1
|
Sulpizio V, Teghil A, Pitzalis S, Boccia M. Common and specific activations supporting optic flow processing and navigation as revealed by a meta-analysis of neuroimaging studies. Brain Struct Funct 2024; 229:1021-1045. [PMID: 38592557 PMCID: PMC11147901 DOI: 10.1007/s00429-024-02790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Optic flow provides useful information in service of spatial navigation. However, whether brain networks supporting these two functions overlap is still unclear. Here we used Activation Likelihood Estimation (ALE) to assess the correspondence between brain correlates of optic flow processing and spatial navigation and their specific neural activations. Since computational and connectivity evidence suggests that visual input from optic flow provides information mainly during egocentric navigation, we further tested the correspondence between brain correlates of optic flow processing and that of both egocentric and allocentric navigation. Optic flow processing shared activation with egocentric (but not allocentric) navigation in the anterior precuneus, suggesting its role in providing information about self-motion, as derived from the analysis of optic flow, in service of egocentric navigation. We further documented that optic flow perception and navigation are partially segregated into two functional and anatomical networks, i.e., the dorsal and the ventromedial networks. Present results point to a dynamic interplay between the dorsal and ventral visual pathways aimed at coordinating visually guided navigation in the environment.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy
- Department of Humanities, Education and Social Sciences, University of Molise, Campobasso, Italy
| | - Alice Teghil
- Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, Sapienza University, Rome, Italy.
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| |
Collapse
|
2
|
Plute TJ, Spencer DD, Alkawadri R. Age-dependent vestibular cingulate-cerebral network underlying gravitational perception: a cross-sectional multimodal study. Brain Inform 2022; 9:30. [PMID: 36542188 PMCID: PMC9772366 DOI: 10.1186/s40708-022-00176-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The cingulate gyrus (CG) is a frequently studied yet not wholly understood area of the human cerebrum. Previous studies have implicated CG in different adaptive cognitive-emotional functions and fascinating or debilitating symptoms. We describe an unusual loss of gravity perception/floating sensation in consecutive persons with drug-resistant epilepsy undergoing electrical cortical stimulation (ECS), network analysis, and network robustness mapping. METHODS Using Intracranial-EEG, Granger causality analysis, cortico-cortical evoked potentials, and fMRI, we explicate the functional networks arising from this phenomenon's anterior, middle, and posterior cingulate cortex. RESULTS Fifty-four icEEG cases from 2013 to 2019 were screened. In 40.7% of cases, CG was sampled and in 22.2% the sampling was bilateral. ECS mapping was carried out in 18.5% of the entire cohort and 45.4% of the cingulate sampled cases. Five of the ten CG cases experienced symptoms during stimulation. A total of 1942 electrodes were implanted with a median number of 182 electrode contacts per patient (range: 106-274). The electrode contacts sampled all major cortex regions. Sixty-three contacts were within CG. Of those, 26 were electrically stimulated; 53.8% of the stimulated contacts produced positive responses, whereas 46.2% produced no observable responses. Our study reports a unique perceptive phenomenon of a subjective sense of weightlessness/floating sensation triggered by anterior and posterior CG stimulation, in 30% of cases and 21.42% of electrode stimulation sites. Notable findings include functional connections between the insula, the posterior and anterior cingulate cortex, and networks between the middle cingulate and the frontal and temporal lobes and the cerebellum. We also postulate a vestibular-cerebral-cingulate network responsible for the perception of gravity while suggesting that cingulate functional connectivity follows a long-term developmental trajectory as indicated by a robust, positive correlation with age and the extent of Granger connectivity (r = 0.82, p = 0.0035). DISCUSSION We propose, in conjunction with ECS techniques, that a better understanding of the underlying gravity perception networks can lead to promising neuromodulatory clinical applications. CLASSIFICATION OF EVIDENCE This study provides Class II evidence for CG's involvement in the higher order processing of gravity perception and related actions.
Collapse
Affiliation(s)
- Tritan J Plute
- School of Medicine, Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, LKB 8Th Floor, Suite 815.05, Pittsburgh, PA, 15213, USA
| | - Dennis D Spencer
- Department of Neurosurgery, Yale School of Medicine, New Haven, 06520-8062, USA
| | - Rafeed Alkawadri
- School of Medicine, Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, LKB 8Th Floor, Suite 815.05, Pittsburgh, PA, 15213, USA.
- Department of Neurology, Yale School of Medicine, New Haven, 06520-8018, USA.
| |
Collapse
|
3
|
Sulpizio V, Strappini F, Fattori P, Galati G, Galletti C, Pecchinenda A, Pitzalis S. The human middle temporal cortex responds to both active leg movements and egomotion-compatible visual motion. Brain Struct Funct 2022; 227:2573-2592. [PMID: 35963915 DOI: 10.1007/s00429-022-02549-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
The human middle-temporal region MT+ is highly specialized in processing visual motion. However, recent studies have shown that this region is modulated by extraretinal signals, suggesting a possible involvement in processing motion information also from non-visual modalities. Here, we used functional MRI data to investigate the influence of retinal and extraretinal signals on MT+ in a large sample of subjects. Moreover, we used resting-state functional MRI to assess how the subdivisions of MT+ (i.e., MST, FST, MT, and V4t) are functionally connected. We first compared responses in MST, FST, MT, and V4t to coherent vs. random visual motion. We found that only MST and FST were positively activated by coherent motion. Furthermore, regional analyses revealed that MST and FST were positively activated by leg, but not arm, movements, while MT and V4t were deactivated by arm, but not leg, movements. Taken together, regional analyses revealed a visuomotor role for the anterior areas MST and FST and a pure visual role for the anterior areas MT and V4t. These findings were mirrored by the pattern of functional connections between these areas and the rest of the brain. Visual and visuomotor regions showed distinct patterns of functional connectivity, with the latter preferentially connected with the somatosensory and motor areas representing leg and foot. Overall, these findings reveal a functional sensitivity for coherent visual motion and lower-limb movements in MST and FST, suggesting their possible involvement in integrating sensory and motor information to perform locomotion.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', 00194, Rome, Italy.
| |
Collapse
|
4
|
Egomotion-related visual areas respond to goal-directed movements. Brain Struct Funct 2022; 227:2313-2328. [PMID: 35763171 DOI: 10.1007/s00429-022-02523-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
Integration of proprioceptive signals from the various effectors with visual feedback of self-motion from the retina is necessary for whole-body movement and locomotion. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by goal-directed movements (as saccades or pointing) performed with different effectors (eye, hand, and foot), suggesting a role in visually guiding movements through the external environment. To achieve this aim, we used a combined approach of task-evoked activity and effective connectivity (PsychoPhysiological Interaction, PPI) by fMRI. We localized a set of six egomotion-responsive visual areas through the flow field stimulus and distinguished them into visual (pIPS/V3A, V6+ , IPSmot/VIP) and visuomotor (pCi, CSv, PIC) areas according to recent literature. We tested their response to a visuomotor task implying spatially directed delayed eye, hand, and foot movements. We observed a posterior-to-anterior gradient of preference for eye-to-foot movements, with posterior (visual) regions showing a preference for saccades, and anterior (visuomotor) regions showing a preference for foot pointing. No region showed a clear preference for hand pointing. Effective connectivity analysis showed that visual areas were more connected to each other with respect to the visuomotor areas, particularly during saccades. We suggest that visual and visuomotor egomotion regions can play different roles within a network that integrates sensory-motor signals with the aim of guiding movements in the external environment.
Collapse
|
5
|
Cauzzo S, Singh K, Stauder M, García-Gomar MG, Vanello N, Passino C, Staab J, Indovina I, Bianciardi M. Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI. Neuroimage 2022; 250:118925. [PMID: 35074504 DOI: 10.1016/j.neuroimage.2022.118925] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite remarkable advances in mapping the functional connectivity of the cortex, the functional connectivity of subcortical regions is understudied in living humans. This is the case for brainstem nuclei that control vital processes, such as autonomic, limbic, nociceptive and sensory functions. This is because of the lack of precise brainstem nuclei localization, of adequate sensitivity and resolution in the deepest brain regions, as well as of optimized processing for the brainstem. To close the gap between the cortex and the brainstem, on 20 healthy subjects, we computed a correlation-based functional connectome of 15 brainstem nuclei involved in autonomic, limbic, nociceptive, and sensory function (superior and inferior colliculi, ventral tegmental area-parabrachial pigmented nucleus complex, microcellular tegmental nucleus-prabigeminal nucleus complex, lateral and medial parabrachial nuclei, vestibular and superior olivary complex, superior and inferior medullary reticular formation, viscerosensory motor nucleus, raphe magnus, pallidus, and obscurus, and parvicellular reticular nucleus - alpha part) with the rest of the brain. Specifically, we exploited 1.1mm isotropic resolution 7 Tesla resting-state fMRI, ad-hoc coregistration and physiological noise correction strategies, and a recently developed probabilistic template of brainstem nuclei. Further, we used 2.5mm isotropic resolution resting-state fMRI data acquired on a 3 Tesla scanner to assess the translatability of our results to conventional datasets. We report highly consistent correlation coefficients across subjects, confirming available literature on autonomic, limbic, nociceptive and sensory pathways, as well as high interconnectivity within the central autonomic network and the vestibular network. Interestingly, our results showed evidence of vestibulo-autonomic interactions in line with previous work. Comparison of 7 Tesla and 3 Tesla findings showed high translatability of results to conventional settings for brainstem-cortical connectivity and good yet weaker translatability for brainstem-brainstem connectivity. The brainstem functional connectome might bring new insight in the understanding of autonomic, limbic, nociceptive and sensory function in health and disease.
Collapse
Affiliation(s)
- Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew Stauder
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicola Vanello
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Claudio Passino
- Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy; Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Jeffrey Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States; Department of Otorhinolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, MN, United States
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy; Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Sleep Medicine, Harvard University, Boston, MA.
| |
Collapse
|
6
|
Smith AT. Cortical visual area CSv as a cingulate motor area: a sensorimotor interface for the control of locomotion. Brain Struct Funct 2021; 226:2931-2950. [PMID: 34240236 PMCID: PMC8541968 DOI: 10.1007/s00429-021-02325-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022]
Abstract
The response properties, connectivity and function of the cingulate sulcus visual area (CSv) are reviewed. Cortical area CSv has been identified in both human and macaque brains. It has similar response properties and connectivity in the two species. It is situated bilaterally in the cingulate sulcus close to an established group of medial motor/premotor areas. It has strong connectivity with these areas, particularly the cingulate motor areas and the supplementary motor area, suggesting that it is involved in motor control. CSv is active during visual stimulation but only if that stimulation is indicative of self-motion. It is also active during vestibular stimulation and connectivity data suggest that it receives proprioceptive input. Connectivity with topographically organized somatosensory and motor regions strongly emphasizes the legs over the arms. Together these properties suggest that CSv provides a key interface between the sensory and motor systems in the control of locomotion. It is likely that its role involves online control and adjustment of ongoing locomotory movements, including obstacle avoidance and maintaining the intended trajectory. It is proposed that CSv is best seen as part of the cingulate motor complex. In the human case, a modification of the influential scheme of Picard and Strick (Picard and Strick, Cereb Cortex 6:342-353, 1996) is proposed to reflect this.
Collapse
Affiliation(s)
- Andrew T Smith
- Department of Psychology, Royal Holloway, University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
7
|
Huber J, Ruehl M, Flanagin V, Zu Eulenburg P. Delineating neural responses and functional connectivity changes during vestibular and nociceptive stimulation reveal the uniqueness of cortical vestibular processing. Brain Struct Funct 2021; 227:779-791. [PMID: 34611776 PMCID: PMC8930960 DOI: 10.1007/s00429-021-02394-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
Vestibular information is ubiquitous and often processed jointly with visual, somatosensory and proprioceptive information. Among the cortical brain regions associated with human vestibular processing, area OP2 in the parietal operculum has been proposed as vestibular core region. However, delineating responses uniquely to vestibular stimulation in this region using neuroimaging is challenging for several reasons: First, the parietal operculum is a cytoarchitectonically heterogeneous region responding to multisensory stimulation. Second, artificial vestibular stimulation evokes confounding somatosensory and nociceptive responses blurring responses contributing to vestibular perception. Furthermore, immediate effects of vestibular stimulation on the organization of functional networks have not been investigated in detail yet. Using high resolution neuroimaging in a task-based and functional connectivity approach, we compared two equally salient stimuli—unilateral galvanic vestibular (GVS) and galvanic nociceptive stimulation (GNS)—to disentangle the processing of both modalities in the parietal operculum and characterize their effects on functional network architecture. GNS and GVS gave joint responses in area OP1, 3, 4, and the anterior and middle insula, but not in area OP2. GVS gave stronger responses in the parietal operculum just adjacent to OP3 and OP4, whereas GNS evoked stronger responses in area OP1, 3 and 4. Our results underline the importance of considering this common pathway when interpreting vestibular neuroimaging experiments and underpin the role of area OP2 in central vestibular processing. Global network changes were found during GNS, but not during GVS. This lack of network reconfiguration despite the saliency of GVS may reflect the continuous processing of vestibular information in the awake human.
Collapse
Affiliation(s)
- Judita Huber
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Maxine Ruehl
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Virginia Flanagin
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Zu Eulenburg
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- Institute for Neuroradiology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
8
|
Cottereau BR, Trotter Y, Durand JB. An egocentric straight-ahead bias in primate's vision. Brain Struct Funct 2021; 226:2897-2909. [PMID: 34120262 PMCID: PMC8541962 DOI: 10.1007/s00429-021-02314-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022]
Abstract
As we plan to reach or manipulate objects, we generally orient our body so as to face them. Other objects occupying the same portion of space will likely represent potential obstacles for the intended action. Thus, either as targets or as obstacles, the objects located straight in front of us are often endowed with a special behavioral status. Here, we review a set of recent electrophysiological, imaging and behavioral studies bringing converging evidence that the objects which lie straight-ahead are subject to privileged visual processing. More precisely, these works collectively demonstrate that when gaze steers central vision away from the straight-ahead direction, the latter is still prioritized in peripheral vision. Straight-ahead objects evoke (1) stronger neuronal responses in macaque peripheral V1 neurons, (2) stronger EEG and fMRI activations across the human visual cortex and (3) faster reactive hand and eye movements. Here, we discuss the functional implications and underlying mechanisms behind this phenomenon. Notably, we propose that it can be considered as a new type of visuospatial attentional mechanism, distinct from the previously documented classes of endogenous and exogenous attention.
Collapse
Affiliation(s)
- Benoit R Cottereau
- Centre de Recherche Cerveau Et Cognition, Université de Toulouse, 31052, Toulouse, France. .,Centre National de La Recherche Scientifique, 31055, Toulouse, France.
| | - Yves Trotter
- Centre de Recherche Cerveau Et Cognition, Université de Toulouse, 31052, Toulouse, France.,Centre National de La Recherche Scientifique, 31055, Toulouse, France
| | - Jean-Baptiste Durand
- Centre de Recherche Cerveau Et Cognition, Université de Toulouse, 31052, Toulouse, France.,Centre National de La Recherche Scientifique, 31055, Toulouse, France
| |
Collapse
|
9
|
Sims SA, Demirayak P, Cedotal S, Visscher KM. Frontal cortical regions associated with attention connect more strongly to central than peripheral V1. Neuroimage 2021; 238:118246. [PMID: 34111516 PMCID: PMC8415014 DOI: 10.1016/j.neuroimage.2021.118246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/22/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
The functionality of central vision is different from peripheral vision. Central vision is used for fixation and has higher acuity, making it useful for everyday activities such as reading and object identification. The central and peripheral representations in primary visual cortex (V1) also differ in how higher-order processing areas modulate their responses. For example, attention and expectation are top-down processes (i.e., high-order cognitive functions) that influence visual information processing during behavioral tasks. This top-down control is different for central vs. peripheral vision. Since functional networks can influence visual information processing in different ways, networks (such as the Fronto-Parietal (FPN), Default Mode (DMN), and Cingulo-Opercular (CON)) likely differ in how they connect to representations of the visual field across V1. Prior work indicated the central representing portion of V1 was more functionally connected to regions belonging to the FPN, and the far-peripheral representing portion of V1 was more functionally connected to regions belonging to the DMN. Our goals were (1) Assess the reproducibility and generalizability of retinotopic effects on functional connections between V1 and functional networks. (2) Extend this work to understand structural connections of central vs. peripheral representations in V1. (3) Examine the overlapping eccentricity differences in functional and structural connections of V1. (4) Examine the major white matter tracks connecting central V1 to frontal regions. We used resting-state BOLD fMRI and DWI to examine whether portions of V1 that represent different visual eccentricities differ in their functional and structural connectivity to functional networks. All data were acquired and minimally preprocessed by the Human Connectome Project. We identified central and far-peripheral representing regions from a retinotopic template. Functional connectivity was measured by correlated activity between V1 and functional networks, and structural connectivity was measured by probabilistic tractography and converted to track probability. In both modalities, differences between V1 eccentricity segment connections were compared by paired, two-tailed t-test. A spatial permutation approach was used to determine the statistical significance of the spatial overlap between modalities. The identified spatial overlap was then used in a deterministic tractography approach to identify the white matter pathways connecting the overlap to central V1. We found (1) Centrally representing portions of V1 are more strongly functionally connected to frontal regions than are peripherally representing portions of V1, (2) Structural connections also show stronger connections between central V1 and frontal regions, (3) Patterns of structural and functional connections overlaps in the lateral frontal cortex, (4) This lateral frontal overlap is connected to central V1 via the IFOF. In summary, the work’s main contribution is a greater understanding of higher-order functional networks’ connectivity to V1. There are stronger structural connections to central representations in V1, particularly for lateral frontal regions, implying that the functional relationship between central V1 and frontal regions is built upon direct, long-distance connections via the IFOF. Overlapping structural and functional connections reflect differences in V1 eccentricities, with central V1 preferentially connected to attention-associated regions. Understanding how V1 is functionally and structurally connected to higher-order brain areas contributes to our understanding of how the human brain processes visual information and forms a baseline for understanding any modifications in processing that might occur with training or experience.
Collapse
Affiliation(s)
- Sara A Sims
- Department of Psychology, University of Alabama at Birmingham, United States.
| | - Pinar Demirayak
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Simone Cedotal
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Kristina M Visscher
- Department of Neurobiology, University of Alabama at Birmingham, United States
| |
Collapse
|
10
|
Ionta S. Visual Neuropsychology in Development: Anatomo-Functional Brain Mechanisms of Action/Perception Binding in Health and Disease. Front Hum Neurosci 2021; 15:689912. [PMID: 34135745 PMCID: PMC8203289 DOI: 10.3389/fnhum.2021.689912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Vision is the main entrance for environmental input to the human brain. Even if vision is our most used sensory modality, its importance is not limited to environmental exploration. Rather it has strong links to motor competences, further extending to cognitive and social aspects of human life. These multifaceted relationships are particularly important in developmental age and become dramatically evident in presence of complex deficits originating from visual aberrancies. The present review summarizes the available neuropsychological evidence on the development of visual competences, with a particular focus on the associated visuo-motor integration skills in health and disease. With the aim of supporting future research and interventional settings, the goal of the present review is to constitute a solid base to help the translation of neuropsychological hypotheses into straightforward empirical investigations and rehabilitation/training protocols. This approach will further increase the impact, ameliorate the acceptance, and ease the use and implementation of lab-derived intervention protocols in real-life situations.
Collapse
Affiliation(s)
- Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, Lausanne, Switzerland
| |
Collapse
|
11
|
Li X, Jiang Y, Wang W, Liu X, Li Z. Brain morphometric abnormalities in boys with attention-deficit/hyperactivity disorder revealed by sulcal pits-based analyses. CNS Neurosci Ther 2021; 27:299-307. [PMID: 32762149 PMCID: PMC7871795 DOI: 10.1111/cns.13445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023] Open
Abstract
AIM Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder associated with widespread brain morphological abnormalities. Here, we utilized a sulcal pits-based method to provide new insight into the atypical cortical folding morphology in ADHD. METHODS Sulcal pits, the locally deepest points in each fold, were first extracted from magnetic resonance imaging data of 183 boys with ADHD (10.62 ± 1.96 years) and 167 age- and gender-matched typically developing controls (10.70 ± 1.73 years). Then, the geometrical properties of sulcal pits were statistically compared between ADHD and controls. RESULTS Our results demonstrated that the number of sulcal pits was reduced and confined to the superficial secondary sulci in the ADHD group relative to controls (P < .05). We also found that ADHD boys were associated with significantly increased pit depth in the left superior frontal junction, circular insular sulcus, right inferior frontal junction, and bilateral cingulate sulcus, as well as significantly decreased pit depth in the bilateral orbital sulcus (P < .05, corrected). CONCLUSION The experimental findings reveal atypical sulcal anatomy in boys with ADHD and support the feasibility of sulcal pits as anatomic landmarks for disease diagnosis.
Collapse
Affiliation(s)
- Xin‐Wei Li
- Chongqing Engineering Research Center of Medical Electronics and Information TechnologyChongqing University of Posts and TelecommunicationsChongqingChina
- Chongqing Engineering Laboratory of Digital Medical Equipment and SystemsChongqing University of Posts and TelecommunicationsChongqingChina
| | - Yu‐Hao Jiang
- Chongqing Engineering Research Center of Medical Electronics and Information TechnologyChongqing University of Posts and TelecommunicationsChongqingChina
- Chongqing Engineering Laboratory of Digital Medical Equipment and SystemsChongqing University of Posts and TelecommunicationsChongqingChina
| | - Wei Wang
- Chongqing Engineering Research Center of Medical Electronics and Information TechnologyChongqing University of Posts and TelecommunicationsChongqingChina
- Chongqing Engineering Laboratory of Digital Medical Equipment and SystemsChongqing University of Posts and TelecommunicationsChongqingChina
| | - Xiao‐Xue Liu
- Chongqing Engineering Research Center of Medical Electronics and Information TechnologyChongqing University of Posts and TelecommunicationsChongqingChina
- Chongqing Engineering Laboratory of Digital Medical Equipment and SystemsChongqing University of Posts and TelecommunicationsChongqingChina
| | - Zhang‐Yong Li
- Chongqing Engineering Research Center of Medical Electronics and Information TechnologyChongqing University of Posts and TelecommunicationsChongqingChina
- Chongqing Engineering Laboratory of Digital Medical Equipment and SystemsChongqing University of Posts and TelecommunicationsChongqingChina
| |
Collapse
|
12
|
Zajac L, Killiany R. Activity Strength within Optic Flow-Sensitive Cortical Regions Is Associated with Visual Path Integration Accuracy in Aged Adults. Brain Sci 2021; 11:brainsci11020245. [PMID: 33669177 PMCID: PMC7919670 DOI: 10.3390/brainsci11020245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Spatial navigation is a cognitive skill fundamental to successful interaction with our environment, and aging is associated with weaknesses in this skill. Identifying mechanisms underlying individual differences in navigation ability in aged adults is important to understanding these age-related weaknesses. One understudied factor involved in spatial navigation is self-motion perception. Important to self-motion perception is optic flow–the global pattern of visual motion experienced while moving through our environment. A set of optic flow-sensitive (OF-sensitive) cortical regions was defined in a group of young (n = 29) and aged (n = 22) adults. Brain activity was measured in this set of OF-sensitive regions and control regions using functional magnetic resonance imaging while participants performed visual path integration (VPI) and turn counting (TC) tasks. Aged adults had stronger activity in RMT+ during both tasks compared to young adults. Stronger activity in the OF-sensitive regions LMT+ and RpVIP during VPI, not TC, was associated with greater VPI accuracy in aged adults. The activity strength in these two OF-sensitive regions measured during VPI explained 42% of the variance in VPI task performance in aged adults. The results of this study provide novel support for global motion processing as a mechanism underlying visual path integration in normal aging.
Collapse
Affiliation(s)
- Lauren Zajac
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street (L 1004), Boston, MA 02118, USA;
- Center for Biomedical Imaging, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
- Correspondence:
| | - Ronald Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street (L 1004), Boston, MA 02118, USA;
- Center for Biomedical Imaging, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
13
|
De Castro V, Smith AT, Beer AL, Leguen C, Vayssière N, Héjja-Brichard Y, Audurier P, Cottereau BR, Durand JB. Connectivity of the Cingulate Sulcus Visual Area (CSv) in Macaque Monkeys. Cereb Cortex 2021; 31:1347-1364. [PMID: 33067998 PMCID: PMC7786354 DOI: 10.1093/cercor/bhaa301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
In humans, the posterior cingulate cortex contains an area sensitive to visual cues to self-motion. This cingulate sulcus visual area (CSv) is structurally and functionally connected with several (multi)sensory and (pre)motor areas recruited during locomotion. In nonhuman primates, electrophysiology has shown that the cingulate cortex is also related to spatial navigation. Recently, functional MRI in macaque monkeys identified a cingulate area with similar visual properties to human CSv. In order to bridge the gap between human and nonhuman primate research, we examined the structural and functional connectivity of putative CSv in three macaque monkeys adopting the same approach as in humans based on diffusion MRI and resting-state functional MRI. The results showed that putative monkey CSv connects with several visuo-vestibular areas (e.g., VIP/FEFsem/VPS/MSTd) as well as somatosensory cortex (e.g., dorsal aspects of areas 3/1/2), all known to process sensory signals that can be triggered by self-motion. Additionally, strong connections are observed with (pre)motor areas located in the dorsal prefrontal cortex (e.g., F3/F2/F1) and within the anterior cingulate cortex (e.g., area 24). This connectivity pattern is strikingly reminiscent of that described for human CSv, suggesting that the sensorimotor control of locomotion relies on similar organizational principles in human and nonhuman primates.
Collapse
Affiliation(s)
- V De Castro
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - A T Smith
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - A L Beer
- Institut für Psychologie, Universität Regensburg, 93053 Regensburg, Germany
| | - C Leguen
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - N Vayssière
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - Y Héjja-Brichard
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - P Audurier
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - B R Cottereau
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - J B Durand
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| |
Collapse
|
14
|
Sulpizio V, Galati G, Fattori P, Galletti C, Pitzalis S. A common neural substrate for processing scenes and egomotion-compatible visual motion. Brain Struct Funct 2020; 225:2091-2110. [PMID: 32647918 PMCID: PMC7473967 DOI: 10.1007/s00429-020-02112-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
Neuroimaging studies have revealed two separate classes of category-selective regions specialized in optic flow (egomotion-compatible) processing and in scene/place perception. Despite the importance of both optic flow and scene/place recognition to estimate changes in position and orientation within the environment during self-motion, the possible functional link between egomotion- and scene-selective regions has not yet been established. Here we reanalyzed functional magnetic resonance images from a large sample of participants performing two well-known “localizer” fMRI experiments, consisting in passive viewing of navigationally relevant stimuli such as buildings and places (scene/place stimulus) and coherently moving fields of dots simulating the visual stimulation during self-motion (flow fields). After interrogating the egomotion-selective areas with respect to the scene/place stimulus and the scene-selective areas with respect to flow fields, we found that the egomotion-selective areas V6+ and pIPS/V3A responded bilaterally more to scenes/places compared to faces, and all the scene-selective areas (parahippocampal place area or PPA, retrosplenial complex or RSC, and occipital place area or OPA) responded more to egomotion-compatible optic flow compared to random motion. The conjunction analysis between scene/place and flow field stimuli revealed that the most important focus of common activation was found in the dorsolateral parieto-occipital cortex, spanning the scene-selective OPA and the egomotion-selective pIPS/V3A. Individual inspection of the relative locations of these two regions revealed a partial overlap and a similar response profile to an independent low-level visual motion stimulus, suggesting that OPA and pIPS/V3A may be part of a unique motion-selective complex specialized in encoding both egomotion- and scene-relevant information, likely for the control of navigation in a structured environment.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Biomedical and Neuromotor Sciences-DIBINEM, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy. .,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences-DIBINEM, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences-DIBINEM, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| |
Collapse
|
15
|
Direct comparison of activation maps during galvanic vestibular stimulation: A hybrid H2[15 O] PET-BOLD MRI activation study. PLoS One 2020; 15:e0233262. [PMID: 32413079 PMCID: PMC7228124 DOI: 10.1371/journal.pone.0233262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Previous unimodal PET and fMRI studies in humans revealed a reproducible vestibular brain activation pattern, but with variations in its weighting and expansiveness. Hybrid studies minimizing methodological variations at baseline conditions are rare and still lacking for task-based designs. Thus, we applied for the first time hybrid 3T PET-MRI scanning (Siemens mMR) in healthy volunteers using galvanic vestibular stimulation (GVS) in healthy volunteers in order to directly compare H215O-PET and BOLD MRI responses. List mode PET acquisition started with the injection of 750 MBq H215O simultaneously to MRI EPI sequences. Group-level statistical parametric maps were generated for GVS vs. rest contrasts of PET, MR-onset (event-related), and MR-block. All contrasts showed a similar bilateral vestibular activation pattern with remarkable proximity of activation foci. Both BOLD contrasts gave more bilateral wide-spread activation clusters than PET; no area showed contradictory signal responses. PET still confirmed the right-hemispheric lateralization of the vestibular system, whereas BOLD-onset revealed only a tendency. The reciprocal inhibitory visual-vestibular interaction concept was confirmed by PET signal decreases in primary and secondary visual cortices, and BOLD-block decreases in secondary visual areas. In conclusion, MRI activation maps contained a mixture of CBF measured using H215O-PET and additional non-CBF effects, and the activation-deactivation pattern of the BOLD-block appears to be more similar to the H215O-PET than the BOLD-onset.
Collapse
|
16
|
Serra C, Galletti C, Di Marco S, Fattori P, Galati G, Sulpizio V, Pitzalis S. Egomotion-related visual areas respond to active leg movements. Hum Brain Mapp 2019; 40:3174-3191. [PMID: 30924264 DOI: 10.1002/hbm.24589] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Monkey neurophysiology and human neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates a cortical network of temporal, parietal, insular, and cingulate visual motion regions. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by active lower limb movements, and hence are likely involved in guiding human locomotion. To this aim, we used a combined approach of task-evoked activity and resting-state functional connectivity by fMRI. We localized a set of six egomotion-responsive visual areas (V6+, V3A, intraparietal motion/ventral intraparietal [IPSmot/VIP], cingulate sulcus visual area [CSv], posterior cingulate sulcus area [pCi], posterior insular cortex [PIC]) by using optic flow. We tested their response to a motor task implying long-range active leg movements. Results revealed that, among these visually defined areas, CSv, pCi, and PIC responded to leg movements (visuomotor areas), while V6+, V3A, and IPSmot/VIP did not (visual areas). Functional connectivity analysis showed that visuomotor areas are connected to the cingulate motor areas, the supplementary motor area, and notably to the medial portion of the somatosensory cortex, which represents legs and feet. We suggest that CSv, pCi, and PIC perform the visual analysis of egomotion-like signals to provide sensory information to the motor system with the aim of guiding locomotion.
Collapse
Affiliation(s)
- Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| | - Valentina Sulpizio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
17
|
Han JH, Lee HJ, Kang H, Oh SH, Lee DS. Brain Plasticity Can Predict the Cochlear Implant Outcome in Adult-Onset Deafness. Front Hum Neurosci 2019; 13:38. [PMID: 30837852 PMCID: PMC6389609 DOI: 10.3389/fnhum.2019.00038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/24/2019] [Indexed: 01/30/2023] Open
Abstract
Sensory plasticity, which is associated with deafness, has not been as thoroughly investigated in the adult brain as it has in the developing brain. In this study, we examined the brain reorganization induced by auditory deprivation in people with adult-onset deafness and its clinical relevance by measuring glucose metabolism before cochlear implant (CI) surgery. F-18 fluorodeoxyglucose positron emission tomography (18F-FDG-PET) scans were performed in 37 postlingually deafened patients during the preoperative workup period, and in 39 normal-hearing (NH) controls. Behavioral CI outcomes were measured at 1 year after implantation using a phoneme identification test with auditory cueing only. In the deaf individuals, areas involved in the auditory pathway such as the inferior colliculus and bilateral superior temporal gyri were hypometabolic compared to the NH controls. The hypometabolism observed in the deaf auditory cortices gradually returned to levels similar to the controls as the duration of deafness increased. However, contrary to our previous findings in congenitally deaf children, this metabolic recovery failed to have a significant prognostic value for the recovery of the speech perception ability in adult CI patients. In a broad occipital area centered on the primary visual cortices, glucose metabolism was higher in the deaf patients than the controls, suggesting that the area had become visually hyperactive for sensory compensation immediately after the onset of deafness. In addition, a negative correlation between the metabolic activity and behavioral speech perception outcomes was observed in the visual association areas. In the medial frontal cortices, cortical metabolism in most patients decreased, but patients who had preserved metabolic activities showed better speech performance. These results suggest that the auditory cortex in people with adult-onset deafness is relatively resistant to cross-modal plasticity, and instead, individual traits in late-stage visual processing and cognitive control seem to be more reliable prognostic markers for adult-onset deafness.
Collapse
Affiliation(s)
- Ji-Hye Han
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Hyo-Jeong Lee
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Chuncheon, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Hyejin Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea.,BK21 Plus Global Translational Research on Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea.,Sensory Organ Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Loh KK, Hadj-Bouziane F, Petrides M, Procyk E, Amiez C. Rostro-Caudal Organization of Connectivity between Cingulate Motor Areas and Lateral Frontal Regions. Front Neurosci 2018; 11:753. [PMID: 29375293 PMCID: PMC5769030 DOI: 10.3389/fnins.2017.00753] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/27/2017] [Indexed: 11/13/2022] Open
Abstract
According to contemporary views, the lateral frontal cortex is organized along a rostro-caudal functional axis with increasingly complex cognitive/behavioral control implemented rostrally, and increasingly detailed motor control implemented caudally. Whether the medial frontal cortex follows the same organization remains to be elucidated. To address this issue, the functional connectivity of the 3 cingulate motor areas (CMAs) in the human brain with the lateral frontal cortex was investigated. First, the CMAs and their representations of hand, tongue, and eye movements were mapped via task-related functional magnetic resonance imaging (fMRI). Second, using resting-state fMRI, their functional connectivity with lateral prefrontal and lateral motor cortical regions of interest (ROIs) were examined. Importantly, the above analyses were conducted at the single-subject level to account for variability in individual cingulate morphology. The results demonstrated a rostro-caudal functional organization of the CMAs in the human brain that parallels that in the lateral frontal cortex: the rostral CMA has stronger functional connectivity with prefrontal regions and weaker connectivity with motor regions; conversely, the more caudal CMAs have weaker prefrontal and stronger motor connectivity. Connectivity patterns of the hand, tongue and eye representations within the CMAs are consistent with that of their parent CMAs. The parallel rostral-to-caudal functional organization observed in the medial and lateral frontal cortex could likely contribute to different hierarchies of cognitive-motor control.
Collapse
Affiliation(s)
- Kep Kee Loh
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Fadila Hadj-Bouziane
- Institut National de la Santé Et de la Recherche Médicale, U1028, Centre National de la Recherche Scientifique UMR5292, Lyon Neuroscience Research Center, ImpAct Team - University UCBL Lyon 1, Lyon, France
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, QC, Canada
| | - Emmanuel Procyk
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Céline Amiez
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| |
Collapse
|
19
|
Uesaki M, Takemura H, Ashida H. Computational neuroanatomy of human stratum proprium of interparietal sulcus. Brain Struct Funct 2018; 223:489-507. [PMID: 28871500 PMCID: PMC5772143 DOI: 10.1007/s00429-017-1492-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/04/2017] [Indexed: 11/19/2022]
Abstract
Recent advances in diffusion-weighted MRI (dMRI) and tractography have enabled identification of major long-range white matter tracts in the human brain. Yet, our understanding of shorter tracts, such as those within the parietal lobe, remains limited. Over a century ago, a tract connecting the superior and inferior parts of the parietal cortex was identified in a post-mortem study: stratum proprium of interparietal sulcus (SIPS; Sachs, Das hemisphärenmark des menschlichen grosshirns. Verlag von georg thieme, Leipzig, 1892). The tract has since been replicated in another fibre dissection study (Vergani et al., Cortex 56:145-156, 2014), however, it has not been fully investigated in the living human brain and its precise anatomical properties are yet to be described. We used dMRI and tractography to identify and characterise SIPS in vivo, and explored its spatial proximity to the cortical areas associated with optic-flow processing using fMRI. SIPS was identified bilaterally in all subjects, and its anatomical position and trajectory are consistent with previous post-mortem studies. Subsequent evaluation of the tractography results using the linear fascicle evaluation and virtual lesion analysis yielded strong statistical evidence for SIPS. We also found that the SIPS endpoints are adjacent to the optic-flow selective areas. In sum, we show that SIPS is a short-range tract connecting the superior and inferior parts of the parietal cortex, wrapping around the intraparietal sulcus, and that it may be a crucial anatomy underlying optic-flow processing. In vivo identification and characterisation of SIPS will facilitate further research on SIPS in relation to cortical functions, their development, and diseases that affect them.
Collapse
Affiliation(s)
- Maiko Uesaki
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
- Open Innovation and Collaboration Research Organization, Ritsumeikan University, Osaka, Japan.
| | - Hiromasa Takemura
- Japan Society for the Promotion of Science, Tokyo, Japan.
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Hiroshi Ashida
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Hartogsveld B, Bramson B, Vijayakumar S, van Campen AD, Marques JP, Roelofs K, Toni I, Bekkering H, Mars RB. Lateral frontal pole and relational processing: Activation patterns and connectivity profile. Behav Brain Res 2017; 355:2-11. [PMID: 28811179 DOI: 10.1016/j.bbr.2017.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/06/2017] [Accepted: 08/02/2017] [Indexed: 01/23/2023]
Abstract
The functional contribution of the lateral frontal cortex to behavior has been discussed with reference to several higher-order cognitive domains. In a separate line of research, recent studies have focused on the anatomical organization of this part of the brain. These different approaches are rarely combined. Here, we combine previous work using anatomical connectivity that identified a lateral subdivision of the human frontal pole and work that suggested a general role for rostrolateral prefrontal cortex in processing higher-order relations, irrespective of the type of information. We asked healthy human volunteers to judge the relationship between pairs of stimuli, a task previously suggested to engage the lateral frontal pole. Presenting both shape and face stimuli, we indeed observed overlapping activation of the lateral prefrontal cortex when subjects judged relations between pairs. Using resting state functional MRI, we confirmed that the activated region's whole-brain connectivity most strongly resembles that of the lateral frontal pole. Using diffusion MRI, we showed that the pattern of connections of this region with the main association fibers again is most similar to that of the lateral frontal pole, consistent with the observation that it is this anatomical region that is involved in relational processing.
Collapse
Affiliation(s)
- Bart Hartogsveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Bob Bramson
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Suhas Vijayakumar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - A Dilene van Campen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Harold Bekkering
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
21
|
Schlaier JR, Beer AL, Faltermeier R, Fellner C, Steib K, Lange M, Greenlee MW, Brawanski AT, Anthofer JM. Probabilistic vs. deterministic fiber tracking and the influence of different seed regions to delineate cerebellar-thalamic fibers in deep brain stimulation. Eur J Neurosci 2017; 45:1623-1633. [PMID: 28391647 DOI: 10.1111/ejn.13575] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Abstract
This study compared tractography approaches for identifying cerebellar-thalamic fiber bundles relevant to planning target sites for deep brain stimulation (DBS). In particular, probabilistic and deterministic tracking of the dentate-rubro-thalamic tract (DRTT) and differences between the spatial courses of the DRTT and the cerebello-thalamo-cortical (CTC) tract were compared. Six patients with movement disorders were examined by magnetic resonance imaging (MRI), including two sets of diffusion-weighted images (12 and 64 directions). Probabilistic and deterministic tractography was applied on each diffusion-weighted dataset to delineate the DRTT. Results were compared with regard to their sensitivity in revealing the DRTT and additional fiber tracts and processing time. Two sets of regions-of-interests (ROIs) guided deterministic tractography of the DRTT or the CTC, respectively. Tract distances to an atlas-based reference target were compared. Probabilistic fiber tracking with 64 orientations detected the DRTT in all twelve hemispheres. Deterministic tracking detected the DRTT in nine (12 directions) and in only two (64 directions) hemispheres. Probabilistic tracking was more sensitive in detecting additional fibers (e.g. ansa lenticularis and medial forebrain bundle) than deterministic tracking. Probabilistic tracking lasted substantially longer than deterministic. Deterministic tracking was more sensitive in detecting the CTC than the DRTT. CTC tracts were located adjacent but consistently more posterior to DRTT tracts. These results suggest that probabilistic tracking is more sensitive and robust in detecting the DRTT but harder to implement than deterministic approaches. Although sensitivity of deterministic tracking is higher for the CTC than the DRTT, targets for DBS based on these tracts likely differ.
Collapse
Affiliation(s)
- Juergen R Schlaier
- Department of Neurosurgery, Medical Center, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Anton L Beer
- Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Rupert Faltermeier
- Department of Neurosurgery, Medical Center, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Claudia Fellner
- Institute of Radiology, Medical Center, University of Regensburg, Regensburg, Germany
| | - Kathrin Steib
- Department of Neurosurgery, Medical Center, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Max Lange
- Department of Neurosurgery, Medical Center, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Mark W Greenlee
- Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Alexander T Brawanski
- Department of Neurosurgery, Medical Center, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Judith M Anthofer
- Department of Neurosurgery, Medical Center, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|