitivity and specificity of the imaging biomarkers for the effect of MI on NP in pediatric CSCI patients. MI evoked NP in some of the pediatric CSCI patients. Compared with patients who did not experience NP, patients who experienced NP during MI showed larger GMV in the right primary sensorimotor cortex (PSMC) and insula. When using the GMV of the right PSMC and insula in combination as a predictor, the area under the curve (AUC) reached 0.824. Our study demonstrated that MI could evoke NP in some pediatric CSCI patients, but not in others. The individual differences in brain reorganization of the right PSMC and insula may contribute to the different effects of MI on NP. Moreover, the GMV of the right PSMC and insula in combination may be an effective indicator for screening pediatric CSCI patients before MI training therapy.
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Weimin Zheng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Yanhui Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xuejing Li
- Department of Radiology, China Rehabilitation Research Center, Beijing, 100068, China
| | - Tengfei Liang
- Department of Medical Imaging, Affiliated Hospital of Hebei Engineering University, Handan, 056008, China
| | - Baowei Li
- Department of Medical Imaging, Affiliated Hospital of Hebei Engineering University, Handan, 056008, China
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| |
Collapse
|
7
|
Hong J, Li JN, Wu FL, Bao SY, Sun HX, Zhu KH, Cai ZP, Li F, Li YQ. Projections from anteromedial thalamus nucleus to the midcingulate cortex mediate pain and anxiety-like behaviors in mice. Neurochem Int 2023; 171:105640. [PMID: 37951541 DOI: 10.1016/j.neuint.2023.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Prior research has demonstrated the involvement of the midcingulate cortex (MCC) and its downstream pathway in pain regulation. However, the mechanism via which pain information is conveyed to the MCC remains unclear. The present study utilized immunohistochemistry, chemogenetics, optogenetics, and behavior detection methods to explore the involvement of MCC, anteromedial thalamus nucleus (AM), and AM-MCC pathway in pain and emotional regulation. Chemogenetics or optogenetics methods were employed to activate/inhibit MCCCaMKIIα, AMCaMKIIα, AMCaMKIIα-MCC pathway. This manipulation evokes/relieves mechanical and partial heat hyperalgesia, as well as anxiety-like behaviors. In the complete Freund,s adjuvant (CFA) inflammatory pain model, chemogenetic inhibition of the AMCaMKIIα-MCCCaMKIIα pathway contributed to pain relief. Notably, this study presented the first evidence implicating the AM in the regulation of nociception and negative emotions. Additionally, it was observed that the MCC primarily receives projections from the AM, highlighting the crucial role of this pathway in the transmission of pain and emotional information.
Collapse
Affiliation(s)
- Jie Hong
- Department of Human Anatomy, Baotou Medical College, Baotou, 014040, China; Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Feng-Ling Wu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China; Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shang-Yi Bao
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Han-Xue Sun
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China; Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Ke-Hua Zhu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhi-Ping Cai
- Department of Human Anatomy, Baotou Medical College, Baotou, 014040, China
| | - Fei Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yun-Qing Li
- Department of Human Anatomy, Baotou Medical College, Baotou, 014040, China; Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China; Department of Anatomy, Basic Medical College, Dali University, Dali, 671000, China.
| |
Collapse
|
8
|
Vickers BD, Seidler RD, Stansfield RB, Weissman DH, Preston SD. Altruistic responses to the most vulnerable involve sensorimotor processes. Front Psychiatry 2023; 14:1140986. [PMID: 36970269 PMCID: PMC10036353 DOI: 10.3389/fpsyt.2023.1140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionWhy do people help strangers? Prior research suggests that empathy motivates bystanders to respond to victims in distress. However, this work has revealed relatively little about the role of the motor system in human altruism, even though altruism is thought to have originated as an active, physical response to close others in immediate need. We therefore investigated whether a motor preparatory response contributes to costly helping.MethodsTo accomplish this objective, we contrasted three charity conditions that were more versus less likely to elicit an active motor response, based on the Altruistic Response Model. These conditions described charities that (1) aided neonates versus adults, (2) aided victims requiring immediate versus preparatory support, and (3) provided heroic versus nurturant aid. We hypothesized that observing neonates in immediate need would elicit stronger brain activation in motor-preparatory regions.ResultsConsistent with an evolutionary, caregiving-based theory of altruism, participants donated the most to charities that provided neonates with immediate, nurturant aid. Critically, this three-way donation interaction was associated with increased BOLD signal and gray matter volume in motor-preparatory regions, which we identified in an independent motor retrieval task.DiscussionThese findings advance the field of altruism by shifting the spotlight from passive emotional states toward action processes that evolved to protect the most vulnerable members of our group.
Collapse
Affiliation(s)
- Brian D. Vickers
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Rachael D. Seidler
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
- University of Michigan School of Kinesiology, Ann Arbor, MI, United States
| | - R. Brent Stansfield
- Department of Medical Education, University of Michigan, Ann Arbor, MI, United States
| | - Daniel H. Weissman
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Stephanie D. Preston
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Stephanie D. Preston,
| |
Collapse
|
9
|
Doganci N, Iannotti GR, Ptak R. Task-based functional connectivity identifies two segregated networks underlying intentional action. Neuroimage 2023; 268:119866. [PMID: 36610680 DOI: 10.1016/j.neuroimage.2023.119866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
While much of motor behavior is automatic, intentional action is necessary for the selection and initiation of controlled motor acts and is thus an essential part of goal-directed behavior. Neuroimaging studies have shown that self-generated action implicates several dorsal and ventral frontoparietal areas. However, knowledge of the functional coupling between these brain regions during intentional action remains limited. We here studied brain activations and functional connectivity (FC) of thirty right-handed healthy participants performing a finger pressing task instructed to use a specific finger (externally-triggered action) or to select one of four fingers randomly (internally-generated action). Participants performed the task in alternating order either with their dominant right hand or the left hand. Consistent with previous studies, we observed stronger involvement of posterior parietal cortex and premotor regions when contrasting internally-generated with externally-triggered action. Interestingly, this contrast also revealed significant engagement of medial occipitotemporal regions including the left lingual and right fusiform gyrus. Task-based FC analysis identified increased functional coupling among frontoparietal regions as well as increased and decreased coupling between occipitotemporal regions, thus differentiating between two segregated networks. When comparing results of the dominant and nondominant hand we found less activation, but stronger connectivity for the former, suggesting increased neural efficiency when participants use their dominant hand. Taken together, our results reveal that two segregated networks that encompass the frontoparietal and occipitotemporal cortex contribute independently to intentional action.
Collapse
Affiliation(s)
- Naz Doganci
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland
| | - Giannina Rita Iannotti
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; Department of Radiology and Medical Informatics, University Hospitals of Geneva, Switzerland; Department of Neurosurgery, University Hospitals of Geneva, Switzerland
| | - Radek Ptak
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; Division of Neurorehabilitation, University Hospitals of Geneva, Switzerland.
| |
Collapse
|
10
|
Alhajri N, Boudreau SA, Graven-Nielsen T. Decreased Default Mode Network Connectivity Following 24 Hours of Capsaicin-induced Pain Persists During Immediate Pain Relief and Facilitation. THE JOURNAL OF PAIN 2022; 24:796-811. [PMID: 36521671 DOI: 10.1016/j.jpain.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Prolonged experimental pain models can help assess cortical mechanisms underlying the transition from acute to chronic pain such as resting-state functional connectivity (rsFC), especially in early stages. This crossover study determined the effects of 24-hour-capsaicin-induced pain on the default mode network rsFC, a major network in the dynamic pain connectome. Electroencephalographic rsFC measured by Granger causality was acquired from 24 healthy volunteers (12 women) at baseline, 1hour, and 24hours following the application of a control or capsaicin patch on the right forearm. The control patch was received maximum 1 week before the capsaicin patch. Following 24hours, the patch was cooled and later heated to assess rsFC changes in response to pain relief and facilitation, respectively. Compared to baseline, decreased rsFC at alpha oscillations (8-10Hz) was found following 1hour and 24hours of capsaicin application for connections projecting from medial prefrontal cortex (mPFC) and right angular gyrus (rAG) but not left angular gyrus (lAG) or posterior cingulate cortex (PCC): mPFC-PCC (1hour:P < .001, 24hours:P = .002), mPFC-rAG (1hour:P < .001, 24hours:P = .001), rAG-mPFC (1hour:P < .001, 24hours:P = .001), rAG-PCC (1hour:P < .001, 24hours:P = .004). Comparable decreased rsFC following 1hour and 24hours (P≤0.008) was found at beta oscillations, however, decreased projections from PCC were also found: PCC-rAG (P≤0.005) and PCC-lAG (P≤0.006). Pain NRS scores following 24hours (3.7±0.4) was reduced by cooling (0.3±0.1, P = .004) and increased by heating (4.8±0.6, P = .016). However, neither cooling nor heating altered rsFC. This study shows that 24hours of experimental pain induces a robust decrease in DMN connectivity that persists during pain relief or facilitation suggesting a possible shift to attentional and emotional processing in persistent pain. PERSPECTIVE: This article shows decreased DMN connectivity that might reflect possible attentional and emotional changes during acute and prolonged pain. Understanding these changes could potentially help clinicians in developing therapeutic methods that can better target these attentional and emotional processes before developing into more persistent states.
Collapse
Affiliation(s)
- Najah Alhajri
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Shellie Ann Boudreau
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
11
|
Matthews D, Cancino EE, Falla D, Khatibi A. Exploring pain interference with motor skill learning in humans: A systematic review. PLoS One 2022; 17:e0274403. [PMID: 36099284 PMCID: PMC9470002 DOI: 10.1371/journal.pone.0274403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Motor learning underpins successful motor skill acquisition. Although it is well known that pain changes the way we move, it’s impact on motor learning is less clear. The aim of this systematic review was to synthesize evidence on the impact of experimental and clinical pain on task performance and activity-dependent plasticity measures across learning and explore these findings in relation to different pain and motor learning paradigms. Five databases were searched: Web of Science, Scopus, MEDLINE, Embase and CINAHL. Two reviewers independently screened the studies, extracted data, and assessed risk of bias using the Cochrane ROB2 and ROBIN-I. The overall strength of evidence was rated using the GRADE guidelines. Due to the heterogeneity of study methodologies a narrative synthesis was employed. Twenty studies were included in the review: fifteen experimental pain and five clinical pain studies, covering multiple motor paradigms. GRADE scores for all outcome measures suggested limited confidence in the reported effect for experimental pain and clinical pain, on motor learning. There was no impact of pain on any of the task performance measures following acquisition except for ‘accuracy’ during a tongue protrusion visuomotor task and ‘timing of errors’ during a motor adaptation locomotion task. Task performance measures at retention, and activity dependent measures at both acquisition and retention showed conflicting results. This review delivers a detailed synthesis of research studies exploring the impact of pain on motor learning. This is despite the challenges provided by the heterogeneity of motor learning paradigms, outcome measures and pain paradigms employed in these studies. The results highlight important questions for further research with the goal of strengthening the confidence of findings in this area.
Collapse
Affiliation(s)
- David Matthews
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| | - Edith Elgueta Cancino
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Koppel L, Novembre G, Kämpe R, Savallampi M, Morrison I. Prediction and action in cortical pain processing. Cereb Cortex 2022; 33:794-810. [PMID: 35289367 PMCID: PMC9890457 DOI: 10.1093/cercor/bhac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Predicting that a stimulus is painful facilitates action to avoid harm. But how distinct are the neural processes underlying the prediction of upcoming painful events vis-à-vis those taking action to avoid them? Here, we investigated brain activity as a function of current and predicted painful or nonpainful thermal stimulation, as well as the ability of voluntary action to affect the duration of upcoming stimulation. Participants performed a task which involved the administration of a painful or nonpainful stimulus (S1), which predicted an immediately subsequent very painful or nonpainful stimulus (S2). Pressing a response button within a specified time window during S1 either reduced or did not reduce the duration of the upcoming stimulation. Predicted pain increased activation in several regions, including anterior cingulate cortex (ACC), midcingulate cortex (MCC), and insula; however, activation in ACC and MCC depended on whether a meaningful action was performed, with MCC activation showing a direct relationship with motor output. Insula's responses for predicted pain were also modulated by potential action consequences, albeit without a direct relationship with motor output. These findings suggest that cortical pain processing is not specifically tied to the sensory stimulus, but instead, depends on the consequences of that stimulus for sensorimotor control of behavior.
Collapse
Affiliation(s)
- Lina Koppel
- Corresponding author: Department of Management and Engineering, Division of Economics, Linköping University, 581 83 Linköping, Sweden.
| | - Giovanni Novembre
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| | - Robin Kämpe
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| | - Mattias Savallampi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - India Morrison
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| |
Collapse
|
13
|
Pondelis NJ, Moulton EA. Supraspinal Mechanisms Underlying Ocular Pain. Front Med (Lausanne) 2022; 8:768649. [PMID: 35211480 PMCID: PMC8862711 DOI: 10.3389/fmed.2021.768649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Supraspinal mechanisms of pain are increasingly understood to underlie neuropathic ocular conditions previously thought to be exclusively peripheral in nature. Isolating individual causes of centralized chronic conditions and differentiating them is critical to understanding the mechanisms underlying neuropathic eye pain and ultimately its treatment. Though few functional imaging studies have focused on the eye as an end-organ for the transduction of noxious stimuli, the brain networks related to pain processing have been extensively studied with functional neuroimaging over the past 20 years. This article will review the supraspinal mechanisms that underlie pain as they relate to the eye.
Collapse
Affiliation(s)
- Nicholas J Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Keogh C, Deli A, Zand APD, Zorman MJ, Boccard-Binet SG, Parrott M, Sigalas C, Weiss AR, Stein JF, FitzGerald JJ, Aziz TZ, Green AL, Gillies MJ. Spatial and Temporal Distribution of Information Processing in the Human Dorsal Anterior Cingulate Cortex. Front Hum Neurosci 2022; 16:780047. [PMID: 35370577 PMCID: PMC8973009 DOI: 10.3389/fnhum.2022.780047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
The dorsal anterior cingulate cortex (dACC) is a key node in the human salience network. It has been ascribed motor, pain-processing and affective functions. However, the dynamics of information flow in this complex region and how it responds to inputs remain unclear and are difficult to study using non-invasive electrophysiology. The area is targeted by neurosurgery to treat neuropathic pain. During deep brain stimulation surgery, we recorded local field potentials from this region in humans during a decision-making task requiring motor output. We investigated the spatial and temporal distribution of information flow within the dACC. We demonstrate the existence of a distributed network within the anterior cingulate cortex where discrete nodes demonstrate directed communication following inputs. We show that this network anticipates and responds to the valence of feedback to actions. We further show that these network dynamics adapt following learning. Our results provide evidence for the integration of learning and the response to feedback in a key cognitive region.
Collapse
Affiliation(s)
- Conor Keogh
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alceste Deli
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Mark Jernej Zorman
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Matthew Parrott
- St Hilda’s College, University of Oxford, Oxford, United Kingdom
| | | | - Alexander R. Weiss
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - John Frederick Stein
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - James J. FitzGerald
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Tipu Z. Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alexander L. Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Martin John Gillies
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Martin John Gillies,
| |
Collapse
|
15
|
Murty DVPS, Song S, Morrow K, Kim J, Hu K, Pessoa L. Distributed and Multifaceted Effects of Threat and Safety. J Cogn Neurosci 2021; 34:495-516. [PMID: 34942650 DOI: 10.1162/jocn_a_01807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In the present fMRI study, we examined how anxious apprehension is processed in the human brain. A central goal of the study was to test the prediction that a subset of brain regions would exhibit sustained response profiles during threat periods, including the anterior insula, a region implicated in anxiety disorders. A second important goal was to evaluate the responses in the amygdala and the bed nucleus of the stria terminals, regions that have been suggested to be involved in more transient and sustained threat, respectively. A total of 109 participants performed an experiment in which they encountered "threat" or "safe" trials lasting approximately 16 sec. During the former, they experienced zero to three highly unpleasant electrical stimulations, whereas in the latter, they experienced zero to three benign electrical stimulations (not perceived as unpleasant). The timing of the stimulation during trials was randomized, and as some trials contained no stimulation, stimulation delivery was uncertain. We contrasted responses during threat and safe trials that did not contain electrical stimulation, but only the potential that unpleasant (threat) or benign (safe) stimulation could occur. We employed Bayesian multilevel analysis to contrast responses to threat and safe trials in 85 brain regions implicated in threat processing. Our results revealed that the effect of anxious apprehension is distributed across the brain and that the temporal evolution of the responses is quite varied, including more transient and more sustained profiles, as well as signal increases and decreases with threat.
Collapse
Affiliation(s)
| | | | | | | | - Kesong Hu
- Lake Superior State University, Sault Ste. Marie, MI
| | | |
Collapse
|
16
|
Inter-individual differences in pain anticipation and pain perception in migraine: Neural correlates of migraine frequency and cortisol-to-dehydroepiandrosterone sulfate (DHEA-S) ratio. PLoS One 2021; 16:e0261570. [PMID: 34929017 PMCID: PMC8687546 DOI: 10.1371/journal.pone.0261570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023] Open
Abstract
Previous studies targeting inter-individual differences in pain processing in migraine mainly focused on the perception of pain. Our main aim was to disentangle pain anticipation and perception using a classical fear conditioning task, and investigate how migraine frequency and pre-scan cortisol-to-dehydroepiandrosterone sulfate (DHEA-S) ratio as an index of neurobiological stress response would relate to neural activation in these two phases. Functional Magnetic Resonance Imaging (fMRI) data of 23 participants (18 females; mean age: 27.61± 5.36) with episodic migraine without aura were analysed. We found that migraine frequency was significantly associated with pain anticipation in brain regions comprising the midcingulate and caudate, whereas pre-scan cortisol-to DHEA-S ratio was related to pain perception in the pre-supplementary motor area (pre-SMA). Both results suggest exaggerated preparatory responses to pain or more general to stressors, which may contribute to the allostatic load caused by stressors and migraine attacks on the brain.
Collapse
|
17
|
Hu XS, Nascimento TD, DaSilva AF. Shedding light on pain for the clinic: a comprehensive review of using functional near-infrared spectroscopy to monitor its process in the brain. Pain 2021; 162:2805-2820. [PMID: 33990114 PMCID: PMC8490487 DOI: 10.1097/j.pain.0000000000002293] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pain is a complex experience that involves sensation, emotion, and cognition. The subjectivity of the traditional pain measurement tools has expedited the interest in developing neuroimaging techniques to monitor pain objectively. Among noninvasive neuroimaging techniques, functional near-infrared spectroscopy (fNIRS) has balanced spatial and temporal resolution; yet, it is portable, quiet, and cost-effective. These features enable fNIRS to image the cortical mechanisms of pain in a clinical environment. In this article, we evaluated pain neuroimaging studies that used the fNIRS technique in the past decade. Starting from the experimental design, we reviewed the regions of interest, probe localization, data processing, and primary findings of these existing fNIRS studies. We also discussed the fNIRS imaging's potential as a brain surveillance technique for pain, in combination with artificial intelligence and extended reality techniques. We concluded that fNIRS is a brain imaging technique with great potential for objective pain assessment in the clinical environment.
Collapse
Affiliation(s)
- Xiao-Su Hu
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Thiago D. Nascimento
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Alexandre F. DaSilva
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| |
Collapse
|
18
|
Perini I, Kroll S, Mayo LM, Heilig M. Social Acts and Anticipation of Social Feedback. Curr Top Behav Neurosci 2021; 54:393-416. [PMID: 34784025 DOI: 10.1007/7854_2021_274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Socialization happens so regularly in humans that it can be perceived as an effortless activity. However, it reflects a sophisticated behavior, pervaded by anticipation and emotion. The fast-paced social interplay, strongly mediated by facial expressions, can be considered one of the most frequent high-order motor acts within the human behavioral repertoire. The ability to adequately process social feedback is critical for appropriate socialization and affects well-being. The social difficulties often observed in psychiatric patients highlight the link between mental health and successful socialization and the importance of characterizing the behavioral and neural mechanisms of social interaction. This chapter will present some cross-species evidence on the cortical regions engaged during social interactions including facial expressions, and the impact of induced or perceived social stress on the experience of social interactions.
Collapse
Affiliation(s)
- Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden.
| | - Sara Kroll
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Indoxyl sulfate, a gut microbiome-derived uremic toxin, is associated with psychic anxiety and its functional magnetic resonance imaging-based neurologic signature. Sci Rep 2021; 11:21011. [PMID: 34697401 PMCID: PMC8546034 DOI: 10.1038/s41598-021-99845-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
It is unknown whether indoles, metabolites of tryptophan that are derived entirely from bacterial metabolism in the gut, are associated with symptoms of depression and anxiety. Serum samples (baseline, 12 weeks) were drawn from participants (n = 196) randomized to treatment with cognitive behavioral therapy (CBT), escitalopram, or duloxetine for major depressive disorder. Baseline indoxyl sulfate abundance was positively correlated with severity of psychic anxiety and total anxiety and with resting state functional connectivity to a network that processes aversive stimuli (which includes the subcallosal cingulate cortex (SCC-FC), bilateral anterior insula, right anterior midcingulate cortex, and the right premotor areas). The relation between indoxyl sulfate and psychic anxiety was mediated only through the metabolite's effect on the SCC-FC with the premotor area. Baseline indole abundances were unrelated to post-treatment outcome measures, and changes in symptoms were not correlated with changes in indole concentrations. These results suggest that CBT and antidepressant medications relieve anxiety via mechanisms unrelated to modulation of indoles derived from gut microbiota; it remains possible that treatment-related improvement stems from their impact on other aspects of the gut microbiome. A peripheral gut microbiome-derived metabolite was associated with altered neural processing and with psychiatric symptom (anxiety) in humans, which provides further evidence that gut microbiome disruption can contribute to neuropsychiatric disorders that may require different therapeutic approaches. Given the exploratory nature of this study, findings should be replicated in confirmatory studies.Clinical trial NCT00360399 "Predictors of Antidepressant Treatment Response: The Emory CIDAR" https://clinicaltrials.gov/ct2/show/NCT00360399 .
Collapse
|
20
|
Matthews D, Elgueta Cancino E, Falla D, Khatibi A. Exploring pain interference with motor skill learning in humans: a protocol for a systematic review. BMJ Open 2021; 11:e045841. [PMID: 34272217 PMCID: PMC8287617 DOI: 10.1136/bmjopen-2020-045841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Motor skill learning is intrinsic to living. Pain demands attention and may disrupt non-pain-related goals such as learning new motor skills. Although rehabilitation approaches have used motor skill learning for individuals in pain, there is uncertainty on the impact of pain on learning motor skills. METHODS AND ANALYSIS The protocol of this systematic review has been designed and is reported in accordance with criteria set out by the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols guidelines. Web of Science, Scopus, MEDLINE, Embase and CINAHL databases; key journals; and grey literature will be searched up until March 2021, using subject-specific searches. Two independent assessors will oversee searching, screening and extracting of data and assessment of risk of bias. Both behavioural and activity-dependent plasticity outcome measures of motor learning will be synthesised and presented. The quality of evidence will be assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. ETHICS AND DISSEMINATION No patient data will be collected, and therefore, ethical approval was not required for this review. The results of this review will provide further understanding into the complex effects of pain and may guide clinicians in their use of motor learning strategies for the rehabilitation of individuals in pain. The results of this review will be published in a peer-reviewed journal and presented at scientific conferences. PROSPERO REGISTRATION NUMBER CRD42020213240.
Collapse
Affiliation(s)
- David Matthews
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Edith Elgueta Cancino
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Addiego FM, Zajur K, Knack S, Jamieson J, Rayhan RU, Baraniuk JN. Subcortical brain segment volumes in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Life Sci 2021; 282:119749. [PMID: 34214570 DOI: 10.1016/j.lfs.2021.119749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 01/29/2023]
Abstract
AIMS There is controversy about brain volumes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (CFS) and Gulf War Illness (GWI). Subcortical regions were assessed because of significant differences in blood oxygenation level dependent signals in the midbrain between these diseases. MATERIALS AND METHOD Magnetization-prepared rapid acquisition with gradient echo (MPRAGE) images from 3 Tesla structural magnetic resonance imaging scans from sedentary control (n = 34), CFS (n = 38) and GWI (n = 90) subjects were segmented in FreeSurfer. Segmented subcortical volumes were regressed against intracranial volume and age, then iteratively analyzed by multivariate general linear modeling with disease status, gender and demographics as independent co-variates. KEY FINDINGS The optimal model for all subjects used disease status and gender as fixed factors with independent variables eliminated after iteration. Volumes of anterior and midanterior corpus callosum were significantly larger in GWI than CFS. Gender was a significant variable for many segment volumes, and so female and male subjects were analyzed separately. CFS females had smaller left putamen, right caudate and left cerebellum white matter than control women. CFS males had larger left hippocampus than GWI males. Orthostatic status and posttraumatic distress syndrome were not significant covariates. SIGNIFICANCE CFS and GWI were appropriate "illness controls" for each other. The different patterns of adjusted segment volumes suggested that sexual dimorphisms contributed to pathological changes. Previous volumetric studies may need to be reevaluated to account for gender differences. The findings are framed by comparison to the spectrum of magnetic resonance imaging outcomes in the literature.
Collapse
Affiliation(s)
| | - Kristina Zajur
- Pain Fatigue Research Alliance, Georgetown University, Washington, DC 20007-2197, USA
| | - Sarah Knack
- Pain Fatigue Research Alliance, Georgetown University, Washington, DC 20007-2197, USA
| | - Jessie Jamieson
- Pain Fatigue Research Alliance, Georgetown University, Washington, DC 20007-2197, USA
| | - Rakib U Rayhan
- Pain Fatigue Research Alliance, Georgetown University, Washington, DC 20007-2197, USA
| | - James N Baraniuk
- Pain Fatigue Research Alliance, Georgetown University, Washington, DC 20007-2197, USA.
| |
Collapse
|
22
|
Bush NJ, Schneider V, Sevel L, Bishop MD, Boissoneault J. Associations of Regional and Network Functional Connectivity With Exercise-Induced Low Back Pain. THE JOURNAL OF PAIN 2021; 22:1606-1616. [PMID: 34111507 DOI: 10.1016/j.jpain.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Musculoskeletal pain is an aversive experience that exists within a variety of conditions and can result in significant impairment for individuals. Gaining greater understanding of the factors related to pain vulnerability and resilience to musculoskeletal pain may help target at-risk individuals for early intervention. This analysis builds on our previous work identifying regions where greater gray matter density was associated with lower pain following standardized, exercise induced musculoskeletal injury. Here we sought to examine the relationship between baseline resting state functional connectivity in a priori regions and networks, and delayed onset muscle soreness (DOMS) pain intensity following a single session of eccentric exercise in healthy adults. Participants completed a baseline functional MRI scan and a high intensity trunk exercise protocol in the erector spinae. Pain intensity ratings were collected 48-hours later. Resting state functional connectivity from four seed regions and 3 networks were separately regressed on pain intensity scores. Results revealed that connectivity between left middle frontal gyrus, the left occipital gyrus and cerebellar network seeds and clusters associated with discriminative, emotional, and cognitive aspects of pain were associated with lower post-DOMS pain. Results suggest resilience to clinically relevant pain is associated with aspects of regional and network neural coherence. Investigations of pain modulatory capacity that integrate multimodal neuroimaging metrics are called for. Perspective: Our results provide key support for the role of structural and functional coherence in regional and network connectivity in adaptive pain response and represent an important step in clarifying neural mechanisms of resilience to clinically relevant pain.
Collapse
Affiliation(s)
- Nicholas J Bush
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida; Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida
| | - Victor Schneider
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida; Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida
| | - Landrew Sevel
- Department of Physical Medicine & Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee; Osher Center for Integrative Medicine at Vanderbilt, Vanderbilt Medical Center, Nashville, Tennessee
| | - Mark D Bishop
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida; Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Jeff Boissoneault
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida; Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida.
| |
Collapse
|
23
|
Fernandes RM, Nascimento PC, Martins MK, Aragão WAB, Rivera LFS, Bittencourt LO, Cartágenes SC, Crespo-Lopez ME, do Socorro Ferraz Maia C, Lima RR. Evaluation of Cerebellar Function and Integrity of Adult Rats After Long-Term Exposure to Aluminum at Equivalent Urban Region Consumption Concentrations. Biol Trace Elem Res 2021; 199:1425-1436. [PMID: 32564201 DOI: 10.1007/s12011-020-02244-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/08/2020] [Indexed: 01/17/2023]
Abstract
High amounts of aluminum (Al) are found in soil and water. It is highly bioavailable, which makes it an important agent of environmental imbalance. Moreover, Al is considered a neurotoxic agent that is associated with several neurodegenerative diseases. Thus, this study investigated the effects of long-term Al chloride (AlCl3) exposure on motor behavior, oxidative biochemistry, and cerebellar tissue parameters. For this, adult Wistar rats were divided into three groups: Al-D1 (8.3 mg kg-1 day-1), Al-D2 (5.2 mg kg-1 day-1), and control (distilled water); all groups were orally exposed for 60 days by intragastric gavage. After the exposure period, animals performed the open field, elevated plus maze, rotarod, and beam walking tests. Then, the blood and cerebellum were collected to evaluate Al levels and biochemical and morphological analyses, respectively. Our results demonstrate that animals exposed to Al doses presented a higher Al level in the blood. In the spontaneous locomotor activity, Al exposure groups had traveled a lower total distance when compared with the control group. There was no statistically significant difference (p > 0.05) between exposed and control groups when anxiogenic profile, forced locomotion, fine motor coordination/balance, pro-oxidative parameter, and density Purkinje cells were compared. Thus, aluminum exposure in equivalent doses to human consumption in urban regions did not promote significant changes in the cerebellum or motor parameters.
Collapse
Affiliation(s)
- Rafael Monteiro Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa N. 1, Campus do Guamá, Belém, PA, 66075-900, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa N. 1, Campus do Guamá, Belém, PA, 66075-900, Brazil
| | - Maria Karolina Martins
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa N. 1, Campus do Guamá, Belém, PA, 66075-900, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa N. 1, Campus do Guamá, Belém, PA, 66075-900, Brazil
| | - Luis Felipe Sarmiento Rivera
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa N. 1, Campus do Guamá, Belém, PA, 66075-900, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa N. 1, Campus do Guamá, Belém, PA, 66075-900, Brazil
| | - Sabrina C Cartágenes
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa N. 1, Campus do Guamá, Belém, PA, 66075-900, Brazil.
| |
Collapse
|
24
|
Thomaidou MA, Peerdeman KJ, Koppeschaar MI, Evers AWM, Veldhuijzen DS. How Negative Experience Influences the Brain: A Comprehensive Review of the Neurobiological Underpinnings of Nocebo Hyperalgesia. Front Neurosci 2021; 15:652552. [PMID: 33841092 PMCID: PMC8024470 DOI: 10.3389/fnins.2021.652552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
This comprehensive review summarizes and interprets the neurobiological correlates of nocebo hyperalgesia in healthy humans. Nocebo hyperalgesia refers to increased pain sensitivity resulting from negative experiences and is thought to be an important variable influencing the experience of pain in healthy and patient populations. The young nocebo field has employed various methods to unravel the complex neurobiology of this phenomenon and has yielded diverse results. To comprehend and utilize current knowledge, an up-to-date, complete review of this literature is necessary. PubMed and PsychInfo databases were searched to identify studies examining nocebo hyperalgesia while utilizing neurobiological measures. The final selection included 22 articles. Electrophysiological findings pointed toward the involvement of cognitive-affective processes, e.g., modulation of alpha and gamma oscillatory activity and P2 component. Findings were not consistent on whether anxiety-related biochemicals such as cortisol plays a role in nocebo hyperalgesia but showed an involvement of the cyclooxygenase-prostaglandin pathway, endogenous opioids, and dopamine. Structural and functional neuroimaging findings demonstrated that nocebo hyperalgesia amplified pain signals in the spinal cord and brain regions involved in sensory and cognitive-affective processing including the prefrontal cortex, insula, amygdala, and hippocampus. These findings are an important step toward identifying the neurobiological mechanisms through which nocebo effects may exacerbate pain. Results from the studies reviewed are discussed in relation to cognitive-affective and physiological processes involved in nocebo and pain. One major limitation arising from this review is the inconsistency in methods and results in the nocebo field. Yet, while current findings are diverse and lack replication, methodological differences are able to inform our understanding of the results. We provide insights into the complexities and involvement of neurobiological processes in nocebo hyperalgesia and call for more consistency and replication studies. By summarizing and interpreting the challenging and complex neurobiological nocebo studies this review contributes, not only to our understanding of the mechanisms through which nocebo effects exacerbate pain, but also to our understanding of current shortcomings in this field of neurobiological research.
Collapse
Affiliation(s)
- Mia A. Thomaidou
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Kaya J. Peerdeman
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | | | - Andrea W. M. Evers
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
- Medical Delta Healthy Society, Leiden University, Technical University Delft, & Erasmus UniversityRotterdam, Netherlands
- Department of Psychiatry, Leiden University Medical Centre, Leiden, Netherlands
| | - Dieuwke S. Veldhuijzen
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| |
Collapse
|
25
|
Müschenich FS, Sichtermann T, Di Francesco ME, Rodriguez-Raecke R, Heim L, Singer M, Wiesmann M, Freiherr J. Some like it, some do not: behavioral responses and central processing of olfactory-trigeminal mixture perception. Brain Struct Funct 2020; 226:247-261. [PMID: 33355693 PMCID: PMC7817597 DOI: 10.1007/s00429-020-02178-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Abstract
Exploring the potential of eucalyptol as a masking agent for aversive odors, we found that eucalyptol masks the olfactory but not the trigeminal sensation of ammonia in a previous study. Here, we further investigate the processing of a mixture consisting of eucalyptol and ammonia, two olfactory–trigeminal stimuli. We presented the two pure odors and a mixture thereof to 33 healthy participants. The nostrils were stimulated alternately (monorhinal application). We analyzed the behavioral ratings (intensity and pleasantness) and functional brain images. First, we replicated our previous finding that, within the mixture, the eucalyptol component suppressed the olfactory intensity of the ammonia component. Second, mixture pleasantness was rated differently by participants depending on which component dominated their mixture perception. Approximately half of the volunteers rated the eucalyptol component as more intense and evaluated the mixture as pleasant (pleasant group). The other half rated the ammonia component as more intense and evaluated the mixture as unpleasant (unpleasant group). Third, these individual differences were also found in functional imaging data. Contrasting the mixture either to eucalyptol or to both single odors, neural activation was found in the unpleasant group only. Activation in the anterior insula and SII was interpreted as evidence for an attentional shift towards the potentially threatening mixture component ammonia and for trigeminal enhancement. In addition to insula and SII, further regions of the pain matrix were involved when assessing all participant responses to the mixture. Both a painful sensation and an attentional shift towards the unpleasant mixture component complicates the development of an efficient mask because a pleasant perception is an important requirement for malodor coverage.
Collapse
Affiliation(s)
- Franziska S Müschenich
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Thorsten Sichtermann
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Maria Elisa Di Francesco
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Rea Rodriguez-Raecke
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lennart Heim
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | | | - Martin Wiesmann
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jessica Freiherr
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
26
|
Wang WE, Ho RLM, Ribeiro-Dasilva MC, Fillingim RB, Coombes SA. Chronic jaw pain attenuates neural oscillations during motor-evoked pain. Brain Res 2020; 1748:147085. [PMID: 32898506 DOI: 10.1016/j.brainres.2020.147085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022]
Abstract
Motor- and pain-related processes separately induce a reduction in alpha and beta power. When movement and pain occur simultaneously but are independent of each other, the effects on alpha and beta power are additive. It is not clear whether this additive effect is evident during motor-evoked pain in individuals with chronic pain. We combined highdensity electroencephalography (EEG) with a paradigm in which motor-evoked pain was induced during a jaw force task. Participants with chronic jaw pain and pain-free controls produced jaw force at 2% and 15% of their maximum voluntary contraction. The chronic jaw pain group showed exacerbated motor-evoked pain as force amplitude increased and showed increased motor variability and motor error irrespective of force amplitude. The chronic jaw pain group had an attenuated decrease in power in alpha and lower-beta frequencies in the occipital cortex during the anticipation and experience of motor-evoked pain. Rather than being additive, motor-evoked pain attenuated the modulation of alpha and beta power, and this was most evident in occipital cortex. Our findings provide the first evidence of changes in neural oscillations in the cortex during motor-evoked jaw pain.
Collapse
Affiliation(s)
- Wei-En Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Rachel L M Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
27
|
Cléry JC, Hori Y, Schaeffer DJ, Gati JS, Pruszynski JA, Everling S. Whole brain mapping of somatosensory responses in awake marmosets investigated with ultra-high-field fMRI. J Neurophysiol 2020; 124:1900-1913. [PMID: 33112698 DOI: 10.1152/jn.00480.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied New World primate that is becoming an important model to study brain functions. Despite several studies exploring the somatosensory system of marmosets, all results have come from anesthetized animals using invasive techniques and postmortem analyses. Here, we demonstrate the feasibility for getting high-quality and reproducible somatosensory mapping in awake marmosets with functional magnetic resonance imaging (fMRI). We acquired fMRI sequences in four animals, while they received tactile stimulation (via air-puffs), delivered to the face, arm, or leg. We found a topographic body representation with the leg representation in the most medial part, the face representation in the most lateral part, and the arm representation between leg and face representation within areas 3a, 3b, and 1/2. A similar sequence from leg to face from caudal to rostral sites was identified in areas S2 and PV. By generating functional connectivity maps of seeds defined in the primary and second somatosensory regions, we identified two clusters of tactile representation within the posterior and midcingulate cortex. However, unlike humans and macaques, no clear somatotopic maps were observed. At the subcortical level, we found a somatotopic body representation in the thalamus and, for the first time in marmosets, in the putamen. These maps have similar organizations, as those previously found in Old World macaque monkeys and humans, suggesting that these subcortical somatotopic organizations were already established before Old and New World primates diverged. Our results show the first whole brain mapping of somatosensory responses acquired in a noninvasive way in awake marmosets.NEW & NOTEWORTHY We used somatosensory stimulation combined with functional MRI (fMRI) in awake marmosets to reveal the topographic body representation in areas S1, S2, thalamus, and putamen. We showed the existence of a body representation organization within the thalamus and the cingulate cortex by computing functional connectivity maps from seeds defined in S1/S2, using resting-state fMRI data. This noninvasive approach will be essential for chronic studies by guiding invasive recording and manipulation techniques.
Collapse
Affiliation(s)
- Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - J Andrew Pruszynski
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
28
|
Wang WE, Ho RLM, Gatto B, van der Veen SM, Underation MK, Thomas JS, Antony AB, Coombes SA. Cortical dynamics of movement-evoked pain in chronic low back pain. J Physiol 2020; 599:289-305. [PMID: 33067807 DOI: 10.1113/jp280735] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Cortical activity underlying movement-evoked pain is not well understood, despite being a key symptom of chronic musculoskeletal pain. We combined high-density electroencephalography with a full-body reaching protocol in a virtual reality environment to assess cortical activity during movement-evoked pain in chronic low back pain. Movement-evoked pain in individuals with chronic low back pain was associated with longer reaction times, delayed peak velocity and greater movement variability. Movement-evoked pain was associated with attenuated disinhibition in prefrontal motor areas, as evidenced by an attenuated reduction in beta power in the premotor cortex and supplementary motor area. ABSTRACT Although experimental pain alters neural activity in the cortex, evidence of changes in neural activity in individuals with chronic low back pain (cLBP) remains scarce and results are inconsistent. One of the challenges in studying cLBP is that the clinical pain fluctuates over time and often changes during movement. The goal of the present study was to address this challenge by recording high-density electroencephalography (HD-EEG) data during a full-body reaching task to understand neural activity during movement-evoked pain. HD-EEG data were analysed using independent component analyses, source localization and measure projection analyses to compare neural oscillations between individuals with cLBP who experienced movement-evoked pain and pain-free controls. We report two novel findings. First, movement-evoked pain in individuals with cLBP was associated with longer reaction times, delayed peak velocity and greater movement variability. Second, movement-evoked pain was associated with an attenuated reduction in beta power in the premotor cortex and supplementary motor area. Our observations move the field forward by revealing attenuated disinhibition in prefrontal motor areas during movement-evoked pain in cLBP.
Collapse
Affiliation(s)
- Wei-En Wang
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - Rachel L M Ho
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - Bryan Gatto
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Susanne M van der Veen
- Department of Physical Therapy, College of Health Professions, Virginia Commonwealth University, VA, USA
| | - Matthew K Underation
- Department of Physical Therapy, College of Health Professions, Virginia Commonwealth University, VA, USA
| | - James S Thomas
- Department of Physical Therapy, College of Health Professions, Virginia Commonwealth University, VA, USA
| | | | - Stephen A Coombes
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Schulz E, Stankewitz A, Winkler AM, Irving S, Witkovský V, Tracey I. Ultra-high-field imaging reveals increased whole brain connectivity underpins cognitive strategies that attenuate pain. eLife 2020; 9:55028. [PMID: 32876049 PMCID: PMC7498261 DOI: 10.7554/elife.55028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
We investigated how the attenuation of pain with cognitive interventions affects brain connectivity using neuroimaging and a whole brain novel analysis approach. While receiving tonic cold pain, 20 healthy participants performed three different pain attenuation strategies during simultaneous collection of functional imaging data at seven tesla. Participants were asked to rate their pain after each trial. We related the trial-by-trial variability of the attenuation performance to the trial-by-trial functional connectivity strength change of brain data. Across all conditions, we found that a higher performance of pain attenuation was predominantly associated with higher functional connectivity. Of note, we observed an association between low pain and high connectivity for regions that belong to brain regions long associated with pain processing, the insular and cingulate cortices. For one of the cognitive strategies (safe place), the performance of pain attenuation was explained by diffusion tensor imaging metrics of increased white matter integrity.
Collapse
Affiliation(s)
- Enrico Schulz
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Stankewitz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anderson M Winkler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Stephanie Irving
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktor Witkovský
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
van Heukelum S, Mars RB, Guthrie M, Buitelaar JK, Beckmann CF, Tiesinga PHE, Vogt BA, Glennon JC, Havenith MN. Where is Cingulate Cortex? A Cross-Species View. Trends Neurosci 2020; 43:285-299. [PMID: 32353333 DOI: 10.1016/j.tins.2020.03.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 01/16/2023]
Abstract
To compare findings across species, neuroscience relies on cross-species homologies, particularly in terms of brain areas. For cingulate cortex, a structure implicated in behavioural adaptation and control, a homologous definition across mammals is available - but currently not employed by most rodent researchers. The standard partitioning of rodent cingulate cortex is inconsistent with that in any other model species, including humans. Reviewing the existing literature, we show that the homologous definition better aligns results of rodent studies with those of other species, and reveals a clearer structural and functional organisation within rodent cingulate cortex itself. Based on these insights, we call for widespread adoption of the homologous nomenclature, and reinterpretation of previous studies originally based on the nonhomologous partitioning of rodent cingulate cortex.
Collapse
Affiliation(s)
- Sabrina van Heukelum
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands.
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Martin Guthrie
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands
| | - Paul H E Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Brent A Vogt
- Cingulum Neurosciences Institute, 4435 Stephanie Drive, Manlius, NY 13104, USA; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jeffrey C Glennon
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands; Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Martha N Havenith
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands; Zero-Noise Lab, Ernst Strüngmann Institute for Neuroscience, 60528 Frankfurt a.M., Germany
| |
Collapse
|
31
|
Lima Portugal LC, Alves RDCS, Junior OF, Sanchez TA, Mocaiber I, Volchan E, Smith Erthal F, David IA, Kim J, Oliveira L, Padmala S, Chen G, Pessoa L, Pereira MG. Interactions between emotion and action in the brain. Neuroimage 2020; 214:116728. [PMID: 32199954 PMCID: PMC7485650 DOI: 10.1016/j.neuroimage.2020.116728] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 11/16/2022] Open
Abstract
A growing literature supports the existence of interactions between emotion and action in the brain, and the central participation of the anterior midcingulate cortex (aMCC) in this regard. In the present functional magnetic resonance imaging study, we sought to investigate the role of self-relevance during such interactions by varying the context in which threating pictures were presented (with guns pointed towards or away from the observer). Participants performed a simple visual detection task following exposure to such stimuli. Except for voxelwise tests, we adopted a Bayesian analysis framework which evaluated evidence for the hypotheses of interest, given the data, in a continuous fashion. Behaviorally, our results demonstrated a valence by context interaction such that there was a tendency of speeding up responses to targets after viewing threat pictures directed towards the participant. In the brain, interaction patterns that paralleled those observed behaviorally were observed most notably in the middle temporal gyrus, supplementary motor area, precentral gyrus, and anterior insula. In these regions, activity was overall greater during threat conditions relative to neutral ones, and this effect was enhanced in the directed towards context. A valence by context interaction was observed in the aMCC too, where we also observed a correlation (across participants) of evoked responses and reaction time data. Taken together, our study revealed the context-sensitive engagement of motor-related areas during emotional perception, thus supporting the idea that emotion and action interact in important ways in the brain.
Collapse
Affiliation(s)
- Liana Catarina Lima Portugal
- Department of Physiology and Pharmacology, Laboratory of Neurophysiology of Behavior, Biomedical Institute, Federal Fluminense University, Niterói, RJ, Brazil
| | - Rita de Cássia Soares Alves
- Department of Physiology and Pharmacology, Laboratory of Neurophysiology of Behavior, Biomedical Institute, Federal Fluminense University, Niterói, RJ, Brazil
| | - Orlando Fernandes Junior
- Laboratory of Neuroimaging and Psychophysiology, Department of Radiology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tiago Arruda Sanchez
- Laboratory of Neuroimaging and Psychophysiology, Department of Radiology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Izabela Mocaiber
- Laboratory of Cognitive Psychophysiology, Department of Natural Sciences, Institute of Humanities and Health, Federal Fluminense University, Rio das Ostras, RJ, Brazil
| | - Eliane Volchan
- Laboratory of Neurobiology II, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fátima Smith Erthal
- Laboratory of Neurobiology II, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Isabel Antunes David
- Department of Physiology and Pharmacology, Laboratory of Neurophysiology of Behavior, Biomedical Institute, Federal Fluminense University, Niterói, RJ, Brazil
| | - Jongwan Kim
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Leticia Oliveira
- Department of Physiology and Pharmacology, Laboratory of Neurophysiology of Behavior, Biomedical Institute, Federal Fluminense University, Niterói, RJ, Brazil
| | | | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, USA
| | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, USA; Maryland Neuroimaging Center, University of Maryland, College Park, MD, USA
| | - Mirtes Garcia Pereira
- Department of Physiology and Pharmacology, Laboratory of Neurophysiology of Behavior, Biomedical Institute, Federal Fluminense University, Niterói, RJ, Brazil.
| |
Collapse
|
32
|
Washington SD, Rayhan RU, Garner R, Provenzano D, Zajur K, Addiego FM, VanMeter JW, Baraniuk JN. Exercise alters cerebellar and cortical activity related to working memory in phenotypes of Gulf War Illness. Brain Commun 2020; 2:fcz039. [PMID: 32025659 PMCID: PMC6989731 DOI: 10.1093/braincomms/fcz039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/04/2019] [Accepted: 10/17/2019] [Indexed: 11/20/2022] Open
Abstract
Gulf War Illness affects 25–32% of veterans from the 1990–91 Persian Gulf War. Post-exertional malaise with cognitive dysfunction, pain and fatigue following physical and/or mental effort is a defining feature of Gulf War Illness. We modelled post-exertional malaise by assessing changes in functional magnetic resonance imaging at 3T during an N-Back working memory task performed prior to a submaximal bicycle stress test and after an identical stress test 24 h later. Serial trends in postural changes in heart rate between supine and standing defined three subgroups of veterans with Gulf War Illness: Postural Orthostatic Tachycardia Syndrome (GWI-POTS, 15%, n = 11), Stress Test Associated Reversible Tachycardia (GWI-START, 31%, n = 23) and Stress Test Originated Phantom Perception (GWI-STOPP, no postural tachycardia, 54%, n = 46). Before exercise, there were no differences in blood oxygenation level-dependent activity during the N-Back task between control (n = 31), GWI-START, GWI-STOPP and GWI-POTS subgroups. Exercise had no effects on blood oxygenation level-dependent activation in controls. GWI-START had post-exertional deactivation of cerebellar dentate nucleus and vermis regions associated with working memory. GWI-STOPP had significant activation of the anterior supplementary motor area that may be a component of the anterior salience network. There was a trend for deactivation of the vermis in GWI-POTS after exercise. These patterns of cognitive dysfunction were apparent in Gulf War Illness only after the exercise stressor. Mechanisms linking the autonomic dysfunction of Stress Test Associated Reversible Tachycardia and Postural Orthostatic Tachycardia Syndrome to cerebellar activation, and Stress Test Originated Phantom Perception to cortical sensorimotor alterations, remain unclear but may open new opportunities for understanding, diagnosing and treating Gulf War Illness.
Collapse
Affiliation(s)
- Stuart D Washington
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Rakib U Rayhan
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Richard Garner
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Destie Provenzano
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kristina Zajur
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | - John W VanMeter
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC 20057, USA
| | - James N Baraniuk
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
33
|
Brain activity changes in a monkey model of central post-stroke pain. Exp Neurol 2020; 323:113096. [DOI: 10.1016/j.expneurol.2019.113096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/25/2019] [Accepted: 10/31/2019] [Indexed: 01/27/2023]
|
34
|
Martin SL, Jones AKP, Brown CA, Kobylecki C, Silverdale MA. A neurophysiological investigation of anticipation to pain in Parkinson's disease. Eur J Neurosci 2019; 51:611-627. [DOI: 10.1111/ejn.14559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/23/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Sarah L. Martin
- The Human Pain Research Group Division of Neuroscience and Experimental Psychology University of Manchester Manchester UK
| | - Anthony K. P. Jones
- The Human Pain Research Group Division of Neuroscience and Experimental Psychology University of Manchester Manchester UK
| | | | - Christopher Kobylecki
- Institution is Department of Neurology Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre The University of Manchester Manchester UK
| | - Monty A. Silverdale
- Institution is Department of Neurology Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre The University of Manchester Manchester UK
| |
Collapse
|
35
|
Wang WE, Roy A, Misra G, Ho RLM, Ribeiro-Dasilva MC, Fillingim RB, Coombes SA. Altered neural oscillations within and between sensorimotor cortex and parietal cortex in chronic jaw pain. NEUROIMAGE-CLINICAL 2019; 24:101964. [PMID: 31412309 PMCID: PMC6704052 DOI: 10.1016/j.nicl.2019.101964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/28/2019] [Indexed: 12/22/2022]
Abstract
Pain perception is associated with priming of the motor system and the orienting of attention in healthy adults. These processes correspond with decreases in alpha and beta power in the sensorimotor and parietal cortices. The goal of the present study was to determine whether these findings extend to individuals with chronic pain. Individuals with chronic jaw pain and pain-free controls anticipated and experienced a low pain or a moderate pain-eliciting heat stimulus. Although stimuli were calibrated for each subject, stimulus temperature was not different between groups. High-density EEG data were collected during the anticipation and heat stimulation periods and were analyzed using independent component analyses, EEG source localization, and measure projection analyses. Direct directed transfer function was also estimated to identify frequency specific effective connectivity between regions. Between group differences were most evident during the heat stimulation period. We report three novel findings. First, the chronic jaw pain group had a relative increase in alpha and beta power and a relative decrease in theta and gamma power in sensorimotor cortex. Second, the chronic jaw pain group had a relative increase in power in the alpha and beta bands in parietal cortex. Third, the chronic jaw pain group had less connectivity strength in the beta and gamma bands between sensorimotor cortex and parietal cortex. Our findings show that the effect of chronic pain attenuates rather than magnifies neural responses to heat stimuli. We interpret these findings in the context of system-level changes in intrinsic sensorimotor and attentional circuits in chronic pain.
Collapse
Affiliation(s)
- Wei-En Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Arnab Roy
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | | | - Rachel L M Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | | | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, United States of America
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
36
|
Abstract
Changes in brain function in chronic pain have been studied using paradigms that deliver acute pain-eliciting stimuli or assess the brain at rest. Although motor disability accompanies many chronic pain conditions, few studies have directly assessed brain activity during motor function in individuals with chronic pain. Using chronic jaw pain as a model, we assessed brain activity during a precisely controlled grip force task and during a precisely controlled pain-eliciting stimulus on the forearm. We used multivariate analyses to identify regions across the brain whose activity together best separated the groups. We report 2 novel findings. First, although the parameters of grip force production were similar between the groups, the functional activity in regions including the prefrontal cortex, insula, and thalamus best separated the groups. Second, although stimulus intensity and pain perception were similar between the groups, functional activity in brain regions including the dorsal lateral prefrontal cortex, rostral ventral premotor cortex, and inferior parietal lobule best separated the groups. Our observations suggest that chronic jaw pain is associated with changes in how the brain processes motor and pain-related information even when the effector producing the force or experiencing the pain-eliciting stimulus is distant from the jaw. We also demonstrate that motor tasks and multivariate analyses offer alternative approaches for studying brain function in chronic jaw pain.
Collapse
|
37
|
Barrett A, Abdou A, Caulfield MD. The cingulate cortex and spatial neglect. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:129-150. [DOI: 10.1016/b978-0-444-64196-0.00009-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Abstract
The midcingulate cortex (MCC) is viewed as a central node within a large-scale system devoted to adjusting behavior in the face of changing environments. Whereas the role of the MCC in interfacing action and cognition is well established, its role in regulating the autonomic nervous system is poorly understood. Yet, adaptive reactions to novel or threatening situations induce coordinated changes in the sympathetic and the parasympathetic systems. The somatomotor maps in the MCC are organized dorsoventrally. A meta-analysis of the literature reveals that the dorsoventral organization might also concern connections with the autonomic nervous system. Activation of the dorsal and ventral parts of the MCC correlate with recruitments of the sympathetic and the parasympathetic systems, respectively. Data also suggest that, in the MCC, projections toward the sympathetic system are mapped along the sensory-motor system following the same cervico-sacral organization as projections on the spinal cord for skeletal motor control.
Collapse
Affiliation(s)
- Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
39
|
Trujillo-Rodríguez D, Faymonville ME, Vanhaudenhuyse A, Demertzi A. Hypnosis for cingulate-mediated analgesia and disease treatment. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:327-339. [PMID: 31731920 DOI: 10.1016/b978-0-444-64196-0.00018-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypnosis is a technique that induces changes in perceptual experience through response to specific suggestions. By means of functional neuroimaging, a large body of clinical and experimental studies has shown that hypnotic processes modify internal (self-awareness) as well as external (environmental awareness) brain networks. Objective quantifications of this kind permit the characterization of cerebral changes after hypnotic induction and its uses in the clinical setting. Hypnosedation is one such application, as it combines hypnosis with local anesthesia in patients undergoing surgery. The power of this technique lies in the avoidance of general anesthesia and its potential complications that emerge during and after surgery. Hypnosedation is associated with improved intraoperative comfort and reduced perioperative anxiety and pain. It ensures a faster recovery of the patient and diminishes the intraoperative requirements for sedative or analgesic drugs. Mechanisms underlying the modulation of pain perception under hypnotic conditions involve cortical and subcortical areas, mainly the anterior cingulate and prefrontal cortices as well as the basal ganglia and thalami. In that respect, hypnosis-induced analgesia is an effective and highly cost-effective alternative to sedation during surgery and symptom management.
Collapse
Affiliation(s)
- D Trujillo-Rodríguez
- Physiology of Cognition Research Lab, GIGA-Consciousness, GIGA Institute B34, University of Liège, Liège, Belgium
| | - M-E Faymonville
- Algology Department, Liège University Hospital and Sensation and Perception Research Group, GIGA-Consciousness, University of Liège, Liège, Belgium.
| | - A Vanhaudenhuyse
- Algology Department, Liège University Hospital and Sensation and Perception Research Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | - A Demertzi
- Physiology of Cognition Research Lab, GIGA-Consciousness, GIGA Institute B34, University of Liège, Liège, Belgium; Fonds National de la Recherche Scientifique, Brussels, Belgium
| |
Collapse
|
40
|
Pu M, Yu R. Personal responsibility modulates neural representations of anticipatory and experienced pain. Psychophysiology 2018; 56:e13294. [PMID: 30315648 DOI: 10.1111/psyp.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/01/2022]
Abstract
An individual's sense of personal responsibility is crucial for adaptive functioning in ever-changing social situations. This study investigated how the sense of personal responsibility affected the neural dynamics of anticipating one's own pain and another person's pain, using EEG. Participants played a cooperation game in which either the participant (self-context) or the confederate (other-context) received a mild electric shock whenever one of them erred. At the anticipatory stage of pain, feedback-related negativity (FRN) and P300 were sensitive to the degree of responsibility in both contexts. The FRN was more negative when the participant had full responsibility (only the participant had erred) than when the participant shared responsibility with the confederate (both had erred) or had no responsibility (only the confederate had erred), and shared responsibility elicited more negative FRN than no responsibility. Having no responsibility produced larger P300 amplitudes than having shared or full responsibility, whereas there was no significant difference in P300 amplitude between the shared responsibility and the full responsibility conditions. When the shock was delivered to the participants, the P2 was smaller when there was no responsibility than when there was shared or full responsibility. When participants observed the painful facial expressions of the confederates, the P300 was not sensitive to responsibility level. Our results suggest that responsibility level modulates FRN and P300 in anticipation of pain experienced by both self and others, reflecting the attentional and affective experiences in both pain- and empathy-related processes.
Collapse
Affiliation(s)
- Min Pu
- School of Psychology, Center for Studies of Psychological Application and Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou, China
| | - Rongjun Yu
- School of Psychology, Center for Studies of Psychological Application and Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou, China.,Department of Psychology, National University of Singapore, Singapore
| |
Collapse
|
41
|
Hein G, Engelmann JB, Tobler PN. Pain relief provided by an outgroup member enhances analgesia. Proc Biol Sci 2018; 285:rspb.2018.0501. [PMID: 30257910 DOI: 10.1098/rspb.2018.0501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Pain feels different in different social contexts, yet the mechanisms behind social pain modulation remain poorly understood. To elucidate the impact of social context on pain processing, we investigated how group membership, one of the most important social context factors, shapes pain relief behaviourally and neurally in humans undergoing functional neuroimaging. Participants repeatedly received pain relief from a member of their own group (ingroup treatment) or a member of a disliked outgroup (outgroup treatment). We observed a decrease in pain ratings and anterior insula (AI) pain responses after outgroup treatment, but not after ingroup treatment. Moreover, path analyses revealed that the outgroup treatment induced a stronger relief learning in the AI, which in turn altered pain processing, in particular if the participant entered the treatment with a negative impression toward the outgroup individual. The finding of enhanced analgesia after outgroup treatment is relevant for intergroup clinical settings. More generally, we found that group membership affects pain responses through neural learning and we thus elucidate one possible mechanism through which social context impacts pain processing.
Collapse
Affiliation(s)
- Grit Hein
- Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
| | - Jan B Engelmann
- Center for Research in Experimental Economics and Political Decision Making (CREED), Amsterdam School of Economics, and Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam 1001, The Netherlands
| | - Philippe N Tobler
- Department of Economics, Laboratory for Social and Neural Systems Research, University of Zurich, Zurich 8006, Switzerland
| |
Collapse
|
42
|
Coombes SA, Wang WE, Roy A, Ho RLM. Neurophysiological evidence of the dynamic and adaptive pain-motor interaction. J Physiol 2018; 596:2639-2640. [PMID: 29886567 DOI: 10.1113/jp276325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Wei-En Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Arnab Roy
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Rachel L M Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
43
|
Wang WE, Roy A, Misra G, Archer DB, Ribeiro-Dasilva MC, Fillingim RB, Coombes SA. Motor-Evoked Pain Increases Force Variability in Chronic Jaw Pain. THE JOURNAL OF PAIN 2018; 19:636-648. [DOI: 10.1016/j.jpain.2018.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 11/26/2022]
|
44
|
Neige C, Mavromatis N, Gagné M, Bouyer LJ, Mercier C. Effect of movement-related pain on behaviour and corticospinal excitability changes associated with arm movement preparation. J Physiol 2018; 596:2917-2929. [PMID: 29855037 DOI: 10.1113/jp276011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Experimental pain or its anticipation influence motor preparation processes as well as upcoming movement execution, but the underlying physiological mechanisms remain unknown. Our results showed that movement-related pain modulates corticospinal excitability during motor preparation. In accordance with the pain adaptation theory, corticospinal excitability was higher when the muscle has an antagonist (vs. an agonist) role for the upcoming movement associated with pain. Anticipation of movement-related pain also affects motor initiation and execution, with slower movement initiation (longer reaction times) and faster movement execution compared to movements that do not evoke pain. These results confirm the implementation of protective strategies during motor preparation known to be relevant for acute pain, but which may potentially have detrimental long-term consequences and lead to the development of chronic pain. ABSTRACT When a movement repeatedly generates pain, we anticipate movement-related pain and establish self-protective strategies during motor preparation, but the underlying mechanisms remains poorly understood. The current study investigated the effect of movement-related pain anticipation on the modulation of behaviour and corticospinal excitability during the preparation of arm movements. Participants completed an instructed-delay reaction-time (RT) task consisting of elbow flexions and extensions instructed by visual cues. Nociceptive laser stimulations (unconditioned stimuli) were applied to the lateral epicondyle during movement execution in a specific direction (CS+) but not in the other (CS-), depending on experimental group. During motor preparation, transcranial magnetic stimulation was used to measure corticospinal excitability in the biceps brachii (BB). RT and peak end-point velocity were also measured. Neurophysiological results revealed an opposite modulation of corticospinal excitability in BB depending on whether it plays an agonist (i.e. flexion) or antagonist (i.e. extension) role for the CS+ movements (P < 0.001). Moreover, behavioural results showed that for the CS+ movements RT did not change relative to baseline, whereas the CS- movements were initiated more quickly (P = 0.023) and the CS+ flexion movements were faster relative to the CS- flexion movements (P < 0.001). This is consistent with the pain adaptation theory which proposes that in order to protect the body from further pain, agonist muscle activity is reduced and antagonist muscle activity is increased. If these strategies are initially relevant and lead to short-term pain alleviation, they may potentially have detrimental long-term consequences and lead to the development of chronic pain.
Collapse
Affiliation(s)
- Cécilia Neige
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada.,Department of Rehabilitation, Laval University, Québec, QC, Canada
| | - Nicolas Mavromatis
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada.,Department of Rehabilitation, Laval University, Québec, QC, Canada
| | - Martin Gagné
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada
| | - Laurent J Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada.,Department of Rehabilitation, Laval University, Québec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada.,Department of Rehabilitation, Laval University, Québec, QC, Canada
| |
Collapse
|
45
|
Identifying Functional Subdivisions in the Medial Frontal Cortex. J Neurosci 2018; 36:11168-11170. [PMID: 27807160 DOI: 10.1523/jneurosci.2584-16.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/21/2016] [Indexed: 11/21/2022] Open
|
46
|
Archer DB, Vaillancourt DE, Coombes SA. A Template and Probabilistic Atlas of the Human Sensorimotor Tracts using Diffusion MRI. Cereb Cortex 2018; 28:1685-1699. [PMID: 28334314 PMCID: PMC5907352 DOI: 10.1093/cercor/bhx066] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/27/2017] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to develop a high-resolution sensorimotor area tract template (SMATT) which segments corticofugal tracts based on 6 cortical regions in primary motor cortex, dorsal premotor cortex, ventral premotor cortex, supplementary motor area (SMA), pre-supplementary motor area (preSMA), and primary somatosensory cortex using diffusion tensor imaging. Individual probabilistic tractography analyses were conducted in 100 subjects using the highest resolution data currently available. Tractography results were refined using a novel algorithm to objectively determine slice level thresholds that best minimized overlap between tracts while preserving tract volume. Consistent with tracing studies in monkey and rodent, our observations show that cortical topography is generally preserved through the internal capsule, with the preSMA tract remaining most anterior and the primary somatosensory tract remaining most posterior. We combine our results into a freely available white matter template named the SMATT. We also provide a probabilistic SMATT that quantifies the extent of overlap between tracts. Finally, we assess how the SMATT operates at the individual subject level in another independent data set, and in an individual after stroke. The SMATT and probabilistic SMATT provide new tools that segment and label sensorimotor tracts at a spatial resolution not previously available.
Collapse
Affiliation(s)
- Derek B Archer
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
47
|
Cléry J, Amiez C, Guipponi O, Wardak C, Procyk E, Ben Hamed S. Reward activations and face fields in monkey cingulate motor areas. J Neurophysiol 2018; 119:1037-1044. [DOI: 10.1152/jn.00749.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several premotor areas have been identified within primate cingulate cortex; however their function is yet to be uncovered. Recent brain imaging work in humans revealed a topographic anatomofunctional overlap between feedback processing during exploratory behaviors and the corresponding body fields in the rostral cingulate motor area (RCZa), suggesting an embodied representation of feedback. In particular, a face field in RCZa processes juice feedback. Here we tested an extension of the embodied principle in which unexpected or relevant information obtained through the eye or the face would be processed by face fields in cingulate motor areas, and whether this applied to monkey cingulate cortex. We show that activations for juice reward, eye movement, eye blink, and tactile stimulation on the face overlap over two subfields within the cingulate sulcus likely corresponding to the rostral and caudal cingulate motor areas. This suggests that in monkeys as is the case in humans, behaviorally relevant information is processed through multiple cingulate body/effector maps. NEW & NOTEWORTHY What is the role of cingulate motor areas? In this study we observed in monkeys that, as in humans, neural responses to face-related events, juice reward, eye movement, eye blink, and tactile stimulations, clustered redundantly in two separate cingulate subfields. This suggests that behaviorally relevant information is processed by multiple cingulate effector maps. Importantly, this overlap supports the principle that the cingulate cortex processes feedback based on where it is experienced on the body.
Collapse
Affiliation(s)
- Justine Cléry
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, Université Claude Bernard Lyon1, Bron, France
| | - Céline Amiez
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Olivier Guipponi
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, Université Claude Bernard Lyon1, Bron, France
| | - Claire Wardak
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, Université Claude Bernard Lyon1, Bron, France
| | - Emmanuel Procyk
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, Université Claude Bernard Lyon1, Bron, France
| |
Collapse
|
48
|
Nocebo Effects and Experimental Models in Visceral Pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 138:285-306. [PMID: 29681331 DOI: 10.1016/bs.irn.2018.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite its clinical relevance and the potential to extend insights into the processing and modulation of pain derived from investigations of placebo phenomena, the nocebo effect has received comparably little attention over the past decades. Research from experimental and clinical studies is only beginning to unravel the behavioral, functional, and psychoneurobiological mechanisms underlying the nocebo effect. Herein, we summarize current evidence regarding nocebo effects in the field of pain, with a particular emphasis on visceral pain. We provide an overview over behavioral and neuroimaging findings on the impact of expectations and learning and propose promising future directions to help fostering the transition of experimental research from bench to bedside.
Collapse
|
49
|
Asavasopon S. Chronification of low back pain: getting to the spine of the problem. Braz J Phys Ther 2017; 22:1-6. [PMID: 29229288 PMCID: PMC5816080 DOI: 10.1016/j.bjpt.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Skulpan Asavasopon
- Loma Linda University, School of Allied Health Professions, Department of Physical Therapy, Loma Linda, United States; University of Southern California, Division of Biokinesiology & Physical Therapy, Los Angeles, United States
| |
Collapse
|
50
|
Tan LL, Pelzer P, Heinl C, Tang W, Gangadharan V, Flor H, Sprengel R, Kuner T, Kuner R. A pathway from midcingulate cortex to posterior insula gates nociceptive hypersensitivity. Nat Neurosci 2017; 20:1591-1601. [PMID: 28920932 DOI: 10.1038/nn.4645] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
The identity of cortical circuits mediating nociception and pain is largely unclear. The cingulate cortex is consistently activated during pain, but the functional specificity of cingulate divisions, the roles at distinct temporal phases of central plasticity and the underlying circuitry are unknown. Here we show in mice that the midcingulate division of the cingulate cortex (MCC) does not mediate acute pain sensation and pain affect, but gates sensory hypersensitivity by acting in a wide cortical and subcortical network. Within this complex network, we identified an afferent MCC-posterior insula pathway that can induce and maintain nociceptive hypersensitivity in the absence of conditioned peripheral noxious drive. This facilitation of nociception is brought about by recruitment of descending serotonergic facilitatory projections to the spinal cord. These results have implications for our understanding of neuronal mechanisms facilitating the transition from acute to long-lasting pain.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Patric Pelzer
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Céline Heinl
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Wannan Tang
- Max Planck Institute for Medical Research, Department of Molecular Neurobiology, Heidelberg, Germany
| | | | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,CellNetworks Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, Department of Molecular Neurobiology, Heidelberg, Germany.,Max Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,CellNetworks Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,CellNetworks Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| |
Collapse
|