1
|
Khalaf A, Lopez E, Li J, Horn A, Edlow BL, Blumenfeld H. Shared subcortical arousal systems across sensory modalities during transient modulation of attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613316. [PMID: 39345640 PMCID: PMC11429725 DOI: 10.1101/2024.09.16.613316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Subcortical arousal systems are known to play a key role in controlling sustained changes in attention and conscious awareness. Recent studies indicate that these systems have a major influence on short-term dynamic modulation of visual attention, but their role across sensory modalities is not fully understood. In this study, we investigated shared subcortical arousal systems across sensory modalities during transient changes in attention using block and event-related fMRI paradigms. We analyzed massive publicly available fMRI datasets collected while 1,561 participants performed visual, auditory, tactile, and taste perception tasks. Our analyses revealed a shared circuit of subcortical arousal systems exhibiting early transient increases in activity in midbrain reticular formation and central thalamus across perceptual modalities, as well as less consistent increases in pons, hypothalamus, basal forebrain, and basal ganglia. Identifying these networks is critical for understanding mechanisms of normal attention and consciousness and may help facilitate subcortical targeting for therapeutic neuromodulation.
Collapse
Affiliation(s)
- Aya Khalaf
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Erick Lopez
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Jian Li
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Andreas Horn
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Movement Disorders & Neuromodulation Section, Department of Neurology, Charité – Universitätsmedizin, Berlin, Germany
| | - Brian L. Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
黄 永, 吴 佳, 许 敏, 何 江, 明 东. [Current progress on characteristics of intracranial electrophysiology related to prolonged disorders of consciousness]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:826-832. [PMID: 39218610 PMCID: PMC11366456 DOI: 10.7507/1001-5515.202403023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Prolonged disorders of consciousness (pDOC) are pathological conditions of alterations in consciousness caused by various severe brain injuries, profoundly affecting patients' life ability and leading to a huge burden for both the family and society. Exploring the mechanisms underlying pDOC and accurately assessing the level of consciousness in the patients with pDOC provide the basis of developing therapeutic strategies. Research of non-invasive functional neuroimaging technologies, such as functional magnetic resonance (fMRI) and scalp electroencephalography (EEG), have demonstrated that the generation, maintenance and disorders of consciousness involve functions of multiple cortical and subcortical brain regions, and their networks. Invasive intracranial neuroelectrophysiological technique can directly record the electrical activity of subcortical or cortical neurons with high signal-to-noise ratio and spatial resolution, which has unique advantages and important significance for further revealing the brain function and disease mechanism of pDOC. Here we reviewed the current progress of pDOC research based on two intracranial electrophysiological signals, spikes reflecting single-unit activity and field potential reflecting multi-unit activities, and then discussed the current challenges and gave an outlook on future development, hoping to promote the study of pathophysiological mechanisms related to pDOC and provide guides for the future clinical diagnosis and therapy of pDOC.
Collapse
Affiliation(s)
- 永志 黄
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
| | - 佳柔 吴
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
| | - 敏鹏 许
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
- 天津大学 精密仪器与光电子工程学院(天津 300072)School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - 江弘 何
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
| | - 东 明
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
- 天津大学 精密仪器与光电子工程学院(天津 300072)School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
3
|
Ghulaxe Y, Joshi A, Chavada J, Huse S, Kalbande B, Sarda PP. Understanding Focal Seizures in Adults: A Comprehensive Review. Cureus 2023; 15:e48173. [PMID: 38046728 PMCID: PMC10693312 DOI: 10.7759/cureus.48173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Focal or partial seizures are a common neurological disorder affecting adults. This review aims to provide an in-depth understanding of focal seizures in adults, including their classification, clinical presentation, etiology, diagnosis, and management. This article seeks to enhance awareness and knowledge among medical professionals and the general public by exploring the latest research and clinical insights. Standard electroencephalography (EEG) and recordings in presurgical electrode depth in humans provide a clear definition of patterns similar to focal seizures. Models of animals with partial seizures and epilepsy mimic seizure patterns with comparable characteristics. However, the network factors supporting interictal spikes, as well as the start, development, and end of seizures remain obscure. According to recent research, inhibitory networks are heavily implicated at the beginning of seizures, and extracellular potassium alterations help start and maintain seizure continuation. An increase in network synchronization, which may be caused by both excitatory and inhibitory pathways, is correlated with the cessation of a partial seizure. Recent research on temporal lobe focal seizures in human and animal models leads to the hypothesis that the active blocking of subcortical arousal processes brings on unconsciousness. Brainstem, basal forebrain, and thalamic arousal networks' neuronal firing is diminished during focal limbic seizures, and cortical arousal can be recovered when subcortical arousal circuits are engaged. These results suggest that thalamic neurostimulation may be therapeutic to restore arousal and consciousness during and after seizures. Targeted subcortical stimulation may increase arousal and consciousness when current treatments cannot halt seizures, enhancing safety and psychosocial function for epileptic patients. We embark on an investigation into adult focal seizures in this thorough review that goes beyond a cursory knowledge of their clinical symptoms.
Collapse
Affiliation(s)
- Yash Ghulaxe
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Abhishek Joshi
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jay Chavada
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shreyash Huse
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhakti Kalbande
- Department of Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Prayas P Sarda
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Panchavati S, Daida A, Edmonds B, Miyakoshi M, Oana S, Ahn SS, Arnold C, Salamon N, Sankar R, Fallah A, Speier W, Nariai H. Uncovering Spatiotemporal Dynamics of the Corticothalamic Network during Seizures. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.21.23294382. [PMID: 37662245 PMCID: PMC10473800 DOI: 10.1101/2023.08.21.23294382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Objective Although the clinical efficacy of deep brain stimulation targeting the anterior nucleus (AN) and centromedian nucleus (CM) of the thalamus has been actively investigated for the treatment of medication-resistant epilepsy, few studies have investigated dynamic ictal changes in corticothalamic connectivity in human EEG recording. This study aims to establish the complex spatiotemporal dynamics of the ictal corticothalamic network associated with various seizure foci. Methods We analyzed ten patients (aged 2.7-28.1) with medication-resistant focal epilepsy who underwent stereotactic EEG evaluation with thalamic coverage. We examined both undirected and directed connectivity, incorporating coherence and spectral Granger causality analysis (GCA) between the diverse seizure foci and thalamic nuclei (AN and CM). Results In our analysis of 36 seizures, coherence between seizure onset and thalamic nuclei increased across all frequencies, especially in slower bands (delta, theta, alpha). GCA showed increased information flow from seizure onset to the thalamus across all frequency bands, but outflows from the thalamus were mainly in slower frequencies, particularly delta. In the subgroup analysis based on various seizure foci, the delta coherence showed a more pronounced increase at CM than at AN during frontal lobe seizures. Conversely, in limbic seizures, the delta coherence increase was greater at AN compared to CM. Interpretation It appears that the delta frequency plays a pivotal role in modulating the corticothalamic network during seizures. Our results underscore the significance of comprehending the spatiotemporal dynamics of the corticothalamic network during seizures, and this knowledge could guide personalized neuromodulation treatment strategies.
Collapse
Affiliation(s)
- Saarang Panchavati
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Benjamin Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Makoto Miyakoshi
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shingo Oana
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Samuel S Ahn
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Corey Arnold
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - William Speier
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA
| |
Collapse
|
5
|
Watson GDR, Kopell BH. Editorial: All roads lead to Rome: Harnessing thalamic neuromodulation for difficult-to-treat neurological disorders. Front Hum Neurosci 2023; 17:1155605. [PMID: 36866119 PMCID: PMC9972085 DOI: 10.3389/fnhum.2023.1155605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Affiliation(s)
- Glenn D. R. Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States,SK Life Science, Inc., Paramus, NJ, United States,*Correspondence: Glenn D. R. Watson ✉
| | - Brian H. Kopell
- Center for Neuromodulation, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Vertes RP, Linley SB, Rojas AKP. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front Behav Neurosci 2022; 16:964644. [PMID: 36082310 PMCID: PMC9445584 DOI: 10.3389/fnbeh.2022.964644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
The midline and intralaminar nuclei of the thalamus form a major part of the "limbic thalamus;" that is, thalamic structures anatomically and functionally linked with the limbic forebrain. The midline nuclei consist of the paraventricular (PV) and paratenial nuclei, dorsally and the rhomboid and nucleus reuniens (RE), ventrally. The rostral intralaminar nuclei (ILt) consist of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei. We presently concentrate on RE, PV, CM and CL nuclei of the thalamus. The nucleus reuniens receives a diverse array of input from limbic-related sites, and predominantly projects to the hippocampus and to "limbic" cortices. The RE participates in various cognitive functions including spatial working memory, executive functions (attention, behavioral flexibility) and affect/fear behavior. The PV receives significant limbic-related afferents, particularly the hypothalamus, and mainly distributes to "affective" structures of the forebrain including the bed nucleus of stria terminalis, nucleus accumbens and the amygdala. Accordingly, PV serves a critical role in "motivated behaviors" such as arousal, feeding/consummatory behavior and drug addiction. The rostral ILt receives both limbic and sensorimotor-related input and distributes widely over limbic and motor regions of the frontal cortex-and throughout the dorsal striatum. The intralaminar thalamus is critical for maintaining consciousness and directly participates in various sensorimotor functions (visuospatial or reaction time tasks) and cognitive tasks involving striatal-cortical interactions. As discussed herein, while each of the midline and intralaminar nuclei are anatomically and functionally distinct, they collectively serve a vital role in several affective, cognitive and executive behaviors - as major components of a brainstem-diencephalic-thalamocortical circuitry.
Collapse
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States
| | - Amanda K. P. Rojas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
7
|
Abstract
Impaired consciousness during seizures severely affects quality of life for people with
epilepsy but the mechanisms are just beginning to be understood. Consciousness is thought
to involve large-scale brain networks, so it is puzzling that focal seizures often impair
consciousness. Recent work investigating focal temporal lobe or limbic seizures in human
patients and experimental animal models suggests that impaired consciousness is caused by
active inhibition of subcortical arousal mechanisms. Focal limbic seizures exhibit
decreased neuronal firing in brainstem, basal forebrain, and thalamic arousal networks,
and cortical arousal can be restored when subcortical arousal circuits are stimulated
during seizures. These findings open the possibility of restoring arousal and
consciousness therapeutically during and following seizures by thalamic neurostimulation.
When seizures cannot be stopped by existing treatments, targeted subcortical stimulation
may improve arousal and consciousness, leading to improved safety and better psychosocial
function for people with epilepsy.
Collapse
Affiliation(s)
- Hal Blumenfeld
- Departments of Neurology, Neuroscience, Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Distinct Fastigial Output Channels and Their Impact on Temporal Lobe Seizures. J Neurosci 2021; 41:10091-10107. [PMID: 34716233 DOI: 10.1523/jneurosci.0683-21.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023] Open
Abstract
Despite being canonically considered a motor control structure, the cerebellum is increasingly recognized for important roles in processes beyond this traditional framework, including seizure suppression. Excitatory fastigial neurons project to a large number of downstream targets, and it is unclear whether this broad targeting underlies seizure suppression, or whether a specific output may be sufficient. To address this question, we used the intrahippocampal kainic acid mouse model of temporal lobe epilepsy, male and female animals, and a dual-virus approach to selectively label and manipulate fastigial outputs. We examined fastigial neurons projecting to the superior colliculus, medullary reticular formation, and central lateral nucleus of the thalamus, and found that these comprise largely nonoverlapping populations of neurons that send collaterals to unique sets of additional, somewhat overlapping, thalamic and brainstem regions. We found that neither optogenetic stimulation of superior colliculus nor reticular formation output channels attenuated hippocampal seizures. In contrast, on-demand stimulation of fastigial neurons targeting the central lateral nucleus robustly inhibited seizures. Our results indicate that fastigial control of hippocampal seizures does not require simultaneous modulation of many fastigial output channels. Rather, selective modulation of the fastigial output channel to the central lateral thalamus, specifically, is sufficient for seizure control. More broadly, our data highlight the concept of specific cerebellar output channels, whereby discrete cerebellar nucleus neurons project to specific aggregates of downstream targets, with important consequences for therapeutic interventions.SIGNIFICANCE STATEMENT The cerebellum has an emerging relationship with nonmotor systems and may represent a powerful target for therapeutic intervention in temporal lobe epilepsy. We find, as previously reported, that fastigial neurons project to numerous brain regions via largely segregated output channels, and that projection targets cannot be predicted simply by somatic locations within the nucleus. We further find that on-demand optogenetic excitation of fastigial neurons projecting to the central lateral nucleus of the thalamus-but not fastigial neurons projecting to the reticular formation, superior colliculus, or ventral lateral thalamus-is sufficient to attenuate hippocampal seizures.
Collapse
|
9
|
Janson AP, Baker JL, Sani I, Purpura KP, Schiff ND, Butson CR. Selective activation of central thalamic fiber pathway facilitates behavioral performance in healthy non-human primates. Sci Rep 2021; 11:23054. [PMID: 34845232 PMCID: PMC8630225 DOI: 10.1038/s41598-021-02270-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023] Open
Abstract
Central thalamic deep brain stimulation (CT-DBS) is an investigational therapy to treat enduring cognitive dysfunctions in structurally brain injured (SBI) patients. However, the mechanisms of CT-DBS that promote restoration of cognitive functions are unknown, and the heterogeneous etiology and recovery profiles of SBI patients contribute to variable outcomes when using conventional DBS strategies,which may result in off-target effects due to activation of multiple pathways. To disambiguate the effects of stimulation of two adjacent thalamic pathways, we modeled and experimentally compared conventional and novel 'field-shaping' methods of CT-DBS within the central thalamus of healthy non-human primates (NHP) as they performed visuomotor tasks. We show that selective activation of the medial dorsal thalamic tegmental tract (DTTm), but not of the adjacent centromedian-parafascicularis (CM-Pf) pathway, results in robust behavioral facilitation. Our predictive modeling approach in healthy NHPs directly informs ongoing and future clinical investigations of conventional and novel methods of CT-DBS for treating cognitive dysfunctions in SBI patients, for whom no therapy currently exists.
Collapse
Affiliation(s)
- A. P. Janson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT USA
- Scientific Computing and Imaging Institute, Salt Lake City, UT USA
- Departments of Neurology and Neurosurgery, Vanderbilt University Medical Center, Nashville, TN USA
| | - J. L. Baker
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
| | - I. Sani
- The Rockefeller University, New York, NY USA
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - K. P. Purpura
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
| | - N. D. Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
| | - C. R. Butson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT USA
- Scientific Computing and Imaging Institute, Salt Lake City, UT USA
- Departments of Neurology, Neurosurgery, and Psychiatry, Salt Lake City, UT USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL USA
| |
Collapse
|
10
|
Gummadavelli A, Martin R, Goshay D, Sieu LA, Xu J, Gruenbaum BF, McCafferty C, Gerrard JL, Blumenfeld H. Cortical low-frequency power correlates with behavioral impairment in animal model of focal limbic seizures. Epilepsia 2021; 62:1960-1970. [PMID: 34240747 PMCID: PMC8349876 DOI: 10.1111/epi.16964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Impairment in consciousness is a debilitating symptom during and after seizures; however, its mechanism remains unclear. Limbic seizures have been shown to spread to arousal circuitry to result in a "network inhibition" phenomenon. However, prior animal model studies did not relate physiological network changes to behavioral responses during or following seizures. METHODS Focal onset limbic seizures were induced while rats were performing an operant conditioned behavioral task requiring response to an auditory stimulus to quantify how and when impairment of behavioral response occurs. Correct responses were rewarded with sucrose. Cortical and hippocampal electrophysiology measured by local field potential recordings was analyzed for changes in low- and high-frequency power in relation to behavioral responsiveness during seizures. RESULTS As seen in patients with seizures, ictal (p < .0001) and postictal (p = .0015) responsiveness was variably impaired. Analysis of cortical and hippocampal electrophysiology revealed that ictal (p = .002) and postictal (p = .009) frontal cortical low-frequency 3-6-Hz power was associated with poor behavioral performance. In contrast, the hippocampus showed increased power over a wide frequency range during seizures, and suppression postictally, neither of which were related to behavioral impairment. SIGNIFICANCE These findings support prior human studies of temporal lobe epilepsy as well as anesthetized animal models suggesting that focal limbic seizures depress consciousness through remote network effects on the cortex, rather than through local hippocampal involvement. By identifying the cortical physiological changes associated with impaired arousal and responsiveness in focal seizures, these results may help guide future therapies to restore ictal and postictal consciousness, improving quality of life for people with epilepsy.
Collapse
Affiliation(s)
- Abhijeet Gummadavelli
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Reese Martin
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Derek Goshay
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Lim-Anna Sieu
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Jingwen Xu
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Benjamin F. Gruenbaum
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Cian McCafferty
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Jason L. Gerrard
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
11
|
Luppi AI, Cain J, Spindler LRB, Górska UJ, Toker D, Hudson AE, Brown EN, Diringer MN, Stevens RD, Massimini M, Monti MM, Stamatakis EA, Boly M. Mechanisms Underlying Disorders of Consciousness: Bridging Gaps to Move Toward an Integrated Translational Science. Neurocrit Care 2021; 35:37-54. [PMID: 34236622 PMCID: PMC8266690 DOI: 10.1007/s12028-021-01281-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
AIM In order to successfully detect, classify, prognosticate, and develop targeted therapies for patients with disorders of consciousness (DOC), it is crucial to improve our mechanistic understanding of how severe brain injuries result in these disorders. METHODS To address this need, the Curing Coma Campaign convened a Mechanisms Sub-Group of the Coma Science Work Group (CSWG), aiming to identify the most pressing knowledge gaps and the most promising approaches to bridge them. RESULTS We identified a key conceptual gap in the need to differentiate the neural mechanisms of consciousness per se, from those underpinning connectedness to the environment and behavioral responsiveness. Further, we characterised three fundamental gaps in DOC research: (1) a lack of mechanistic integration between structural brain damage and abnormal brain function in DOC; (2) a lack of translational bridges between micro- and macro-scale neural phenomena; and (3) an incomplete exploration of possible synergies between data-driven and theory-driven approaches. CONCLUSION In this white paper, we discuss research priorities that would enable us to begin to close these knowledge gaps. We propose that a fundamental step towards this goal will be to combine translational, multi-scale, and multimodal data, with new biomarkers, theory-driven approaches, and computational models, to produce an integrated account of neural mechanisms in DOC. Importantly, we envision that reciprocal interaction between domains will establish a "virtuous cycle," leading towards a critical vantage point of integrated knowledge that will enable the advancement of the scientific understanding of DOC and consequently, an improvement of clinical practice.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Joshua Cain
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Lennart R B Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Urszula J Górska
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Daniel Toker
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew E Hudson
- Department of Anesthesia and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael N Diringer
- Department of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology and Neurosurgery, and Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università Degli Studi Di Milano, Milan, Italy
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Martin M Monti
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Melanie Boly
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Wills KE, González HFJ, Johnson GW, Haas KF, Morgan VL, Narasimhan S, Englot DJ. People with mesial temporal lobe epilepsy have altered thalamo-occipital brain networks. Epilepsy Behav 2021; 115:107645. [PMID: 33334720 PMCID: PMC7882020 DOI: 10.1016/j.yebeh.2020.107645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
While temporal lobe epilepsy (TLE) is a focal epilepsy, previous work demonstrates that TLE causes widespread brain-network disruptions. Impaired visuospatial attention and learning in TLE may be related to thalamic arousal nuclei connectivity. Our prior preliminary work in a smaller patient cohort suggests that patients with TLE demonstrate abnormal functional connectivity between central lateral (CL) thalamic nucleus and medial occipital lobe. Others have shown pulvinar connectivity disturbances in TLE, but it is incompletely understood how TLE affects pulvinar subnuclei. Also, the effects of epilepsy surgery on thalamic functional connectivity remains poorly understood. In this study, we examine the effects of TLE on functional connectivity of two key thalamic arousal-nuclei: lateral pulvinar (PuL) and CL. We evaluate resting-state functional connectivity of the PuL and CL in 40 patients with TLE and 40 controls using fMRI. In 25 patients, postoperative images (>1 year) were also compared with preoperative images. Compared to controls, patients with TLE exhibit loss of normal positive connectivity between PuL and lateral occipital lobe (p < 0.05), and a loss of normal negative connectivity between CL and medial occipital lobe (p < 0.01, paired t-tests). FMRI amplitude of low-frequency fluctuation (ALFF) in TLE trended higher in ipsilateral PuL (p = 0.06), but was lower in the lateral occipital (p < 0.01) and medial occipital lobe in patients versus controls (p < 0.05, paired t-tests). More abnormal ALFF in the ipsilateral lateral occipital lobe is associated with worse preoperative performance on Rey Complex Figure Test Immediate (p < 0.05, r = 0.381) and Delayed scores (p < 0.05, r = 0.413, Pearson's Correlations). After surgery, connectivity between PuL and lateral occipital lobe remains abnormal in patients (p < 0.01), but connectivity between CL and medial occipital lobe improves and is no longer different from control values (p > 0.05, ANOVA, post hoc Fischer's LSD). In conclusion, thalamic arousal nuclei exhibit abnormal connectivity with occipital lobe in TLE, and some connections may improve after surgery. Studying thalamic arousal centers may help explain distal network disturbances in TLE.
Collapse
Affiliation(s)
- Kristin E Wills
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Hernán F J González
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA
| | - Graham W Johnson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA
| | - Kevin F Haas
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Victoria L Morgan
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA; Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saramati Narasimhan
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dario J Englot
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
13
|
Gruenbaum BF. Comparison of anaesthetic- and seizure-induced states of unconsciousness: a narrative review. Br J Anaesth 2021; 126:219-229. [PMID: 32951841 PMCID: PMC7844374 DOI: 10.1016/j.bja.2020.07.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022] Open
Abstract
In order to understand general anaesthesia and certain seizures, a fundamental understanding of the neurobiology of unconsciousness is needed. This review article explores similarities in neuronal and network changes during general anaesthesia and seizure-induced unconsciousness. Both seizures and anaesthetics cause disruption in similar anatomical structures that presumably lead to impaired consciousness. Despite differences in behaviour and mechanisms, both of these conditions are associated with disruption of the functionality of subcortical structures that mediate neuronal activity in the frontoparietal cortex. These areas are all likely to be involved in maintaining normal consciousness. An assessment of the similarities in the brain network disruptions with certain seizures and general anaesthesia might provide fresh insights into the mechanisms of the alterations of consciousness seen in these particular unconscious states, allowing for innovative therapies for seizures and the development of anaesthetic approaches targeting specific networks.
Collapse
|
14
|
Buchanan GF. Thalamic Stimulation to Stay Stimulated After a Seizure. Epilepsy Curr 2020; 21:57-59. [PMID: 34029362 PMCID: PMC7863301 DOI: 10.1177/1535759720976129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Thalamic Stimulation Improves Postictal Cortical Arousal and Behavior Xu, J, Galardi MM, Pok B, et al. J Neurosci. 2020;40(38):7343-7354. doi:10.1523/JNEUROSCI.1370-20.2020.Epub 2020 Aug 21. PMID: 32826310 The postictal state following seizures is characterized by impaired consciousness and has a major negative impact on individuals with epilepsy. Previous work in disorders of consciousness including the postictal state suggests that bilateral deep brain stimulation (DBS) of the thalamic intralaminar central lateral nucleus (CL) may improve level of arousal. We tested the effects of postictal thalamic CL DBS in a rat model of secondarily generalized seizures elicited by electrical hippocampal stimulation. Thalamic CL DBS was delivered at 100 Hz during the postictal period in 21 female rats while measuring cortical electrophysiology and behavior. The postictal period was characterized by frontal cortical slow waves, like other states of depressed consciousness. In addition, rats exhibited severely impaired responses on two different behavioral tasks in the postictal state. Thalamic CL stimulation prevented postictal cortical slow wave activity but produced only modest behavioral improvement on a spontaneous licking sucrose reward task. We therefore also tested responses using a lever-press shock escape/avoidance (E/A) task. Rats achieved high success rates responding to the sound warning on the E/A task even during natural slow wave sleep but were severely impaired in the postictal state. Unlike the spontaneous licking task, thalamic CL DBS during the E/A task produced a marked improvement in behavior, with significant increases in lever-press shock avoidance with DBS compared with sham controls. These findings support the idea that DBS of subcortical arousal structures may be a novel therapeutic strategy benefitting patients with medically and surgically refractory epilepsy.
Collapse
|
15
|
Thalamic Stimulation Improves Postictal Cortical Arousal and Behavior. J Neurosci 2020; 40:7343-7354. [PMID: 32826310 DOI: 10.1523/jneurosci.1370-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023] Open
Abstract
The postictal state following seizures is characterized by impaired consciousness and has a major negative impact on individuals with epilepsy. Previous work in disorders of consciousness including the postictal state suggests that bilateral deep brain stimulation (DBS) of the thalamic intralaminar central lateral nucleus (CL) may improve level of arousal. We tested the effects of postictal thalamic CL DBS in a rat model of secondarily generalized seizures elicited by electrical hippocampal stimulation. Thalamic CL DBS was delivered at 100 Hz during the postictal period in 21 female rats while measuring cortical electrophysiology and behavior. The postictal period was characterized by frontal cortical slow waves, like other states of depressed consciousness. In addition, rats exhibited severely impaired responses on two different behavioral tasks in the postictal state. Thalamic CL stimulation prevented postictal cortical slow wave activity but produced only modest behavioral improvement on a spontaneous licking sucrose reward task. We therefore also tested responses using a lever-press shock escape/avoidance (E/A) task. Rats achieved high success rates responding to the sound warning on the E/A task even during natural slow wave sleep but were severely impaired in the postictal state. Unlike the spontaneous licking task, thalamic CL DBS during the E/A task produced a marked improvement in behavior, with significant increases in lever-press shock avoidance with DBS compared with sham controls. These findings support the idea that DBS of subcortical arousal structures may be a novel therapeutic strategy benefitting patients with medically and surgically refractory epilepsy.SIGNIFICANCE STATEMENT The postictal state following seizures is characterized by impaired consciousness and has a major negative impact on individuals with epilepsy. For the first time, we developed two behavioral tasks and demonstrate that bilateral deep brain stimulation (DBS) of the thalamic intralaminar central lateral nucleus (CL) decreased cortical slow wave activity and improved task performance in the postictal period. Because preclinical task performance studies are crucial to explore the effectiveness and safety of DBS treatment, our work is clinically relevant as it could support and help set the foundations for a human neurostimulation trial to improve postictal responsiveness in patients with medically and surgically refractory epilepsy.
Collapse
|
16
|
Tseng HT, Hsiao YT, Yi PL, Chang FC. Deep Brain Stimulation Increases Seizure Threshold by Altering REM Sleep and Delta Powers During NREM Sleep. Front Neurol 2020; 11:752. [PMID: 32903424 PMCID: PMC7434934 DOI: 10.3389/fneur.2020.00752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/18/2020] [Indexed: 12/02/2022] Open
Abstract
We previously demonstrated that seizure occurrences at different zeitgeber times alter sleep and circadian rhythm differently. On the other hand, the synchronized delta wave of electroencephalogram (EEG) during non-rapid eye movement (NREM) sleep facilitates seizure, while the desynchronized EEG of rapid eye movement (REM) sleep suppresses it. We also elucidated that unilateral deep brain stimulation (DBS) of the anterior nucleus of thalamus (ANT) suppresses seizure recurrence. In the present study, we intraperitoneally injected pentylenetetrazol (PTZ, 40 mg/kg) for 14 consecutive days (PTZ kindling) to induce spontaneous seizure in rats, and a 30-min (delivered 10 min before each PTZ injection) or a 3-h DBS of unilateral ANT (delivered 1 h before each PTZ injection) was applied to suppress seizure. The frequency of DBS stimulation was 200 Hz and the electrical current consisted of biphasic square pulses with 50-μA intensity, 100-μs pulse width, and 4.1-ms stimulation interval. Our results found that PTZ-induced spontaneous seizure did not cause a significant change in the quantity of NREM sleep but suppressed the amount of REM sleep. Unilateral ANT DBS prolonged the onset latency of ictal seizure, decreased the spontaneous seizure duration, and increased the survival rate but did not change the amplitude of epileptiform EEGs during ictal period. Unilateral ANT DBS did not significantly alter NREM sleep but increased the amount of REM sleep. An analysis of the spectrograms of fast Fourier transform indicated that the intensities of all frequencies were enhanced during the PTZ-induced ictal period and the subsequent spontaneous seizure. Thirty minutes of unilateral ANT DBS suppressed the augmentation of low-frequency (<10 Hz) intensities during the spontaneous seizure induced by PTZ kindling. We further found that consecutive injections of PTZ progressively increased the enhancement of the delta powers during NREM sleep, whereas unilateral ANT DBS inhibited this progressive enhancement. It was also noticed that 30 min of ANT DBS exhibited a better efficacy in epilepsy suppression than 3 h of ANT DBS. These results elucidated that unilateral ANT DBS enhanced the seizure threshold by increasing the amount of REM sleep and decreasing the progressive enhancement of delta power during NREM sleep to suppress spontaneous seizure recurrences in PTZ kindling-induced epileptic rats.
Collapse
Affiliation(s)
- Hsin-Tzu Tseng
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Tse Hsiao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lu Yi
- Department of Sport Management, College of Tourism, Leisure and Sports, Aletheia University, Taipei, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung City, Taiwan
- Department of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| |
Collapse
|
17
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
18
|
González HFJ, Goodale SE, Jacobs ML, Haas KF, Landman BA, Morgan VL, Englot DJ. Brainstem Functional Connectivity Disturbances in Epilepsy may Recover After Successful Surgery. Neurosurgery 2020; 86:417-428. [PMID: 31093673 PMCID: PMC7308661 DOI: 10.1093/neuros/nyz128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/20/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Focal seizures in temporal lobe epilepsy (TLE) are associated with widespread brain network perturbations and neurocognitive problems. OBJECTIVE To determine whether brainstem connectivity disturbances improve with successful epilepsy surgery, as recent work has demonstrated decreased brainstem connectivity in TLE that is related to disease severity and neurocognitive profile. METHODS We evaluated 15 adult TLE patients before and after (>1 yr; mean, 3.4 yr) surgery, and 15 matched control subjects using magnetic resonance imaging to measure functional and structural connectivity of ascending reticular activating system (ARAS) structures, including cuneiform/subcuneiform nuclei (CSC), pedunculopontine nucleus (PPN), and ventral tegmental area (VTA). RESULTS TLE patients who achieved long-term postoperative seizure freedom (10 of 15) demonstrated increases in functional connectivity between ARAS structures and fronto-parietal-insular neocortex compared to preoperative baseline (P = .01, Kruskal-Wallis), with postoperative connectivity patterns resembling controls' connectivity. No functional connectivity changes were detected in 5 patients with persistent seizures after surgery (P = .9, Kruskal-Wallis). Among seizure-free postoperative patients, larger increases in CSC, PPN, and VTA functional connectivity were observed in individuals with more frequent seizures before surgery (P < .05 for each, Spearman's rho). Larger postoperative increases in PPN functional connectivity were seen in patients with lower baseline verbal IQ (P = .03, Spearman's rho) or verbal memory (P = .04, Mann-Whitney U). No changes in ARAS structural connectivity were detected after successful surgery. CONCLUSION ARAS functional connectivity disturbances are present in TLE but may recover after successful epilepsy surgery. Larger increases in postoperative connectivity may be seen in individuals with more severe disease at baseline.
Collapse
Affiliation(s)
- Hernán F J González
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical center, Nashville, Tennessee
| | - Sarah E Goodale
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Monica L Jacobs
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kevin F Haas
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical center, Nashville, Tennessee
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
19
|
Englot DJ, Morgan VL, Chang C. Impaired vigilance networks in temporal lobe epilepsy: Mechanisms and clinical implications. Epilepsia 2020; 61:189-202. [PMID: 31901182 DOI: 10.1111/epi.16423] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
Mesial temporal lobe epilepsy (mTLE) is a neurological disorder in which patients suffer from frequent consciousness-impairing seizures, broad neurocognitive deficits, and diminished quality of life. Although seizures in mTLE originate focally in the hippocampus or amygdala, mTLE patients demonstrate cognitive deficits that extend beyond temporal lobe function-such as decline in executive function, cognitive processing speed, and attention-as well as diffuse decreases in neocortical metabolism and functional connectivity. Given prior observations that mTLE patients exhibit impairments in vigilance, and that seizures may disrupt the activity and long-range connectivity of subcortical brain structures involved in vigilance regulation, we propose that subcortical activating networks underlying vigilance play a critical role in mediating the widespread neural and cognitive effects of focal mTLE. Here, we review evidence for impaired vigilance in mTLE, examine clinical implications and potential network underpinnings, and suggest neuroimaging strategies for determining the relationship between vigilance, brain connectivity, and neurocognition in patients and healthy controls.
Collapse
Affiliation(s)
- Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Victoria L Morgan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Catie Chang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
20
|
Yue Z, Freedman IG, Vincent P, Andrews JP, Micek C, Aksen M, Martin R, Zuckerman D, Perrenoud Q, Neske GT, Sieu LA, Bo X, Cardin JA, Blumenfeld H. Up and Down States of Cortical Neurons in Focal Limbic Seizures. Cereb Cortex 2019; 30:3074-3086. [PMID: 31800015 DOI: 10.1093/cercor/bhz295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
Recent work suggests an important role for cortical-subcortical networks in seizure-related loss of consciousness. Temporal lobe seizures disrupt subcortical arousal systems, which may lead to depressed cortical function and loss of consciousness. Extracellular recordings show ictal neocortical slow waves at about 1 Hz, but it is not known whether these simply represent seizure propagation or alternatively deep sleep-like activity, which should include cortical neuronal Up and Down states. In this study, using in vivo whole-cell recordings in a rat model of focal limbic seizures, we directly examine the electrophysiological properties of cortical neurons during seizures and deep anesthesia. We found that during seizures, the membrane potential of frontal cortical secondary motor cortex layer 5 neurons fluctuates between Up and Down states, with decreased input resistance and increased firing rate in Up states when compared to Down states. Importantly, Up and Down states in seizures are not significantly different from those in deep anesthesia, in terms of membrane potential, oscillation frequency, firing rate, and input resistance. By demonstrating these fundamental similarities in cortical electrophysiology between deep anesthesia and seizures, our results support the idea that a state of decreased cortical arousal may contribute to mechanisms of loss of consciousness during seizures.
Collapse
Affiliation(s)
- Zongwei Yue
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Isaac G Freedman
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Peter Vincent
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - John P Andrews
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Christopher Micek
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mark Aksen
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Reese Martin
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - David Zuckerman
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Quentin Perrenoud
- Department of Neuroscience Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Garrett T Neske
- Department of Neuroscience Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Lim-Anna Sieu
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Xiao Bo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jessica A Cardin
- Department of Neuroscience Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Hal Blumenfeld
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Neuroscience Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Kundu B, Brock AA, Englot DJ, Butson CR, Rolston JD. Deep brain stimulation for the treatment of disorders of consciousness and cognition in traumatic brain injury patients: a review. Neurosurg Focus 2019; 45:E14. [PMID: 30064315 DOI: 10.3171/2018.5.focus18168] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a looming epidemic, growing most rapidly in the elderly population. Some of the most devastating sequelae of TBI are related to depressed levels of consciousness (e.g., coma, minimally conscious state) or deficits in executive function. To date, pharmacological and rehabilitative therapies to treat these sequelae are limited. Deep brain stimulation (DBS) has been used to treat a number of pathologies, including Parkinson disease, essential tremor, and epilepsy. Animal and clinical research shows that targets addressing depressed levels of consciousness include components of the ascending reticular activating system and areas of the thalamus. Targets for improving executive function are more varied and include areas that modulate attention and memory, such as the frontal and prefrontal cortex, fornix, nucleus accumbens, internal capsule, thalamus, and some brainstem nuclei. The authors review the literature addressing the use of DBS to treat higher-order cognitive dysfunction and disorders of consciousness in TBI patients, while also offering suggestions on directions for future research.
Collapse
Affiliation(s)
| | | | - Dario J Englot
- 2Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | |
Collapse
|
22
|
González HFJ, Chakravorti S, Goodale SE, Gupta K, Claassen DO, Dawant B, Morgan VL, Englot DJ. Thalamic arousal network disturbances in temporal lobe epilepsy and improvement after surgery. J Neurol Neurosurg Psychiatry 2019; 90:1109-1116. [PMID: 31123139 PMCID: PMC6744309 DOI: 10.1136/jnnp-2019-320748] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The effects of temporal lobe epilepsy (TLE) on subcortical arousal structures remain incompletely understood. Here, we evaluate thalamic arousal network functional connectivity in TLE and examine changes after epilepsy surgery. METHODS We examined 26 adult patients with TLE and 26 matched control participants and used resting-state functional MRI (fMRI) to measure functional connectivity between the thalamus (entire thalamus and 19 bilateral thalamic nuclei) and both neocortex and brainstem ascending reticular activating system (ARAS) nuclei. Postoperative imaging was completed for 19 patients >1 year after surgery and compared with preoperative baseline. RESULTS Before surgery, patients with TLE demonstrated abnormal thalamo-occipital functional connectivity, losing the normal negative fMRI correlation between the intralaminar central lateral (CL) nucleus and medial occipital lobe seen in controls (p < 0.001, paired t-test). Patients also had abnormal connectivity between ARAS and CL, lower ipsilateral intrathalamic connectivity, and smaller ipsilateral thalamic volume compared with controls (p < 0.05 for each, paired t-tests). Abnormal brainstem-thalamic connectivity was associated with impaired visuospatial attention (ρ = -0.50, p = 0.02, Spearman's rho) while lower intrathalamic connectivity and volume were related to higher frequency of consciousness-sparing seizures (p < 0.02, Spearman's rho). After epilepsy surgery, patients with improved seizures showed partial recovery of thalamo-occipital and brainstem-thalamic connectivity, with values more closely resembling controls (p < 0.01 for each, analysis of variance). CONCLUSIONS Overall, patients with TLE demonstrate impaired connectivity in thalamic arousal networks that may be involved in visuospatial attention, but these disturbances may partially recover after successful epilepsy surgery. Thalamic arousal network dysfunction may contribute to morbidity in TLE.
Collapse
Affiliation(s)
- Hernán F J González
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA .,Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Srijata Chakravorti
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Sarah E Goodale
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kanupriya Gupta
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Benoit Dawant
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Wykes RC, Khoo HM, Caciagli L, Blumenfeld H, Golshani P, Kapur J, Stern JM, Bernasconi A, Dedeurwaerdere S, Bernasconi N. WONOEP appraisal: Network concept from an imaging perspective. Epilepsia 2019; 60:1293-1305. [PMID: 31179547 DOI: 10.1111/epi.16067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 02/01/2023]
Abstract
Neuroimaging techniques applied to a variety of organisms-from zebrafish, to rodents to humans-can offer valuable insights into neuronal network properties and their dysfunction in epilepsy. A wide range of imaging methods used to monitor neuronal circuits and networks during evoked seizures in animal models and advances in functional magnetic resonance imaging (fMRI) applied to patients with epilepsy were discussed during the XIV Workshop on Neurobiology of Epilepsy (XIV WONOEP) organized in 2017 by the Neurobiology Commission of the International League Against Epilepsy (ILAE). We review the growing number of technological approaches developed, as well as the current state of knowledge gained from studies applying these advanced imaging approaches to epilepsy research.
Collapse
Affiliation(s)
- Robert C Wykes
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hui Ming Khoo
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Neuroimaging of Epilepsy Laboratory, Department of Neurosciences and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hal Blumenfeld
- Department of Neurology, Neuroscience and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Peyman Golshani
- Department of Neurology, Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jaideep Kapur
- School of Medicine, University of Virginia, Charlottesville, Virginia
| | - John M Stern
- Department of Neurology, Geffen School of Medicine, UCLA, Los Angeles, California
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Department of Neurosciences and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Department of Neurosciences and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Andrews JP, Yue Z, Ryu JH, Neske G, McCormick DA, Blumenfeld H. Mechanisms of decreased cholinergic arousal in focal seizures: In vivo whole-cell recordings from the pedunculopontine tegmental nucleus. Exp Neurol 2018; 314:74-81. [PMID: 30543800 DOI: 10.1016/j.expneurol.2018.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/04/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
Focal limbic seizures often impair consciousness/awareness with major negative impact on quality of life. Recent work has shown that limbic seizures depress brainstem arousal systems, including reduced action potential firing in a key node: cholinergic neurons of the pedunculopontine tegmental nucleus (PPT). In vivo whole-cell recordings have not previously been achieved in PPT, but are used here with the goal of elucidating the mechanisms of reduced PPT cholinergic neuronal activity. An established model of focal limbic seizures was used in rats following brief hippocampal stimulation under light anesthesia. Whole-cell in vivo recordings were obtained from PPT neurons using custom-fabricated 9-10 mm tapered patch pipettes, and cholinergic neurons were identified histologically. Average membrane potential, input resistance, membrane potential fluctuations and variance were analyzed during seizures. A subset of PPT neurons exhibited reduced firing and hyperpolarization during seizures and stained positive for choline acetyltransferase. These PPT neurons showed a mean membrane potential hyperpolarization of -3.82 mV (±0.81 SEM, P < .05) during seizures, and also showed significantly increased input resistance, fewer excitatory post-synaptic potential (EPSP)-like events (P < .05), and reduced membrane potential variance (P < .01). The combination of increased input resistance, decreased EPSP-like events and decreased variance weigh against active ictal inhibition and support withdrawal of excitatory input as the dominant mechanism of decreased activity of cholinergic neurons in the PPT. Further identifying synaptic mechanisms of depressed arousal during seizures may lead to new treatments to improve ictal and postictal cognition.
Collapse
Affiliation(s)
- John P Andrews
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Zongwei Yue
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jun Hwan Ryu
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Garrett Neske
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - David A McCormick
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Mueller SG, Nei M, Bateman LM, Knowlton R, Laxer KD, Friedman D, Devinsky O, Goldman AM. Brainstem network disruption: A pathway to sudden unexplained death in epilepsy? Hum Brain Mapp 2018; 39:4820-4830. [PMID: 30096213 DOI: 10.1002/hbm.24325] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022] Open
Abstract
Observations in witnessed Sudden Unexpected Death in Epilepsy (SUDEP) suggest that a fatal breakdown of the central autonomic control could play a major role in SUDEP. A previous MR study found volume losses in the mesencephalon in focal epilepsy that were more severe and extended into the lower brainstem in two patients who later died of SUDEP. The aims of this study were to demonstrate an association (1) between brainstem volume loss and impaired autonomic control (reduced heart rate variability [HRV]); (2) between brainstem damage and time to SUDEP in patients who later died of SUDEP. Two populations were studied: (1) Autonomic system function population (ASF, 18 patients with focal epilepsy, 11 controls) with HRV measurements and standardized 3 T MR exams. (2) SUDEP population (26 SUDEP epilepsy patients) with clinical MRI 1-10 years before SUDEP. Deformation-based morphometry of the brainstem was used to generate profile similarity maps from the resulting Jacobian determinant maps that were further characterized by graph analysis to identify regions with excessive expansion indicating significant volume loss or atrophy. The total number of regions with excessive expansion in ASF was negatively correlated with HRV (r = -.37, p = .03), excessive volume loss in periaqueductal gray/medulla oblongata autonomic nuclei explained most of the HRV associated variation (r/r2 = -.82/.67, p < .001). The total number of regions with excessive expansion in SUDEP was negatively correlated with time to SUDEP (r = -.39, p = .03), excessive volume loss in the raphe/medulla oblongata at the obex level explained most of the variation of the time between MRI to SUDEP (r/r2 = -.60/.35,p = .001). Epilepsy is associated with brainstem atrophy that impairs autonomic control and can increase the risk for SUDEP if it expands into the mesencephalon.
Collapse
Affiliation(s)
- Susanne G Mueller
- Department of Radiology, University of California, San Francisco, California
| | - Maromi Nei
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Robert Knowlton
- Department of Neurology, University of California, San Francisco, California
| | - Kenneth D Laxer
- Pacific Epilepsy Program, California Pacific Medical Center, San Francisco, California
| | | | | | | |
Collapse
|
26
|
Gummadavelli A, Zaveri HP, Spencer DD, Gerrard JL. Expanding Brain-Computer Interfaces for Controlling Epilepsy Networks: Novel Thalamic Responsive Neurostimulation in Refractory Epilepsy. Front Neurosci 2018; 12:474. [PMID: 30108472 PMCID: PMC6079216 DOI: 10.3389/fnins.2018.00474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/22/2018] [Indexed: 01/01/2023] Open
Abstract
Seizures have traditionally been considered hypersynchronous excitatory events and epilepsy has been separated into focal and generalized epilepsy based largely on the spatial distribution of brain regions involved at seizure onset. Epilepsy, however, is increasingly recognized as a complex network disorder that may be distributed and dynamic. Responsive neurostimulation (RNS) is a recent technology that utilizes intracranial electroencephalography (EEG) to detect seizures and delivers stimulation to cortical and subcortical brain structures for seizure control. RNS has particular significance in the clinical treatment of medically refractory epilepsy and brain–computer interfaces in epilepsy. Closed loop RNS represents an important step forward to understand and target nodes in the seizure network. The thalamus is a central network node within several functional networks and regulates input to the cortex; clinically, several thalamic nuclei are safe and feasible targets. We highlight the network theory of epilepsy, potential targets for neuromodulation in epilepsy and the first reported use of RNS as a first generation brain–computer interface to detect and stimulate the centromedian intralaminar thalamic nucleus in a patient with bilateral cortical onset of seizures. We propose that advances in network analysis and neuromodulatory techniques using brain–computer interfaces will significantly improve outcomes in patients with epilepsy. There are numerous avenues of future direction in brain–computer interface devices including multi-modal sensors, flexible electrode arrays, multi-site targeting, and wireless communication.
Collapse
Affiliation(s)
- Abhijeet Gummadavelli
- Department of Neurosurgery, Yale University School of Medicine, Yale University, New Haven, CT, United States
| | - Hitten P Zaveri
- Department of Neurology, Yale University School of Medicine, Yale University, New Haven, CT, United States
| | - Dennis D Spencer
- Department of Neurosurgery, Yale University School of Medicine, Yale University, New Haven, CT, United States
| | - Jason L Gerrard
- Department of Neurosurgery, Yale University School of Medicine, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The purpose was to review the most recent literature on neuroimaging in the Kleine-Levin syndrome (KLS). We aimed to investigate if frontotemporal and thalamic dysfunction are key KLS signatures, and if recent research indicates other brain networks of interest that elucidate KLS symptomatology and aetiology. RECENT FINDINGS In a comprehensive literature search, we found 12 original articles published 2013-2018. Most studies report deviations related to cerebral perfusion, glucose metabolism, or blood-oxygen-level-dependent responses in frontotemporal areas and/or the thalamus. Studies also report dysfunction in the temporoparietal junction and the oculomotor network that also were related to clinical parameters. We discuss these findings based on recent research on thalamocortical networks and brain stem white matter tracts. The hypothesis of frontotemporal and thalamic involvement in KLS was confirmed, and additional findings in the temporoparietal junction and the oculomotor system suggest a broader network involvement, which can be investigated by future high-resolution and multimodal imaging.
Collapse
Affiliation(s)
- Maria Engström
- Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- CMIV, Linköpings universitet/US, 581 83, Linköping, Sweden.
| | - Francesco Latini
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anne-Marie Landtblom
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Neuroscience, Section of Neurology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Zhang H, Zhao H, Zeng C, Van Dort C, Faingold CL, Taylor NE, Solt K, Feng HJ. Optogenetic activation of 5-HT neurons in the dorsal raphe suppresses seizure-induced respiratory arrest and produces anticonvulsant effect in the DBA/1 mouse SUDEP model. Neurobiol Dis 2018; 110:47-58. [PMID: 29141182 PMCID: PMC5748009 DOI: 10.1016/j.nbd.2017.11.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/29/2017] [Accepted: 11/11/2017] [Indexed: 01/02/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a devastating epilepsy complication. Seizure-induced respiratory arrest (S-IRA) occurs in many witnessed SUDEP patients and animal models as an initiating event leading to death. Thus, understanding the mechanisms underlying S-IRA will advance the development of preventive strategies against SUDEP. Serotonin (5-HT) is an important modulator for many vital functions, including respiration and arousal, and a deficiency of 5-HT signaling is strongly implicated in S-IRA in animal models, including the DBA/1 mouse. However, the brain structures that contribute to S-IRA remain elusive. We hypothesized that the dorsal raphe (DR), which sends 5-HT projections to the forebrain, is implicated in S-IRA. The present study used optogenetics in the DBA/1 mouse model of SUDEP to selectively activate 5-HT neurons in the DR. Photostimulation of DR 5-HT neurons significantly and reversibly reduced the incidence of S-IRA evoked by acoustic stimulation. Activation of 5-HT neurons in the DR suppressed tonic seizures in most DBA/1 mice without altering the seizure latency and duration of wild running and clonic seizures evoked by acoustic stimulation. This suppressant effect of photostimulation on S-IRA is independent of seizure models, as optogenetic stimulation of DR also reduced S-IRA induced by pentylenetetrazole, a proconvulsant widely used to model human generalized seizures. The S-IRA-suppressing effect of photostimulation was increased by 5-hydroxytryptophan, a chemical precursor for 5-HT synthesis, and was reversed by ondansetron, a specific 5-HT3 receptor antagonist, indicating that reduction of S-IRA by photostimulation of the DR is specifically mediated by enhanced 5-HT neurotransmission. Our findings suggest that deficits in 5-HT neurotransmission in the DR are implicated in S-IRA in DBA/1 mice, and that targeted intervention in the DR is potentially useful for prevention of SUDEP.
Collapse
Affiliation(s)
- Honghai Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesia, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, China
| | - Haiting Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chang Zeng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA; Health Management Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Christa Van Dort
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Carl L Faingold
- Department of Pharmacology and Neurology, Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Norman E Taylor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
29
|
Feng L, Motelow JE, Ma C, Biche W, McCafferty C, Smith N, Liu M, Zhan Q, Jia R, Xiao B, Duque A, Blumenfeld H. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei. J Neurosci 2017; 37:11441-11454. [PMID: 29066556 PMCID: PMC5700426 DOI: 10.1523/jneurosci.1011-17.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 01/12/2023] Open
Abstract
The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function.SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal maintenance, but its precise seizure-associated functions are not known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectively participate in seizure propagation, impaired level of conscious arousal, and altered relay of information to the cortex during focal limbic seizures. These very different activity patterns within the thalamus may help explain why focal temporal lobe seizures often disrupt widespread network function, and can help guide future treatments aimed at restoring normal thalamocortical network activity and cognition.
Collapse
Affiliation(s)
- Li Feng
- Departments of Neurology
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China, and
| | | | | | | | | | | | | | - Qiong Zhan
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China, and
| | | | - Hal Blumenfeld
- Departments of Neurology,
- Neuroscience, and
- Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
30
|
Illuminating Neural Circuits: From Molecules to MRI. J Neurosci 2017; 37:10817-10825. [PMID: 29118210 DOI: 10.1523/jneurosci.2569-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022] Open
Abstract
Neurological disease drives symptoms through pathological changes to circuit functions. Therefore, understanding circuit mechanisms that drive behavioral dysfunction is of critical importance for quantitative diagnosis and systematic treatment of neurological disease. Here, we describe key technologies that enable measurement and manipulation of neural activity and neural circuits. Applying these approaches led to the discovery of circuit mechanisms underlying pathological motor behavior, arousal regulation, and protein accumulation. Finally, we discuss how optogenetic functional magnetic resonance imaging reveals global scale circuit mechanisms, and how circuit manipulations could lead to new treatments of neurological diseases.
Collapse
|
31
|
Englot DJ, D'Haese PF, Konrad PE, Jacobs ML, Gore JC, Abou-Khalil BW, Morgan VL. Functional connectivity disturbances of the ascending reticular activating system in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 2017; 88. [PMID: 28630376 PMCID: PMC5634927 DOI: 10.1136/jnnp-2017-315732] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Seizures in temporal lobe epilepsy (TLE) disturb brain networks and lead to connectivity disturbances. We previously hypothesised that recurrent seizures in TLE may lead to abnormal connections involving subcortical activating structures including the ascending reticular activating system (ARAS), contributing to neocortical dysfunction and neurocognitive impairments. However, no studies of ARAS connectivity have been previously reported in patients with epilepsy. METHODS We used resting-state functional MRI recordings in 27 patients with TLE (67% right sided) and 27 matched controls to examine functional connectivity (partial correlation) between eight brainstem ARAS structures and 105 cortical/subcortical regions. ARAS nuclei included: cuneiform/subcuneiform, dorsal raphe, locus coeruleus, median raphe, parabrachial complex, pontine oralis, pedunculopontine and ventral tegmental area. Connectivity patterns were related to disease and neuropsychological parameters. RESULTS In control subjects, regions showing highest connectivity to ARAS structures included limbic structures, thalamus and certain neocortical areas, which is consistent with prior studies of ARAS projections. Overall, ARAS connectivity was significantly lower in patients with TLE than controls (p<0.05, paired t-test), particularly to neocortical regions including insular, lateral frontal, posterior temporal and opercular cortex. Diminished ARAS connectivity to these regions was related to increased frequency of consciousness-impairing seizures (p<0.01, Pearson's correlation) and was associated with impairments in verbal IQ, attention, executive function, language and visuospatial memory on neuropsychological evaluation (p<0.05, Spearman's rho or Kendell's tau-b). CONCLUSIONS Recurrent seizures in TLE are associated with disturbances in ARAS connectivity, which are part of the widespread network dysfunction that may be related to neurocognitive problems in this devastating disorder.
Collapse
Affiliation(s)
- Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Pierre-Francois D'Haese
- Department of Electrical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter E Konrad
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Monica L Jacobs
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bassel W Abou-Khalil
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Victoria L Morgan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Boly M, Massimini M, Tsuchiya N, Postle BR, Koch C, Tononi G. Are the Neural Correlates of Consciousness in the Front or in the Back of the Cerebral Cortex? Clinical and Neuroimaging Evidence. J Neurosci 2017; 37:9603-9613. [PMID: 28978697 PMCID: PMC5628406 DOI: 10.1523/jneurosci.3218-16.2017] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/14/2023] Open
Abstract
The role of the frontal cortex in consciousness remains a matter of debate. In this Perspective, we will critically review the clinical and neuroimaging evidence for the involvement of the front versus the back of the cortex in specifying conscious contents and discuss promising research avenues.Dual Perspectives Companion Paper: Should a Few Null Findings Falsify Prefrontal Theories of Conscious Perception?, by Brian Odegaard, Robert T. Knight, and Hakwan Lau.
Collapse
Affiliation(s)
- Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, Wisconsin 53705,
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan 20157, Italy
- Instituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, 3800 Victoria, Australia
- Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, 3800 Victoria, Australia
| | - Bradley R Postle
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53705, and
| | - Christof Koch
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719,
| |
Collapse
|
33
|
Mashour GA, Hudetz AG. Bottom-Up and Top-Down Mechanisms of General Anesthetics Modulate Different Dimensions of Consciousness. Front Neural Circuits 2017; 11:44. [PMID: 28676745 PMCID: PMC5476707 DOI: 10.3389/fncir.2017.00044] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022] Open
Abstract
There has been controversy regarding the precise mechanisms of anesthetic-induced unconsciousness, with two salient approaches that have emerged within systems neuroscience. One prominent approach is the “bottom up” paradigm, which argues that anesthetics suppress consciousness by modulating sleep-wake nuclei and neural circuits in the brainstem and diencephalon that have evolved to control arousal states. Another approach is the “top-down” paradigm, which argues that anesthetics suppress consciousness by modulating the cortical and thalamocortical circuits involved in the integration of neural information. In this article, we synthesize these approaches by mapping bottom-up and top-down mechanisms of general anesthetics to two distinct but inter-related dimensions of consciousness: level and content. We show how this explains certain empirical observations regarding the diversity of anesthetic drug effects. We conclude with a more nuanced discussion of how levels and contents of consciousness interact to generate subjective experience and what this implies for the mechanisms of anesthetic-induced unconsciousness.
Collapse
Affiliation(s)
- George A Mashour
- Department of Anesthesiology, University of MichiganAnn Arbor, MI, United States.,Center of Consciousness Science, University of MichiganAnn Arbor, MI, United States.,Neuroscience Graduate Program, University of MichiganAnn Arbor, MI, United States
| | - Anthony G Hudetz
- Department of Anesthesiology, University of MichiganAnn Arbor, MI, United States.,Center of Consciousness Science, University of MichiganAnn Arbor, MI, United States.,Neuroscience Graduate Program, University of MichiganAnn Arbor, MI, United States
| |
Collapse
|
34
|
Wang Y, Wang Y, Chen Z. [The role of central cholinergic system in epilepsy]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2017; 46:15-21. [PMID: 28436626 PMCID: PMC10396840 DOI: 10.3785/j.issn.1008-9292.2017.02.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/30/2017] [Indexed: 06/07/2023]
Abstract
Epilepsy is a chronic neurological disorder, which is not only related to the imbalance between excitatory glutamic neurons and inhibitory GABAergic neurons, but also related to abnormal central cholinergic regulation. This article summarizes the scientific background and experimental data about cholinergic dysfunction in epilepsy from both cellular and network levels, further discusses the exact role of cholinergic system in epilepsy. In the cellular level, several types of epilepsy are believed to be associated with aberrant metabotropic muscarinic receptors in several different brain areas, while the mutations of ionotropic nicotinic receptors have been reported to result in a specific type of epilepsy-autosomal dominant nocturnal frontal lobe epilepsy. In the network level, cholinergic projection neurons as well as their interaction with other neurons may regulate the development of epilepsy, especially the cholinergic circuit from basal forebrain to hippocampus, while cholinergic local interneurons have not been reported to be associated with epilepsy. With the development of optogenetics and other techniques, dissect and regulate cholinergic related epilepsy circuit has become a hotspot of epilepsy research.
Collapse
Affiliation(s)
- Ying Wang
- College of Pharmaceutial Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- College of Pharmaceutial Science, Zhejiang University, Hangzhou 310058, China
| | - Zhong Chen
- College of Pharmaceutial Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Yeoh TY, Manninen P, Kalia SK, Venkatraghavan L. Anesthesia considerations for patients with an implanted deep brain stimulator undergoing surgery: a review and update. Can J Anaesth 2016; 64:308-319. [DOI: 10.1007/s12630-016-0794-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/06/2016] [Accepted: 12/08/2016] [Indexed: 11/25/2022] Open
|
36
|
Casarotto S, Comanducci A, Rosanova M, Sarasso S, Fecchio M, Napolitani M, Pigorini A, G Casali A, Trimarchi PD, Boly M, Gosseries O, Bodart O, Curto F, Landi C, Mariotti M, Devalle G, Laureys S, Tononi G, Massimini M. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann Neurol 2016; 80:718-729. [PMID: 27717082 PMCID: PMC5132045 DOI: 10.1002/ana.24779] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022]
Abstract
Objective Validating objective, brain‐based indices of consciousness in behaviorally unresponsive patients represents a challenge due to the impossibility of obtaining independent evidence through subjective reports. Here we address this problem by first validating a promising metric of consciousness—the Perturbational Complexity Index (PCI)—in a benchmark population who could confirm the presence or absence of consciousness through subjective reports, and then applying the same index to patients with disorders of consciousness (DOCs). Methods The benchmark population encompassed 150 healthy controls and communicative brain‐injured subjects in various states of conscious wakefulness, disconnected consciousness, and unconsciousness. Receiver operating characteristic curve analysis was performed to define an optimal cutoff for discriminating between the conscious and unconscious conditions. This cutoff was then applied to a cohort of noncommunicative DOC patients (38 in a minimally conscious state [MCS] and 43 in a vegetative state [VS]). Results We found an empirical cutoff that discriminated with 100% sensitivity and specificity between the conscious and the unconscious conditions in the benchmark population. This cutoff resulted in a sensitivity of 94.7% in detecting MCS and allowed the identification of a number of unresponsive VS patients (9 of 43) with high values of PCI, overlapping with the distribution of the benchmark conscious condition. Interpretation Given its high sensitivity and specificity in the benchmark and MCS population, PCI offers a reliable, independently validated stratification of unresponsive patients that has important physiopathological and therapeutic implications. In particular, the high‐PCI subgroup of VS patients may retain a capacity for consciousness that is not expressed in behavior. Ann Neurol 2016;80:718–729
Collapse
Affiliation(s)
- Silvia Casarotto
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Angela Comanducci
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Fondazione Europea per la Ricerca Biomedica, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Matteo Fecchio
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Martino Napolitani
- Department of Health Science, School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Andrea Pigorini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Adenauer G Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Pietro D Trimarchi
- Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Gnocchi Onlus, Milan, Italy
| | - Melanie Boly
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA.,Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Olivia Gosseries
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA.,Coma Science Group, GIGA, University of Liège, Liège, Belgium
| | - Olivier Bodart
- Coma Science Group, GIGA, University of Liège, Liège, Belgium.,Department of Neurology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Francesco Curto
- Neurocritical Care Unit, Department of Neuroscience, Azienda Socio-Sanitaria Territoriale, Grande Ospedale Metropolitano Niguarda Cà Granda, Milan, Italy
| | - Cristina Landi
- Fondazione Europea per la Ricerca Biomedica, Milan, Italy
| | - Maurizio Mariotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Guya Devalle
- Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Gnocchi Onlus, Milan, Italy
| | - Steven Laureys
- Coma Science Group, GIGA, University of Liège, Liège, Belgium
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Gnocchi Onlus, Milan, Italy
| |
Collapse
|
37
|
Englot DJ, Konrad PE, Morgan VL. Regional and global connectivity disturbances in focal epilepsy, related neurocognitive sequelae, and potential mechanistic underpinnings. Epilepsia 2016; 57:1546-1557. [PMID: 27554793 DOI: 10.1111/epi.13510] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2016] [Indexed: 12/19/2022]
Abstract
Epilepsy is among the most common brain network disorders, and it is associated with substantial morbidity and increased mortality. Although focal epilepsy was traditionally considered a regional brain disorder, growing evidence has demonstrated widespread network alterations in this disorder that extend beyond the epileptogenic zone from which seizures originate. The goal of this review is to summarize recent investigations examining functional and structural connectivity alterations in focal epilepsy, including neuroimaging and electrophysiologic studies utilizing model-based or data-driven analytic methods. A significant subset of studies in both mesial temporal lobe epilepsy and focal neocortical epilepsy have demonstrated patterns of increased connectivity related to the epileptogenic zone, coupled with decreased connectivity in widespread distal networks. Connectivity patterns appear to be related to the duration and severity of disease, suggesting progressive connectivity reorganization in the setting of recurrent seizures over time. Global resting-state connectivity disturbances in focal epilepsy have been linked to neurocognitive problems, including memory and language disturbances. Although it is possible that increased connectivity in a particular brain region may enhance the propensity for seizure generation, it is not clear if global reductions in connectivity represent the damaging consequences of recurrent seizures, or an adaptive mechanism to prevent seizure propagation away from the epileptogenic zone. Overall, studying the connectome in focal epilepsy is a critical endeavor that may lead to improved strategies for epileptogenic-zone localization, surgical outcome prediction, and a better understanding of the neuropsychological implications of recurrent seizures.
Collapse
Affiliation(s)
- Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A..
| | - Peter E Konrad
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Victoria L Morgan
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, U.S.A
| |
Collapse
|