1
|
Wu K, Gan Q, Pi Y, Wu Y, Zou W, Su X, Zhang S, Wang X, Li X, Zhang N. Obstructive sleep apnea and structural and functional brain alterations: a brain-wide investigation from clinical association to genetic causality. BMC Med 2025; 23:42. [PMID: 39865248 PMCID: PMC11770961 DOI: 10.1186/s12916-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear. METHODS We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function. RESULTS In the cohort study, OSA patients exhibited significantly lower fractional amplitude of low-frequency fluctuation and regional homogeneity in the right posterior cerebellar lobe and bilateral superior and middle frontal gyrus, while showing higher levels in the left occipital lobe and left posterior central gyrus. Decreased fractional anisotropy (FA) but increased apparent diffusion coefficient (ADC) was shown in the bilateral superior longitudinal fasciculus. According to the results of Affiliation file 2: table s6, it is the ADC value of right superior longitudinal fasciculus was shown a positive correlation with the lowest oxygen saturation. In the Mendelian randomization analyses, the area of left inferior temporal sulcus (OR: 0.89; 95% CI: 0.82-0.96), rfMRI connectivity ICA100 edge 893 (OR: 0.88; 95% CI: 0.82-0.96), ICA100 edge 951 (OR: 0.89; 95% CI: 0.82-0.97), and ICA100 edge 1213 (OR: 0.89; 95% CI: 0.82-0.96) were significantly decreased in OSA. Conversely, mean thickness of G-front-inf-Triangul in right hemisphere (OR: 1.14; 95% CI: 1.05-1.23), mean orientation dispersion index in right tapetum (OR: 1.13; 95% CI: 1.04-1.23), and rfMRI connectivity ICA100 edge 258 (OR: 1.13; 95% CI: 1.04-1.22) showed opposite results. CONCLUSIONS Nerve fiber damage and imbalances in neuronal activity across multiple brain regions caused by hypoxia, particularly the frontal lobe, underlie the structural and the functional connectivity impairments in OSA.
Collapse
Affiliation(s)
- Kang Wu
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Qiming Gan
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Yuhong Pi
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Yanjuan Wu
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Wenjin Zou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofen Su
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Sun Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Xinni Wang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Xinchun Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nuofu Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.
| |
Collapse
|
2
|
Rosenblau G, Frolichs K, Korn CW. A neuro-computational social learning framework to facilitate transdiagnostic classification and treatment across psychiatric disorders. Neurosci Biobehav Rev 2023; 149:105181. [PMID: 37062494 PMCID: PMC10236440 DOI: 10.1016/j.neubiorev.2023.105181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Social deficits are among the core and most striking psychiatric symptoms, present in most psychiatric disorders. Here, we introduce a novel social learning framework, which consists of neuro-computational models that combine reinforcement learning with various types of social knowledge structures. We outline how this social learning framework can help specify and quantify social psychopathology across disorders and provide an overview of the brain regions that may be involved in this type of social learning. We highlight how this framework can specify commonalities and differences in the social psychopathology of individuals with autism spectrum disorder (ASD), personality disorders (PD), and major depressive disorder (MDD) and improve treatments on an individual basis. We conjecture that individuals with psychiatric disorders rely on rigid social knowledge representations when learning about others, albeit the nature of their rigidity and the behavioral consequences can greatly differ. While non-clinical cohorts tend to efficiently adapt social knowledge representations to relevant environmental constraints, psychiatric cohorts may rigidly stick to their preconceived notions or overly coarse knowledge representations during learning.
Collapse
Affiliation(s)
- Gabriela Rosenblau
- Department of Psychological and Brain Sciences, George Washington University, Washington DC, USA; Autism and Neurodevelopmental Disorders Institute, George Washington University, Washington DC, USA.
| | - Koen Frolichs
- Section Social Neuroscience, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany; Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph W Korn
- Section Social Neuroscience, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany; Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Yeh CH, Tseng RY, Ni HC, Cocchi L, Chang JC, Hsu MY, Tu EN, Wu YY, Chou TL, Gau SSF, Lin HY. White matter microstructural and morphometric alterations in autism: implications for intellectual capabilities. Mol Autism 2022; 13:21. [PMID: 35585645 PMCID: PMC9118608 DOI: 10.1186/s13229-022-00499-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
Background Neuroimage literature of autism spectrum disorder (ASD) has a moderate-to-high risk of bias, partially because those combined with intellectual impairment (II) and/or minimally verbal (MV) status are generally ignored. We aimed to provide more comprehensive insights into white matter alterations of ASD, inclusive of individuals with II (ASD-II-Only) or MV expression (ASD-MV). Methods Sixty-five participants with ASD (ASD-Whole; 16.6 ± 5.9 years; comprising 34 intellectually able youth, ASD-IA, and 31 intellectually impaired youth, ASD-II, including 24 ASD-II-Only plus 7 ASD-MV) and 38 demographic-matched typically developing controls (TDC; 17.3 ± 5.6 years) were scanned in accelerated diffusion-weighted MRI. Fixel-based analysis was undertaken to investigate the categorical differences in fiber density (FD), fiber cross section (FC), and a combined index (FDC), and brain symptom/cognition associations. Results ASD-Whole had reduced FD in the anterior and posterior corpus callosum and left cerebellum Crus I, and smaller FDC in right cerebellum Crus II, compared to TDC. ASD-IA, relative to TDC, had no significant discrepancies, while ASD-II showed almost identical alterations to those from ASD-Whole vs. TDC. ASD-II-Only had greater FD/FDC in the isthmus splenium of callosum than ASD-MV. Autistic severity negatively correlated with FC in right Crus I. Nonverbal full-scale IQ positively correlated with FC/FDC in cerebellum VI. FD/FDC of the right dorsolateral prefrontal cortex showed a diagnosis-by-executive function interaction. Limitations We could not preclude the potential effects of age and sex from the ASD cohort, although statistical tests suggested that these factors were not influential. Our results could be confounded by variable psychiatric comorbidities and psychotropic medication uses in our ASD participants recruited from outpatient clinics, which is nevertheless closer to a real-world presentation of ASD. The outcomes related to ASD-MV were considered preliminaries due to the small sample size within this subgroup. Finally, our study design did not include intellectual impairment-only participants without ASD to disentangle the mixture of autistic and intellectual symptoms. Conclusions ASD-associated white matter alterations appear driven by individuals with II and potentially further by MV. Results suggest that changes in the corpus callosum and cerebellum are key for psychopathology and cognition associated with ASD. Our work highlights an essential to include understudied subpopulations on the spectrum in research. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00499-1.
Collapse
Affiliation(s)
- Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, 333, Taoyuan City, Taiwan. .,Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Rung-Yu Tseng
- Institute for Radiological Research, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, 333, Taoyuan City, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jung-Chi Chang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - En-Nien Tu
- Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | | | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan. .,Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, and Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, 1025 Queen St W - 3314, Toronto, ON, M6J 1H4, Canada. .,Department of Psychiatry and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Metoki A, Wang Y, Olson IR. The Social Cerebellum: A Large-Scale Investigation of Functional and Structural Specificity and Connectivity. Cereb Cortex 2022; 32:987-1003. [PMID: 34428293 PMCID: PMC8890001 DOI: 10.1093/cercor/bhab260] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The cerebellum has been traditionally disregarded in relation to nonmotor functions, but recent findings indicate it may be involved in language, affective processing, and social functions. Mentalizing, or Theory of Mind (ToM), is the ability to infer mental states of others and this skill relies on a distributed network of brain regions. Here, we leveraged large-scale multimodal neuroimaging data to elucidate the structural and functional role of the cerebellum in mentalizing. We used functional activations to determine whether the cerebellum has a domain-general or domain-specific functional role, and effective connectivity and probabilistic tractography to map the cerebello-cerebral mentalizing network. We found that the cerebellum is organized in a domain-specific way and that there is a left cerebellar effective and structural lateralization, with more and stronger effective connections from the left cerebellar hemisphere to the right cerebral mentalizing areas, and greater cerebello-thalamo-cortical and cortico-ponto-cerebellar streamline counts from and to the left cerebellum. Our study provides novel insights to the network organization of the cerebellum, an overlooked brain structure, and mentalizing, one of humans' most essential abilities to navigate the social world.
Collapse
Affiliation(s)
- Athanasia Metoki
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
- Department of Neurology,Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
5
|
Ferrari C, Ciricugno A, Battelli L, Grossman ED, Cattaneo Z. Distinct cerebellar regions for body motion discrimination. Soc Cogn Affect Neurosci 2022; 17:72-80. [PMID: 31820788 PMCID: PMC8824544 DOI: 10.1093/scan/nsz088] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/15/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022] Open
Abstract
Visual processing of human movements is critical for adaptive social behavior. Cerebellar activations have been observed during biological motion discrimination in prior neuroimaging studies, and cerebellar lesions may be detrimental for this task. However, whether the cerebellum plays a causal role in biological motion discrimination has never been tested. Here, we addressed this issue in three different experiments by interfering with the posterior cerebellar lobe using transcranial magnetic stimulation (TMS) during a biological discrimination task. In Experiments 1 and 2, we found that TMS delivered at onset of the visual stimuli over the vermis (vermal lobule VI), but not over the left cerebellar hemisphere (left lobule VI/Crus I), interfered with participants' ability to distinguish biological from scrambled motion compared to stimulation of a control site (vertex). Interestingly, when stimulation was delivered at a later time point (300 ms after stimulus onset), participants performed worse when TMS was delivered over the left cerebellar hemisphere compared to the vermis and the vertex (Experiment 3). Our data show that the posterior cerebellum is causally involved in biological motion discrimination and suggest that different sectors of the posterior cerebellar lobe may contribute to the task at different time points.
Collapse
Affiliation(s)
| | - Andrea Ciricugno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
- IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
- Berenson-Allen Center for Noninvasive Brain Stimulation, Harvard Medical School, Boston 02155, MA, USA
| | - Emily D Grossman
- Department of Cognitive Sciences, University of California, Irvine 92617, CA, USA
| | | |
Collapse
|
6
|
Frosch IR, Mittal VA, D’Mello AM. Cerebellar Contributions to Social Cognition in ASD: A Predictive Processing Framework. Front Integr Neurosci 2022; 16:810425. [PMID: 35153691 PMCID: PMC8832100 DOI: 10.3389/fnint.2022.810425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/04/2022] [Indexed: 01/04/2023] Open
Abstract
Functional, structural, and cytoarchitectural differences in the cerebellum are consistently reported in Autism Spectrum Disorders (ASD). Despite this, the mechanisms governing cerebellar contributions to ASD, particularly within the sociocognitive domain, are not well understood. Recently, it has been suggested that several core features of ASD may be associated with challenges creating and using prior expectations or predictions to rapidly adapt to changing stimuli or situations, also known as adaptive prediction. Importantly, neuroimaging, clinical, and animal work find that the cerebellum supports adaptive prediction in both motor and non-motor domains. Perturbations to the cerebellum via injury or neuromodulation have been associated with impairments in predictive skills. Here, we review evidence for a cerebellar role in social cognition and adaptive prediction across individuals with and without ASD.
Collapse
Affiliation(s)
- Isabelle R. Frosch
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Vijay A. Mittal
- Department of Psychology, Northwestern University, Evanston, IL, United States
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, United States
- Department of Psychiatry, Northwestern University, Chicago, IL, United States
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, United States
- Institute for Policy Research, Northwestern University, Chicago, IL, United States
| | - Anila M. D’Mello
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
7
|
Vandewouw MM, Safar K, Mossad SI, Lu J, Lerch JP, Anagnostou E, Taylor MJ. Do shapes have feelings? Social attribution in children with autism spectrum disorder and attention-deficit/hyperactivity disorder. Transl Psychiatry 2021; 11:493. [PMID: 34564704 PMCID: PMC8464598 DOI: 10.1038/s41398-021-01625-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Theory of mind (ToM) deficits are common in children with neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which contribute to their social and cognitive difficulties. The social attribution task (SAT) involves geometrical shapes moving in patterns that depict social interactions and is known to recruit brain regions from the classic ToM network. To better understand ToM in ASD and ADHD children, we examined the neural correlates using the SAT and functional magnetic resonance imaging (fMRI) in a cohort of 200 children: ASD (N = 76), ADHD (N = 74) and typically developing (TD; N = 50) (4-19 years). In the scanner, participants were presented with SAT videos corresponding to social help, social threat, and random conditions. Contrasting social vs. random, the ASD compared with TD children showed atypical activation in ToM brain areas-the middle temporal and anterior cingulate gyri. In the social help vs. social threat condition, atypical activation of the bilateral middle cingulate and right supramarginal and superior temporal gyri was shared across the NDD children, with between-diagnosis differences only being observed in the right fusiform. Data-driven subgrouping identified two distinct subgroups spanning all groups that differed in both their clinical characteristics and brain-behaviour relations with ToM ability.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.
- Autism Research Center, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah I Mossad
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Lu
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Autism Research Center, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Macro- and micro-structural cerebellar and cortical characteristics of cognitive empathy towards fictional characters in healthy individuals. Sci Rep 2021; 11:8804. [PMID: 33888760 PMCID: PMC8062506 DOI: 10.1038/s41598-021-87861-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Few investigations have analyzed the neuroanatomical substrate of empathic capacities in healthy subjects, and most of them have neglected the potential involvement of cerebellar structures. The main aim of the present study was to investigate the associations between bilateral cerebellar macro- and micro-structural measures and levels of cognitive and affective trait empathy (measured by Interpersonal Reactivity Index, IRI) in a sample of 70 healthy subjects of both sexes. We also estimated morphometric variations of cerebral Gray Matter structures, to ascertain whether the potential empathy-related peculiarities in cerebellar areas were accompanied by structural differences in other cerebral regions. At macro-structural level, the volumetric differences were analyzed by Voxel-Based Morphometry (VBM)- and Region of Interest (ROI)-based approaches, and at a micro-structural level, we analyzed Diffusion Tensor Imaging (DTI) data, focusing in particular on Mean Diffusivity and Fractional Anisotropy. Fantasy IRI-subscale was found to be positively associated with volumes in right cerebellar Crus 2 and pars triangularis of inferior frontal gyrus. The here described morphological variations of cerebellar Crus 2 and pars triangularis allow to extend the traditional cortico-centric view of cognitive empathy to the cerebellar regions and indicate that in empathizing with fictional characters the cerebellar and frontal areas are co-recruited.
Collapse
|
9
|
Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, Guell X, Heleven E, Lupo M, Ma Q, Michelutti M, Olivito G, Pu M, Rice LC, Schmahmann JD, Siciliano L, Sokolov AA, Stoodley CJ, van Dun K, Vandervert L, Leggio M. Consensus Paper: Cerebellum and Social Cognition. CEREBELLUM (LONDON, ENGLAND) 2020; 19:833-868. [PMID: 32632709 PMCID: PMC7588399 DOI: 10.1007/s12311-020-01155-1] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mario Manto
- Mediathèque Jean Jacquy, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, Mons, Belgium
| | - Zaira Cattaneo
- University of Milano-Bicocca, 20126 Milan, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Clausi
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - John D. E. Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
| | - Xavier Guell
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Elien Heleven
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Michela Lupo
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Qianying Ma
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marco Michelutti
- Service de Neurologie & Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Service de Neurologie Lausanne, Lausanne, Switzerland
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Giusy Olivito
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Min Pu
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Laura C. Rice
- Department of Psychology and Department of Neuroscience, American University, Washington, DC USA
| | - Jeremy D. Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Libera Siciliano
- Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Arseny A. Sokolov
- Service de Neurologie & Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Service de Neurologie Lausanne, Lausanne, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital Inselspital, University of Bern, Bern, Switzerland
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London (UCL), London, UK
- Neuroscape Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA USA
| | - Catherine J. Stoodley
- Department of Psychology and Department of Neuroscience, American University, Washington, DC USA
| | - Kim van Dun
- Neurologic Rehabilitation Research, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium
| | - Larry Vandervert
- American Nonlinear Systems, 1529 W. Courtland Avenue, Spokane, WA 99205-2608 USA
| | - Maria Leggio
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Anteraper SA, Guell X, Taylor HP, D'Mello A, Whitfield-Gabrieli S, Joshi G. Intrinsic Functional Connectivity of Dentate Nuclei in Autism Spectrum Disorder. Brain Connect 2020; 9:692-702. [PMID: 31591901 DOI: 10.1089/brain.2019.0692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cerebellar abnormalities are commonly reported in autism spectrum disorder (ASD). Dentate nuclei (DNs) are key structures in the anatomical circuits linking the cerebellum to the extracerebellum. Previous resting-state functional connectivity (RsFc) analyses reported DN abnormalities in high-functioning ASD (HF-ASD). This study examined the RsFc of the DN in young adults with HF-ASD compared with healthy controls (HCs) with the aim to expand upon previous findings of DNs in a dataset using advanced, imaging acquisition methods that optimize spatiotemporal resolution and statistical power. Additional seed-to-voxel analyses were carried out using motor and nonmotor DN coordinates reported in previous studies as seeds. We report abnormal dentato-cerebral and dentato-cerebellar functional connectivity in ASD. Our results expand and, in part, replicate previous descriptions of DN RsFc abnormalities in this disorder and reveal correlations between DN-cerebral RsFc and ASD symptom severity.
Collapse
Affiliation(s)
- Sheeba Arnold Anteraper
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, Boston, Massachusetts.,Department of Psychology, Northeastern University, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xavier Guell
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hoyt Patrick Taylor
- Department of Physics, University of North Carolina, Chapel Hill, North Carolina
| | - Anila D'Mello
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gagan Joshi
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Fernández M, Sierra-Arregui T, Peñagarikano O. The Cerebellum and Autism: More than Motor Control. Behav Neurosci 2019. [DOI: 10.5772/intechopen.85897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Huang X, Tang S, Lyu X, Yang C, Chen X. Structural and functional brain alterations in obstructive sleep apnea: a multimodal meta-analysis. Sleep Med 2019; 54:195-204. [DOI: 10.1016/j.sleep.2018.09.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
13
|
Arnold Anteraper S, Guell X, D'Mello A, Joshi N, Whitfield-Gabrieli S, Joshi G. Disrupted Cerebrocerebellar Intrinsic Functional Connectivity in Young Adults with High-Functioning Autism Spectrum Disorder: A Data-Driven, Whole-Brain, High-Temporal Resolution Functional Magnetic Resonance Imaging Study. Brain Connect 2018; 9:48-59. [PMID: 29896995 DOI: 10.1089/brain.2018.0581] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study examines the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. High temporal resolution fMRI using simultaneous multi-slice acquisition aided unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc. MVPA revealed two clusters (Crus I/II and lobule IX) of abnormal connectivity in the cerebellum that are consistent with the notion of a triple representation of nonmotor processing in the cerebellum. Whole-brain seed-based RsFc analyses informed by these clusters showed significant under connectivity between the cerebellar and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in HF-ASD. The description of functional connectivity abnormalities reported in this study using whole-brain, data-driven analyses has the potential to crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.
Collapse
Affiliation(s)
- Sheeba Arnold Anteraper
- 1 A.A. Martinos Imaging Center, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,2 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, Boston, Massachusetts
| | - Xavier Guell
- 3 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.,4 Cognitive Neuroscience Research Unit, Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Anila D'Mello
- 3 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Neha Joshi
- 5 Weston High School, Weston, Massachusetts
| | - Susan Whitfield-Gabrieli
- 1 A.A. Martinos Imaging Center, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,3 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gagan Joshi
- 2 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, Boston, Massachusetts.,3 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.,6 Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
|
15
|
Stoodley CJ, D'Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, Pascual JM, Mostofsky SH, Lerch JP, Tsai PT. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci 2017; 20:1744-1751. [PMID: 29184200 PMCID: PMC5867894 DOI: 10.1038/s41593-017-0004-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023]
Abstract
Cerebellar abnormalities, particularly in Right Crus I (RCrusI), are consistently reported in autism spectrum disorders (ASD). Although RCrusI is functionally connected with ASD-implicated circuits, the contribution of RCrusI dysfunction to ASD remains unclear. Here neuromodulation of RCrusI in neurotypical humans resulted in altered functional connectivity with the inferior parietal lobule, and children with ASD showed atypical functional connectivity in this circuit. Atypical RCrusI-inferior parietal lobule structural connectivity was also evident in the Purkinje neuron (PN) TscI ASD mouse model. Additionally, chemogenetically mediated inhibition of RCrusI PN activity in mice was sufficient to generate ASD-related social, repetitive, and restricted behaviors, while stimulation of RCrusI PNs rescued social impairment in the PN TscI ASD mouse model. Together, these studies reveal important roles for RCrusI in ASD-related behaviors. Further, the rescue of social behaviors in an ASD mouse model suggests that investigation of the therapeutic potential of cerebellar neuromodulation in ASD may be warranted.
Collapse
Affiliation(s)
- Catherine J Stoodley
- Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC, USA.
| | - Anila M D'Mello
- Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC, USA
| | - Jacob Ellegood
- Toronto Mouse Imaging Centre, Hospital for Sick Kids, Toronto, Canada
| | - Vikram Jakkamsetti
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pei Liu
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jennifer M Gibson
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elyza Kelly
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fantao Meng
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher A Cano
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juan M Pascual
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jason P Lerch
- Toronto Mouse Imaging Centre, Hospital for Sick Kids, Toronto, Canada
| | - Peter T Tsai
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
16
|
A Meta-analysis of Voxel-based Brain Morphometry Studies in Obstructive Sleep Apnea. Sci Rep 2017; 7:10095. [PMID: 28855654 PMCID: PMC5577238 DOI: 10.1038/s41598-017-09319-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/18/2017] [Indexed: 02/05/2023] Open
Abstract
Gray matter (GM) anomalies may represent a critical pathology underlying obstructive sleep apnea (OSA). However, the evidence regarding their clinical relevance is inconsistent. We conducted a meta-analysis of voxel-based morphometry (VBM) studies of patients with OSA to identify their brain abnormalities. A systematic search was conducted based on PRISMA guidelines, and a meta-analysis was performed using the anisotropic effect-size-based algorithms (ASE-SDM) to quantitatively estimate regional GM changes in patients with OSA. Fifteen studies with 16 datasets comprising 353 untreated patients with OSA and 444 healthy controls were included. Our results revealed GM reductions in the bilateral anterior cingulate/paracingulate gyri (ACG/ApCG), left cerebellum (lobules IV/V and VIII), bilateral superior frontal gyrus (SFG, medial rostral part), right middle temporal gyrus (MTG), and right premotor cortex. Moreover, GM reductions in the bilateral ACG/ApCG were positively associated with body mass index (BMI) and age among patients with OSA, and GM reductions in the SFG (medial rostral part) were negatively associated with Epworth sleepiness scale (ESS) scores and sex (male). These abnormalities may represent structural brain underpinnings of neurocognitive abnormalities and respiratory-related abnormalities in OSA. In particular, this study adds to Psychoradiology, which is a promising subspecialty of clinical radiology mainly for psychiatric disorders.
Collapse
|
17
|
Sokolov AA, Miall RC, Ivry RB. The Cerebellum: Adaptive Prediction for Movement and Cognition. Trends Cogn Sci 2017; 21:313-332. [PMID: 28385461 PMCID: PMC5477675 DOI: 10.1016/j.tics.2017.02.005] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 10/19/2022]
Abstract
Over the past 30 years, cumulative evidence has indicated that cerebellar function extends beyond sensorimotor control. This view has emerged from studies of neuroanatomy, neuroimaging, neuropsychology, and brain stimulation, with the results implicating the cerebellum in domains as diverse as attention, language, executive function, and social cognition. Although the literature provides sophisticated models of how the cerebellum helps refine movements, it remains unclear how the core mechanisms of these models can be applied when considering a broader conceptualization of cerebellar function. In light of recent multidisciplinary findings, we examine how two key concepts that have been suggested as general computational principles of cerebellar function- prediction and error-based learning- might be relevant in the operation of cognitive cerebro-cerebellar loops.
Collapse
Affiliation(s)
- Arseny A Sokolov
- Service de Neurologie, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne 1011, Switzerland; Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley 94720, USA
| |
Collapse
|
18
|
Quadflieg S, Koldewyn K. The neuroscience of people watching: how the human brain makes sense of other people's encounters. Ann N Y Acad Sci 2017; 1396:166-182. [DOI: 10.1111/nyas.13331] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Susanne Quadflieg
- School of Experimental Psychology; University of Bristol; Bristol United Kingdom
| | - Kami Koldewyn
- School of Psychology; Bangor University; Bangor United Kingdom
| |
Collapse
|
19
|
Jack A, Keifer CM, Pelphrey KA. Cerebellar contributions to biological motion perception in autism and typical development. Hum Brain Mapp 2017; 38:1914-1932. [PMID: 28150911 DOI: 10.1002/hbm.23493] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 01/18/2023] Open
Abstract
Growing evidence suggests that posterior cerebellar lobe contributes to social perception in healthy adults. However, they know little about how this process varies across age and with development. Using cross-sectional fMRI data, they examined cerebellar response to biological (BIO) versus scrambled (SCRAM) motion within typically developing (TD) and autism spectrum disorder (ASD) samples (age 4-30 years old), characterizing cerebellar response and BIO > SCRAM-selective effective connectivity, as well as associations with age and social ability. TD individuals recruited regions throughout cerebellar posterior lobe during BIO > SCRAM, especially bilateral lobule VI, and demonstrated connectivity with right posterior superior temporal sulcus (RpSTS) in left VI, Crus I/II, and VIIIb. ASD individuals showed BIO > SCRAM activity in left VI and left Crus I/II, and bilateral connectivity with RpSTS in Crus I/II and VIIIb/IX. No between-group differences emerged in well-matched subsamples. Among TD individuals, older age predicted greater BIO > SCRAM response in left VIIb and left VIIIa/b, but reduced connectivity between RpSTS and widespread regions of the right cerebellum. In ASD, older age predicted greater response in left Crus I and bilateral Crus II, but decreased effective connectivity with RpSTS in bilateral Crus I/II. In ASD, increased BIO > SCRAM signal in left VI/Crus I and right Crus II, VIIb, and dentate predicted lower social symptomaticity; increased effective connectivity with RpSTS in right Crus I/II and bilateral VI and I-V predicted greater symptomaticity. These data suggest that posterior cerebellum contributes to the neurodevelopment of social perception in both basic and clinical populations. Hum Brain Mapp 38:1914-1932, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Allison Jack
- George Washington University, Autism & Neurodevelopmental Disorders Institute, 44983 Knoll Square, Ashburn, VA, 20147
| | - Cara M Keifer
- Stony Brook University, Department of Psychology, Stony Brook, NY, 11794-2500
| | - Kevin A Pelphrey
- George Washington University, Autism & Neurodevelopmental Disorders Institute, 44983 Knoll Square, Ashburn, VA, 20147.,Children's National Medical Center, Department of Pediatrics, 111 Michigan Avenue, NW Washington, DC, 20010
| |
Collapse
|
20
|
Hecht EE, Robins DL, Gautam P, King TZ. Intranasal oxytocin reduces social perception in women: Neural activation and individual variation. Neuroimage 2017; 147:314-329. [DOI: 10.1016/j.neuroimage.2016.12.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/26/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022] Open
|
21
|
J. Onaolapo O, Y. Onaolapo A. The 21<sup>st</sup> Century Cerebellum: An Evolution of Cognitive Functions, Connections, Disorders, and Pharmacotherapeutic Modulation. AIMS Neurosci 2017. [DOI: 10.3934/neuroscience.2017.4.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Nguyen VT, Sonkusare S, Stadler J, Hu X, Breakspear M, Guo CC. Distinct Cerebellar Contributions to Cognitive-Perceptual Dynamics During Natural Viewing. Cereb Cortex 2016; 27:5652-5662. [DOI: 10.1093/cercor/bhw334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 01/27/2023] Open
Affiliation(s)
- Vinh Thai Nguyen
- QIMR Berghofer Medical Research Institute, Queensland, Herston 4006, Australia
| | - Saurabh Sonkusare
- QIMR Berghofer Medical Research Institute, Queensland, Herston 4006, Australia
- School of Medicine, The University of Queensland, Queensland, Brisbane 4067, Australia
| | - Jane Stadler
- School of Communication and Arts, The University of Queensland, Queensland, Brisbane 4067, Australia
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Queensland, Herston 4006, Australia
| | - Christine Cong Guo
- QIMR Berghofer Medical Research Institute, Queensland, Herston 4006, Australia
| |
Collapse
|
23
|
D'Mello AM, Moore DM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter differentiates children with early language delay in autism. Autism Res 2016; 9:1191-1204. [PMID: 27868392 PMCID: PMC11079618 DOI: 10.1002/aur.1622] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 12/20/2022]
Abstract
Early language delay (ELD) is one of the earliest indicators of autism spectrum disorder (ASD), and predicts later cognitive and behavioral outcomes. We aimed to determine the neural correlates of ELD in autism, and examine the relationships between gray matter (GM), age of first word/phrase, and core ASD symptoms. We used voxel-based morphometry to examine whole-brain differences in GM in 8-13 year old children with autism (n = 13 ELD; n = 22 non-ELD) and 35 age-matched typically developing (TD) children. Multiple regression analyses examined the relationships between GM, age of first word/phrase, and autism diagnostic observation schedule (ADOS) scores. Composite age of first word/phrase negatively correlated with GM throughout the cerebellum. Both ASD groups (ELD and non-ELD) had reduced GM in right cerebellar Crus I/II when compared to TD children. Left cerebellar Crus I/II was the only region in the brain that differentiated ELD and non-ELD children, with ELD children showing reduced GM relative to both non-ELD and TD groups. Group×score interactions converged in left Crus I/II, such that the non-ELD group showed poorer ADOS scores with increasing GM, whereas the ELD group showed poorer ADOS scores as GM decreased. Reduced GM in right cerebellar Crus I/I was related ASD diagnosis, while children with ELD showed additional reduced GM in left Crus I/II. These findings highlight the importance of specific cerebellar networks in both ASD and early language development, and suggest that bilateral disruption in cerebellar regions that interconnect with fronto-parietal networks could impact language acquisition in ASD. Autism Res 2016, 9: 1191-1204. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anila M D'Mello
- Developmental Neuroscience Lab, Department of Psychology, and Center for Behavioral Neuroscience, American University, Washington, DC
| | - Dorothea M Moore
- Developmental Neuroscience Lab, Department of Psychology, and Center for Behavioral Neuroscience, American University, Washington, DC
| | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine J Stoodley
- Developmental Neuroscience Lab, Department of Psychology, and Center for Behavioral Neuroscience, American University, Washington, DC
| |
Collapse
|
24
|
Pavlova MA. Sex and gender affect the social brain: Beyond simplicity. J Neurosci Res 2016; 95:235-250. [PMID: 27688155 DOI: 10.1002/jnr.23871] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Marina A. Pavlova
- Department of Biomedical Magnetic Resonance, Medical School; Eberhard Karls University of Tübingen; Tübingen Germany
| |
Collapse
|
25
|
Perceptual Integration Deficits in Autism Spectrum Disorders Are Associated with Reduced Interhemispheric Gamma-Band Coherence. J Neurosci 2016; 35:16352-61. [PMID: 26674862 DOI: 10.1523/jneurosci.1442-15.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The integration of visual details into a holistic percept is essential for object recognition. This integration has been reported as a key deficit in patients with autism spectrum disorders (ASDs). The weak central coherence account posits an altered disposition to integrate features into a coherent whole in ASD. Here, we test the hypothesis that such weak perceptual coherence may be reflected in weak neural coherence across different cortical sites. We recorded magnetoencephalography from 20 adult human participants with ASD and 20 matched controls, who performed a slit-viewing paradigm, in which objects gradually passed behind a vertical or horizontal slit so that only fragments of the object were visible at any given moment. Object recognition thus required perceptual integration over time and, in case of the horizontal slit, also across visual hemifields. ASD participants were selectively impaired in the horizontal slit condition, indicating specific difficulties in long-range synchronization between the hemispheres. Specifically, the ASD group failed to show condition-related enhancement of imaginary coherence between the posterior superior temporal sulci in both hemispheres during horizontal slit-viewing in contrast to controls. Moreover, local synchronization reflected in occipitocerebellar beta-band power was selectively reduced for horizontal compared with vertical slit-viewing in ASD. Furthermore, we found disturbed connectivity between right posterior superior temporal sulcus and left cerebellum. Together, our results suggest that perceptual integration deficits co-occur with specific patterns of abnormal global and local synchronization in ASD. SIGNIFICANCE STATEMENT The weak central coherence account proposes a tendency of individuals with autism spectrum disorders (ASDs) to focus on details at the cost of an integrated coherent whole. Here, we provide evidence, at the behavioral and the neural level, that visual integration in object recognition is impaired in ASD, when details had to be integrated across both visual hemifields. We found enhanced interhemispheric gamma-band coherence in typically developed participants when communication between cortical hemispheres was required by the task. Importantly, participants with ASD failed to show this enhanced coherence between bilateral posterior superior temporal sulci. The findings suggest that visual integration is disturbed at the local and global synchronization scale, which might bear implications for object recognition in ASD.
Collapse
|
26
|
D'Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci 2015; 9:408. [PMID: 26594140 PMCID: PMC4633503 DOI: 10.3389/fnins.2015.00408] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.
Collapse
Affiliation(s)
- Anila M D'Mello
- Department of Psychology, American University Washington DC, USA ; Center for Behavioral Neuroscience, American University Washington DC, USA
| | - Catherine J Stoodley
- Department of Psychology, American University Washington DC, USA ; Center for Behavioral Neuroscience, American University Washington DC, USA
| |
Collapse
|
27
|
Diedrichsen J, Zotow E. Surface-Based Display of Volume-Averaged Cerebellar Imaging Data. PLoS One 2015; 10:e0133402. [PMID: 26230510 PMCID: PMC4521932 DOI: 10.1371/journal.pone.0133402] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/26/2015] [Indexed: 12/03/2022] Open
Abstract
The paper presents a flat representation of the human cerebellum, useful for visualizing functional imaging data after volume-based normalization and averaging across subjects. Instead of reconstructing individual cerebellar surfaces, the method uses a white- and grey-matter surface defined on volume-averaged anatomical data. Functional data can be projected along the lines of corresponding vertices on the two surfaces. The flat representation is optimized to yield a roughly proportional relationship between the surface area of the 2D-representation and the volume of the underlying cerebellar grey matter. The map allows users to visualize the activation state of the complete cerebellar grey matter in one concise view, equally revealing both the anterior-posterior (lobular) and medial-lateral organization. As examples, published data on resting-state networks and task-related activity are presented on the flatmap. The software and maps are freely available and compatible with most major neuroimaging packages.
Collapse
Affiliation(s)
- Jörn Diedrichsen
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Ewa Zotow
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
28
|
Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, Leggio M, Mattingley JB, Molinari M, Moulton EA, Paulin MG, Pavlova MA, Schmahmann JD, Sokolov AA. Consensus paper: the role of the cerebellum in perceptual processes. CEREBELLUM (LONDON, ENGLAND) 2015; 14:197-220. [PMID: 25479821 PMCID: PMC4346664 DOI: 10.1007/s12311-014-0627-7] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.
Collapse
Affiliation(s)
- Oliver Baumann
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang DYJ, Rosenblau G, Keifer C, Pelphrey KA. An integrative neural model of social perception, action observation, and theory of mind. Neurosci Biobehav Rev 2015; 51:263-75. [PMID: 25660957 DOI: 10.1016/j.neubiorev.2015.01.020] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
Abstract
In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder.
Collapse
Affiliation(s)
- Daniel Y-J Yang
- Center for Translational Developmental Neuroscience, Child Study Center, Yale University, New Haven, CT, USA.
| | - Gabriela Rosenblau
- Center for Translational Developmental Neuroscience, Child Study Center, Yale University, New Haven, CT, USA
| | - Cara Keifer
- Center for Translational Developmental Neuroscience, Child Study Center, Yale University, New Haven, CT, USA
| | - Kevin A Pelphrey
- Center for Translational Developmental Neuroscience, Child Study Center, Yale University, New Haven, CT, USA
| |
Collapse
|
30
|
Abstract
The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.
Collapse
Affiliation(s)
- Anila M D'Mello
- Department of Psychology, American University Washington DC, USA ; Center for Behavioral Neuroscience, American University Washington DC, USA
| | - Catherine J Stoodley
- Department of Psychology, American University Washington DC, USA ; Center for Behavioral Neuroscience, American University Washington DC, USA
| |
Collapse
|
31
|
Jack A, Morris JP. Neocerebellar contributions to social perception in adolescents with autism spectrum disorder. Dev Cogn Neurosci 2014; 10:77-92. [PMID: 25170555 PMCID: PMC6987881 DOI: 10.1016/j.dcn.2014.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 07/08/2014] [Accepted: 08/05/2014] [Indexed: 11/03/2022] Open
Abstract
Previous work shows cerebellar Crus I supports imitation via interaction with pSTS. Teens with (ASD) and without (TD) autism completed an imitation task in the scanner. Teens with ASD recruited Crus I less strongly during imitation than TD teens. PPI strength between pSTS and Crus I predicted mentalizing in teens with ASD.
Posterior superior temporal sulcus (pSTS) is specialized for interpreting perceived human actions, and disruptions to its function occur in autism spectrum disorder (ASD). Here we consider the role of Crus I of neocerebellum in supporting pSTS function. Research has associated Crus I activity with imitation and biological motion perception, and neocerebellum is theorized to coordinate activity among cerebral sites more generally. Moreover, cerebellar abnormalities have been associated with ASD. We hypothesized that disordered Crus I–pSTS interactions could predict social deficits in ASD. 15 high functioning adolescents with ASD and 15 same-age comparison youth participated in an fMRI imitation paradigm; ratings of mentalizing ability were collected via parent report. We predicted that stronger Crus I–pSTS interactions would be associated with better mentalizing ability. Consistent with these hypotheses, stronger psychophysiological interactions between Crus I and right pSTS were associated with greater mentalizing ability among adolescents with ASD. Whole-brain analyses also indicated that typically developing youth recruited right inferior frontal gyrus, left pSTS, medial occipital regions, and precuneus more strongly during imitation than did youth with ASD. Overall, these results indicate that variability in neocerebellar interactions with key cortical social brain sites may help explain individual differences in social perceptual outcomes in ASD.
Collapse
Affiliation(s)
- Allison Jack
- Department of Psychology, University of Virginia, Charlottesville, VA, United States.
| | - James P Morris
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|