1
|
Serrarens C, Kashyap S, Otter M, Campforts BCM, Stumpel CTRM, Linden DEJ, van Amelsvoort TAMJ, Vingerhoets C. White matter organization abnormalities in adults with 47,XXX: A 7 Tesla MRI study. Psychiatry Res Neuroimaging 2024; 345:111915. [PMID: 39546963 DOI: 10.1016/j.pscychresns.2024.111915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
47,XXX (Triple X syndrome) is a sex chromosome aneuploidy characterized by the presence of a supernumerary X chromosome in affected females, and has been associated with a variable cognitive, behavioral, and psychiatric phenotype. Alterations in brain gray matter structure and function have been reported, but less is known about white matter (WM) organization in 47,XXX. Therefore, we conducted 7 T diffusion tensor imaging and characterized fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity of 22 adult women with 47,XXX and 22 age-matched typically developing females using tract-based spatial statistics. Relationships between phenotypic traits and WM organization characteristics in 47,XXX were also investigated. Adults with 47,XXX showed lower axial diffusivity in the body of the corpus callosum and the right superior longitudinal fasciculus. WM organization variability was not associated with IQ and social cognition and social functioning deficits in 47,XXX. Our findings indicate an effect of a supernumerary X chromosome in adult women on axonal integrity of the body of the corpus callosum and the right superior longitudinal fasciculus. These findings provide additional insight into the role of the X chromosome on WM organization. Future research is warranted to explore the clinical significant impact of altered WM organization in 47,XXX.
Collapse
Affiliation(s)
- Chaira Serrarens
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, the Netherlands.
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Maarten Otter
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, the Netherlands; Medical Department, SIZA, Arnhem, the Netherlands
| | - Bea C M Campforts
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Thérèse A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, the Netherlands; 's Heeren Loo Zorggroep, Amersfoort, the Netherlands
| |
Collapse
|
2
|
Blanchett R, Chen H, Vlasova RM, Cornea E, Maza M, Davenport M, Reinhartsen D, DeRamus M, Edmondson Pretzel R, Gilmore JH, Hooper SR, Styner MA, Gao W, Knickmeyer RC. White matter microstructure and functional connectivity in the brains of infants with Turner syndrome. Cereb Cortex 2024; 34:bhae351. [PMID: 39256896 PMCID: PMC11387115 DOI: 10.1093/cercor/bhae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Turner syndrome, caused by complete or partial loss of an X-chromosome, is often accompanied by specific cognitive challenges. Magnetic resonance imaging studies of adults and children with Turner syndrome suggest these deficits reflect differences in anatomical and functional connectivity. However, no imaging studies have explored connectivity in infants with Turner syndrome. Consequently, it is unclear when in development connectivity differences emerge. To address this gap, we compared functional connectivity and white matter microstructure of 1-year-old infants with Turner syndrome to typically developing 1-year-old boys and girls. We examined functional connectivity between the right precentral gyrus and five regions that show reduced volume in 1-year old infants with Turner syndrome compared to controls and found no differences. However, exploratory analyses suggested infants with Turner syndrome have altered connectivity between right supramarginal gyrus and left insula and right putamen. To assess anatomical connectivity, we examined diffusivity indices along the superior longitudinal fasciculus and found no differences. However, an exploratory analysis of 46 additional white matter tracts revealed significant group differences in nine tracts. Results suggest that the first year of life is a window in which interventions might prevent connectivity differences observed at later ages, and by extension, some of the cognitive challenges associated with Turner syndrome.
Collapse
Affiliation(s)
- Reid Blanchett
- Genetics and Genome Sciences, Michigan State University, Biomedical & Physical Sciences, Room 2165, East Lansing, MI 48824, United States
- Department of Epigenetics, Van Andel Research Institute, 33 Bostwick Ave NE, Grand Rapids, MI 49503, United States
| | - Haitao Chen
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, 8700 Beverly Blvd, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Roza M Vlasova
- Department of Psychiatry, 333 S. Columbia Street, Suite 304 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States
| | - Emil Cornea
- Department of Psychiatry, 333 S. Columbia Street, Suite 304 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States
| | - Maria Maza
- Department of Psychology and Neuroscience, Campus Box #3270, 235 E. Cameron Avenue, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marsha Davenport
- Department of Pediatrics, 333 South Columbia Street, Suite 260 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Debra Reinhartsen
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Renee Lynn Ct, Carrboro, NC 27510, United States
| | - Margaret DeRamus
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Renee Lynn Ct, Carrboro, NC 27510, United States
| | - Rebecca Edmondson Pretzel
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Renee Lynn Ct, Carrboro, NC 27510, United States
| | - John H Gilmore
- Department of Psychiatry, 333 S. Columbia Street, Suite 304 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States
| | - Stephen R Hooper
- Department of Psychiatry, 333 S. Columbia Street, Suite 304 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States
- Department of Health Sciences, Bondurant Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Martin A Styner
- Department of Psychiatry, 333 S. Columbia Street, Suite 304 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States
- Department of Computer Science, Campus Box 3175, Brooks Computer Science Building, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Wei Gao
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, 8700 Beverly Blvd, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Rebecca C Knickmeyer
- Department of Pediatrics and Human Development, Life Sciences Bldg. 1355 Bogue, #B240B, Michigan State University, East Lansing, MI 48824, United States
- Institute for Quantitative Health Sciences and Engineering, Room 2114, 775 Woodlot Dr., East Lansing, MI 48824, United States
| |
Collapse
|
3
|
Serrarens C, Ruiz-Fernandez J, Otter M, Campforts BCM, Stumpel CTRM, Linden DEJ, van Amelsvoort TAMJ, Kashyap S, Vingerhoets C. Intracortical myelin across laminae in adult individuals with 47,XXX: a 7 Tesla MRI study. Cereb Cortex 2024; 34:bhae343. [PMID: 39183364 PMCID: PMC11345119 DOI: 10.1093/cercor/bhae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
47,XXX (Triple X syndrome) is a sex chromosome aneuploidy characterized by the presence of a supernumerary X chromosome in affected females and is associated with a variable cognitive, behavioral, and psychiatric phenotype. The effect of a supernumerary X chromosome in affected females on intracortical microstructure is currently unknown. Therefore, we conducted 7 Tesla structural MRI and compared T1 (ms), as a proxy for intracortical myelin (ICM), across laminae of 21 adult women with 47,XXX and 22 age-matched typically developing females using laminar analyses. Relationships between phenotypic traits and T1 values in 47,XXX were also investigated. Adults with 47,XXX showed higher bilateral T1 across supragranular laminae in the banks of the superior temporal sulcus, and in the right inferior temporal gyrus, suggesting decreases of ICM primarily within the temporal cortex in 47,XXX. Higher social functioning in 47,XXX was related to larger inferior temporal gyrus ICM content. Our findings indicate an effect of a supernumerary X chromosome in adult-aged women on ICM across supragranular laminae within the temporal cortex. These findings provide insight into the role of X chromosome dosage on ICM across laminae. Future research is warranted to further explore the functional significance of altered ICM across laminae in 47,XXX.
Collapse
Affiliation(s)
- Chaira Serrarens
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Julia Ruiz-Fernandez
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- INSERM U1299, Centre Borelli UMR 9010, ENS-Paris-Saclay, Université Paris Saclay, Paris, France
| | - Maarten Otter
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- Medical Department, SIZA, Arnhem, 6800 AM, The Netherlands
| | - Bea C M Campforts
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, 6229 ER, The Netherlands
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, 6229 EV, The Netherlands
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- ‘s Heeren Loo Zorggroep, Amersfoort, 3818 LA, The Netherlands
| |
Collapse
|
4
|
Modenato C, Martin-Brevet S, Moreau CA, Rodriguez-Herreros B, Kumar K, Draganski B, Sønderby IE, Jacquemont S. Lessons Learned From Neuroimaging Studies of Copy Number Variants: A Systematic Review. Biol Psychiatry 2021; 90:596-610. [PMID: 34509290 DOI: 10.1016/j.biopsych.2021.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/06/2023]
Abstract
Pathogenic copy number variants (CNVs) and aneuploidies alter gene dosage and are associated with neurodevelopmental psychiatric disorders such as autism spectrum disorder and schizophrenia. Brain mechanisms mediating genetic risk for neurodevelopmental psychiatric disorders remain largely unknown, but there is a rapid increase in morphometry studies of CNVs using T1-weighted structural magnetic resonance imaging. Studies have been conducted one mutation at a time, leaving the field with a complex catalog of brain alterations linked to different genomic loci. Our aim was to provide a systematic review of neuroimaging phenotypes across CNVs associated with developmental psychiatric disorders including autism and schizophrenia. We included 76 structural magnetic resonance imaging studies on 20 CNVs at the 15q11.2, 22q11.2, 1q21.1 distal, 16p11.2 distal and proximal, 7q11.23, 15q11-q13, and 22q13.33 (SHANK3) genomic loci as well as aneuploidies of chromosomes X, Y, and 21. Moderate to large effect sizes on global and regional brain morphometry are observed across all genomic loci, which is in line with levels of symptom severity reported for these variants. This is in stark contrast with the much milder neuroimaging effects observed in idiopathic psychiatric disorders. Data also suggest that CNVs have independent effects on global versus regional measures as well as on cortical surface versus thickness. Findings highlight a broad diversity of regional morphometry patterns across genomic loci. This heterogeneity of brain patterns provides insight into the weak effects reported in magnetic resonance imaging studies of cognitive dimension and psychiatric conditions. Neuroimaging studies across many more variants will be required to understand links between gene function and brain morphometry.
Collapse
Affiliation(s)
- Claudia Modenato
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Sandra Martin-Brevet
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Clara A Moreau
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique UMR 3571, Department of Neuroscience, Université de Paris, Institut Pasteur, Paris, France
| | - Borja Rodriguez-Herreros
- Service des Troubles du Spectre de l'Autisme et Apparentés, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Kuldeep Kumar
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland; Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ida E Sønderby
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Sébastien Jacquemont
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Chen Y, Liu S, Salzwedel A, Stephens R, Cornea E, Goldman BD, Gilmore JH, Gao W. The Subgrouping Structure of Newborns with Heterogenous Brain-Behavior Relationships. Cereb Cortex 2020; 31:301-311. [PMID: 32946557 DOI: 10.1093/cercor/bhaa226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
The presence of heterogeneity/subgroups in infants and older populations against single-domain brain or behavioral measures has been previously characterized. However, few attempts have been made to explore heterogeneity at the brain-behavior relationship level. Such a hypothesis posits that different subgroups of infants may possess qualitatively different brain-behavior relationships that could ultimately contribute to divergent developmental outcomes even with relatively similar brain phenotypes. In this study, we aimed to explore such relationship-level heterogeneity and delineate the subgrouping structure of newborns with differential brain-behavior associations based on a typically developing sample of 81 infants with 3-week resting-state functional magnetic resonance imaging scans and 4-year intelligence quotient (IQ) measures. Our results not only confirmed the existence of relationship-level heterogeneity in newborns but also revealed divergent developmental outcomes associated with two subgroups showing similar brain functional connectivity but contrasting brain-behavior relationships. Importantly, further analyses unveiled an intriguing pattern that the subgroup with higher 4-year IQ outcomes possessed brain-behavior relationships that were congruent to their functional connectivity pattern in neonates while the subgroup with lower 4-year IQ not, providing potential explanations for the observed IQ differences. The characterization of heterogeneity at the brain-behavior relationship level may not only improve our understanding of the patterned intersubject variability during infancy but could also pave the way for future development of heterogeneity-inspired, personalized, subgroup-specific models for better prediction.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute (BIRI), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shuxin Liu
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute (BIRI), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,School of Educational Sciences, Minnan Normal University, Zhangzhou, Fujian 36300, China
| | - Andrew Salzwedel
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute (BIRI), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rebecca Stephens
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barbara D Goldman
- Department of Psychology, FPG Child Development Institute, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Gao
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute (BIRI), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Karipidis II, Hong DS. Specific learning disorders in sex chromosome aneuploidies: Neural circuits of literacy and mathematics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:518-530. [DOI: 10.1002/ajmg.c.31801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Iliana I. Karipidis
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesSchool of Medicine, Stanford University Stanford California USA
| | - David S. Hong
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesSchool of Medicine, Stanford University Stanford California USA
| |
Collapse
|
7
|
X-Chromosome Insufficiency Alters Receptive Fields across the Human Early Visual Cortex. J Neurosci 2019; 39:8079-8088. [PMID: 31434689 DOI: 10.1523/jneurosci.2745-18.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 01/15/2023] Open
Abstract
Here, we investigated processing by receptive fields, a fundamental property of neurons in the visual system, using fMRI and population receptive field (pRF) mapping in 20 human females with monosomic Turner syndrome (TS) (mean age, 10.3 ± 2.0 years) versus 22 age- and sex-matched controls (mean age, 10.4 ± 1.9 years). TS, caused by X-chromosome haploinsufficiency in females, is associated with well-recognized effects on visuospatial processing, parieto-occipital cortical anatomy, and parietal lobe function. However, it is unknown whether these effects are related to altered brain structure and function in early visual areas (V1-V3) versus downstream parietal cortical regions. Results show that girls with TS have the following: (1) smaller volume of V1-V3, (2) lower average pRF eccentricity in early visual areas, and (3) sparser pRF coverage in the periphery of the visual field. Further, we examined whether the lower volume of early visual areas, defined using retinotopic mapping, in TS is due to smaller surface area or thinner cortex. Results show that girls with TS had a general reduction in surface area relative to controls in bilateral V1 and V2. Our data suggest the possibility that the smaller cortical surface area of early visual areas in girls with TS may be associated with a lower number of neurons, which in turn, leads to lesser coverage of the peripheral visual field compared to controls. These results indicate that X-chromosome haploinsufficiency associated with TS affects the functional neuroanatomy of early visual areas, and suggest that investigating pRFs in TS may shed insights into their atypical visuospatial processing.SIGNIFICANCE STATEMENT Turner syndrome is caused by the absence of one of the two X-chromosomes in females. Using functional neuroimaging and population receptive field mapping, we find that chromosome dosage variation (X-monosomy) associated with Turner syndrome affects the functional neuroanatomy of the visual cortex. Specifically, girls with Turner syndrome have smaller early visual areas that provide lesser coverage of the peripheral visual field compared with healthy controls. Our observations provide compelling evidence that the X-chromosome affects not only parietal cortex, as described in previous studies, but also affects early visual areas. These findings suggest a paradigm change in understanding the effect of X-monosomy on the development of visuospatial abilities in humans.
Collapse
|
8
|
Lin AE, Prakash SK, Andersen NH, Viuff MH, Levitsky LL, Rivera-Davila M, Crenshaw ML, Hansen L, Colvin MK, Hayes FJ, Lilly E, Snyder EA, Nader-Eftekhari S, Aldrich MB, Bhatt AB, Prager LM, Arenivas A, Skakkebaek A, Steeves MA, Kreher JB, Gravholt CH. Recognition and management of adults with Turner syndrome: From the transition of adolescence through the senior years. Am J Med Genet A 2019; 179:1987-2033. [PMID: 31418527 DOI: 10.1002/ajmg.a.61310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
Turner syndrome is recognized now as a syndrome familiar not only to pediatricians and pediatric specialists, medical geneticists, adult endocrinologists, and cardiologists, but also increasingly to primary care providers, internal medicine specialists, obstetricians, and reproductive medicine specialists. In addition, the care of women with Turner syndrome may involve social services, and various educational and neuropsychologic therapies. This article focuses on the recognition and management of Turner syndrome from adolescents in transition, through adulthood, and into another transition as older women. It can be viewed as an interpretation of recent international guidelines, complementary to those recommendations, and in some instances, an update. An attempt was made to provide an international perspective. Finally, the women and families who live with Turner syndrome and who inspired several sections, are themselves part of the broad readership that may benefit from this review.
Collapse
Affiliation(s)
- Angela E Lin
- Medical Genetics Unit, Mass General Hospital for Children, Boston, Massachusetts
| | - Siddharth K Prakash
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Niels H Andersen
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Mette H Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lynne L Levitsky
- Division of Pediatric Endocrinology, Department of Pediatrics, Mass General Hospital for Children, Boston, Massachusetts
| | - Michelle Rivera-Davila
- Division of Pediatric Endocrinology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Melissa L Crenshaw
- Medical Genetics Services, Division of Genetics, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Lars Hansen
- Department of Otorhinolaryngology, Aarhus University Hospital, Aarhus, Denmark
| | - Mary K Colvin
- Psychology Assessment Center, Massachusetts General Hospital, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Frances J Hayes
- Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Evelyn Lilly
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Emma A Snyder
- Medical Genetics Unit, Mass General Hospital for Children, Boston, Massachusetts
| | - Shahla Nader-Eftekhari
- Division of Endocrinology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Melissa B Aldrich
- Center for Molecular Imaging, The Brown Institute for Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ami B Bhatt
- Corrigan Minehan Heart Center, Adult Congenital Heart Disease Program, Massachusetts General Hospital, Boston, Massachusetts.,Yawkey Center for Outpatient Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Laura M Prager
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Ana Arenivas
- Department of Rehabilitation Psychology/Neuropsychology, TIRR Memorial Hermann Rehabilitation Network, Houston, Texas.,Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Anne Skakkebaek
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Marcie A Steeves
- Medical Genetics Unit, Mass General Hospital for Children, Boston, Massachusetts
| | - Jeffrey B Kreher
- Department of Pediatrics and Orthopaedics, Massachusetts General Hospital, Boston, Massachusetts
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Zhao C, Yang L, Xie S, Zhang Z, Pan H, Gong G. Hemispheric Module-Specific Influence of the X Chromosome on White Matter Connectivity: Evidence from Girls with Turner Syndrome. Cereb Cortex 2019; 29:4580-4594. [PMID: 30615091 DOI: 10.1093/cercor/bhy335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/05/2018] [Indexed: 11/14/2022] Open
Abstract
AbstractTurner syndrome (TS) is caused by the congenital absence of all or part of one of the X chromosomes in females, offering a valuable human “knockout model” to study the functioning patterns of the X chromosome in the human brain. Little is known about whether and how the loss of the X chromosome influences the brain structural wiring patterns in human. We acquired a multimodal MRI dataset and cognitive assessments from 22 girls with TS and 21 age-matched control girls to address these questions. Hemispheric white matter (WM) networks and modules were derived using refined diffusion MRI tractography. Statistical comparisons revealed a reduced topological efficiency of both hemispheric networks and bilateral parietal modules in TS girls. Specifically, the efficiency of right parietal module significantly mediated the effect of the X chromosome on working memory performance, indicating that X chromosome loss impairs working memory performance by disrupting this module. Additionally, TS girls showed structural and functional connectivity decoupling across specific within- and between-modular connections, predominantly in the right hemisphere. These findings provide novel insights into the functional pathways in the brain that are regulated by the X chromosome and highlight a module-specific genetic contribution to WM connectivity in the human brain.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Sheng Xie
- Department of Radiology, China–Japan Friendship Hospital, Beijing, China
| | - Zhixin Zhang
- Department of Pediatrics, China–Japan Friendship Hospital, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
10
|
Zhao C, Gong G. Mapping the effect of the X chromosome on the human brain: Neuroimaging evidence from Turner syndrome. Neurosci Biobehav Rev 2017; 80:263-275. [PMID: 28591595 DOI: 10.1016/j.neubiorev.2017.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/07/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
In addition to determining sex, the X chromosome has long been considered to play a crucial role in brain development and intelligence. Turner syndrome (TS) is caused by the congenital absence of all or part of one of the X chromosomes in females. Thus, Turner syndrome provides a unique "knock-out model" for investigating how the X chromosome influences the human brain in vivo. Numerous cutting-edge neuroimaging techniques and analyses have been applied to investigate various brain phenotypes in women with TS, which have yielded valuable evidence toward elucidating the causal relationship between the X chromosome and human brain structure and function. In this review, we comprehensively summarize the recent progress made in TS-related neuroimaging studies and emphasize how these findings have enhanced our understanding of X chromosome function with respect to the human brain. Future investigations are encouraged to address the issues of previous TS neuroimaging studies and to further identify the biological mechanisms that underlie the function of specific X-linked genes in the human brain.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
Xie S, Yang J, Zhang Z, Zhao C, Bi Y, Zhao Q, Pan H, Gong G. The Effects of the X Chromosome on Intrinsic Functional Connectivity in the Human Brain: Evidence from Turner Syndrome Patients. Cereb Cortex 2017; 27:474-484. [PMID: 26494797 DOI: 10.1093/cercor/bhv240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Turner syndrome (TS), a disorder caused by the congenital absence of one of the 2 X chromosomes in female humans, provides a valuable human "knockout model" for studying the functions of the X chromosome. At present, it remains unknown whether and how the loss of the X chromosome influences intrinsic functional connectivity (FC), a fundamental phenotype of the human brain. To address this, we performed resting-state functional magnetic resonance imaging and specific cognitive assessments on 22 TS patients and 17 age-matched control girls. A novel data-driven approach was applied to identify the disrupted patterns of intrinsic FC in TS. The TS girls exhibited significantly reduced whole-brain FC strength within the bilateral postcentral gyrus/intraparietal sulcus, angular gyrus, and cuneus and the right cerebellum. Furthermore, a specific functional subnetwork was identified in which the intrinsic FC between nodes was mostly reduced in TS patients. Particularly, this subnetwork is composed of 3 functional modules, and the disruption of intrinsic FC within one of these modules was associated with the deficits of TS patients in math-related cognition. Taken together, these findings provide novel insight into how the X chromosome affects the human brain and cognition, and emphasize an important role of X-linked genes in intrinsic neural coupling.
Collapse
Affiliation(s)
| | - Jiaotian Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zhixin Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qiuling Zhao
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hui Pan
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
The effects of an APOE promoter polymorphism on human cortical morphology during nondemented aging. J Neurosci 2015; 35:1423-31. [PMID: 25632120 DOI: 10.1523/jneurosci.1946-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Apolipoprotein E (APOE) is the best-known susceptibility gene for AD. It has been well demonstrated that the ε4 allele of the APOE gene can affect brain structure/function in nondemented individuals; however, other polymorphisms in the APOE gene have been largely overlooked when assessing the effects of APOE on the neural system. Rs405509 is a newly recognized AD-related polymorphism located in the APOE promoter region that can regulate the transcriptional activity of the APOE gene. To date, it remains unknown whether and how this APOE promoter polymorphism affects the human brain in aging. Here, for the first time, we investigate the effects of the rs405509 genotype (T/T vs G-allele) on human cortical morphology using a large cohort of nondemented elderly subjects (120 subjects in total; aged 52- 81 years). High-resolution structural MRI was performed; cortical thickness and surface area were analyzed separately. Intriguingly, nondemented carriers of the rs405509 T/T genotype showed an accelerated age-related reduction of thickness in the left parahippocampal gyrus compared with the G-allele carriers. Furthermore, the cortical thickness covariance between the left parahippocampal gyrus and left medial cortex, including the left medial superior frontal gyrus, supplementary motor area, and paracentral lobule, was modulated by the interaction of the rs405509 genotype and age. These novel findings suggest an important role for the APOE promoter polymorphism in the human brain and also provide valuable insights into how the rs405509 genotype shapes the neural system to modulate the risk of developing AD.
Collapse
|