1
|
Stimpson CD, Smaers JB, Raghanti MA, Phillips KA, Jacobs B, Hopkins WD, Hof PR, Sherwood CC. Evolutionary scaling and cognitive correlates of primate frontal cortex microstructure. Brain Struct Funct 2024; 229:1823-1838. [PMID: 37889302 DOI: 10.1007/s00429-023-02719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Investigating evolutionary changes in frontal cortex microstructure is crucial to understanding how modifications of neuron and axon distributions contribute to phylogenetic variation in cognition. In the present study, we characterized microstructural components of dorsolateral prefrontal cortex, orbitofrontal cortex, and primary motor cortex from 14 primate species using measurements of neuropil fraction and immunohistochemical markers for fast-spiking inhibitory interneurons, large pyramidal projection neuron subtypes, serotonergic innervation, and dopaminergic innervation. Results revealed that the rate of evolutionary change was similar across these microstructural variables, except for neuropil fraction, which evolves more slowly and displays the strongest correlation with brain size. We also found that neuropil fraction in orbitofrontal cortex layers V-VI was associated with cross-species variation in performance on experimental tasks that measure self-control. These findings provide insight into the evolutionary reorganization of the primate frontal cortex in relation to brain size scaling and its association with cognitive processes.
Collapse
Grants
- AG067419, HG011641, NS092988 NIH HHS
- SMA-1542848, EF-2021785, DRL-2219759 National Science Foundation
- SMA-1542848, EF-2021785, DRL-2219759 National Science Foundation
- AG067419, HG011641, NS092988 NIH HHS
- AG067419, HG011641, NS092988 NIH HHS
- 220020293 James S. McDonnell Foundation
Collapse
Affiliation(s)
- Cheryl D Stimpson
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, TX, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Bob Jacobs
- Department of Psychology, Laboratory of Quantitative Neuromorphology, Colorado College, Colorado Springs, CO, USA
| | - William D Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, M D Anderson Cancer Center, Bastrop, TX, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Center for Discovery and Innovation, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Ducret M, Giacometti C, Dirheimer M, Dureux A, Autran-Clavagnier D, Hadj-Bouziane F, Verstraete C, Lamberton F, Wilson CRE, Amiez C, Procyk E. Medial to lateral frontal functional connectivity mapping reveals the organization of cingulate cortex. Cereb Cortex 2024; 34:bhae322. [PMID: 39129533 DOI: 10.1093/cercor/bhae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
The functional organization of the frontal lobe is a source of debate, focusing on broad functional subdivisions, large-scale networks, or local refined specificities. Multiple neurocognitive models have tried to explain how functional interactions between cingulate and lateral frontal regions contribute to decision making and cognitive control, but their neuroanatomical bases remain unclear. We provide a detailed description of the functional connectivity between cingulate and lateral frontal regions using resting-state functional MRI in rhesus macaques. The analysis focuses on the functional connectivity of the rostral part of the cingulate sulcus with the lateral frontal cortex. Data-driven and seed-based analysis revealed three clusters within the cingulate sulcus organized along the rostro-caudal axis: the anterior, mid, and posterior clusters display increased functional connectivity with, respectively, the anterior lateral prefrontal regions, face-eye lateral frontal motor cortical areas, and hand lateral frontal motor cortex. The location of these clusters can be predicted in individual subjects based on morphological landmarks. These results suggest that the anterior cluster corresponds to the anterior cingulate cortex, whereas the posterior clusters correspond to the face-eye and hand cingulate motor areas within the anterior midcingulate cortex. These data provide a comprehensive framework to identify cingulate subregions based on functional connectivity and local organization.
Collapse
Affiliation(s)
- Marion Ducret
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Camille Giacometti
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Manon Dirheimer
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 16 avenue du doyen Lépine, 69500 Bron, France
- University of Lyon 1, Lyon, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 16 avenue du doyen Lépine, 69500 Bron, France
- University of Lyon 1, Lyon, France
| | | | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 16 avenue du doyen Lépine, 69500 Bron, France
- University of Lyon 1, Lyon, France
| | - Charles Verstraete
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
- Institut de neuromodulation, GHU Paris psychiatrie et neurosciences, Centre Hospitalier Sainte-Anne, pôle hospitalo-universitaire 15, Université Paris Cité, Paris, France
| | - Franck Lamberton
- CERMEP, Imagerie du Vivant, 95 Boulevard Pinel, F-69677 Bron, Auvergne-Rhône-Alpes, France
- SFR Lyon-Est, Université Lyon 1, CNRS UAR3453, INSERM US7, U69500, Lyon, France
| | - Charles R E Wilson
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Céline Amiez
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Emmanuel Procyk
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| |
Collapse
|
3
|
Borra E, Ballestrazzi G, Biancheri D, Caminiti R, Luppino G. Involvement of the claustrum in the cortico-basal ganglia circuitry: connectional study in the non-human primate. Brain Struct Funct 2024; 229:1143-1164. [PMID: 38615290 PMCID: PMC11147942 DOI: 10.1007/s00429-024-02784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 04/15/2024]
Abstract
The claustrum is an ancient telencephalic subcortical structure displaying extensive, reciprocal connections with much of the cortex and receiving projections from thalamus, amygdala, and hippocampus. This structure has a general role in modulating cortical excitability and is considered to be engaged in different cognitive and motor functions, such as sensory integration and perceptual binding, salience-guided attention, top-down executive functions, as well as in the control of brain states, such as sleep and its interhemispheric integration. The present study is the first to describe in detail a projection from the claustrum to the striatum in the macaque brain. Based on tracer injections in different striatal regions and in different cortical areas, we observed a rough topography of the claustral connectivity, thanks to which a claustral zone projects to both a specific striatal territory and to cortical areas involved in a network projecting to the same striatal territory. The present data add new elements of complexity of the basal ganglia information processing mode in motor and non-motor functions and provide evidence for an influence of the claustrum on both cortical functional domains and cortico-basal ganglia circuits.
Collapse
Affiliation(s)
- Elena Borra
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy.
| | - Gemma Ballestrazzi
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy
| | - Dalila Biancheri
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy
| | - Roberto Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Giuseppe Luppino
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy
| |
Collapse
|
4
|
Liu Z, Feng Z, Liu G, Li A, Gong H, Yang X, Li X. A complementary approach for neocortical cytoarchitecture inspection with cellular resolution imaging at whole brain scale. Front Neuroanat 2024; 18:1388084. [PMID: 38846539 PMCID: PMC11153794 DOI: 10.3389/fnana.2024.1388084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
Cytoarchitecture, the organization of cells within organs and tissues, serves as a crucial anatomical foundation for the delineation of various regions. It enables the segmentation of the cortex into distinct areas with unique structural and functional characteristics. While traditional 2D atlases have focused on cytoarchitectonic mapping of cortical regions through individual sections, the intricate cortical gyri and sulci demands a 3D perspective for unambiguous interpretation. In this study, we employed fluorescent micro-optical sectioning tomography to acquire architectural datasets of the entire macaque brain at a resolution of 0.65 μm × 0.65 μm × 3 μm. With these volumetric data, the cortical laminar textures were remarkably presented in appropriate view planes. Additionally, we established a stereo coordinate system to represent the cytoarchitectonic information as surface-based tomograms. Utilizing these cytoarchitectonic features, we were able to three-dimensionally parcel the macaque cortex into multiple regions exhibiting contrasting architectural patterns. The whole-brain analysis was also conducted on mice that clearly revealed the presence of barrel cortex and reflected biological reasonability of this method. Leveraging these high-resolution continuous datasets, our method offers a robust tool for exploring the organizational logic and pathological mechanisms of the brain's 3D anatomical structure.
Collapse
Affiliation(s)
- Zhixiang Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Feng
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Guangcai Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiangning Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| |
Collapse
|
5
|
Borra E, Rizzo M, Luppino G. Gradients of thalamic connectivity in the macaque lateral prefrontal cortex. Front Integr Neurosci 2023; 17:1239426. [PMID: 37908780 PMCID: PMC10613699 DOI: 10.3389/fnint.2023.1239426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
In the primate brain, the lateral prefrontal cortex (LPF) is a large, heterogeneous region critically involved in the cognitive control of behavior, consisting of several connectionally and functionally distinct areas. Studies in macaques provided evidence for distinctive patterns of cortical connectivity between architectonic areas located at different dorsoventral levels and for rostrocaudal gradients of parietal and frontal connections in the three main architectonic LPF areas: 46d, 46v, and 12r. In the present study, based on tracer injections placed at different dorsoventral and rostrocaudal cortical levels, we have examined the thalamic projections to the LPF to examine to what extent fine-grained connectional gradients of cortical connectivity are reflected in the topography of thalamo-LPF projections. The results showed mapping onto the nucleus medialis dorsalis (MD), by far the major source of thalamic input to the LPF, of rostral-to-caudal LPF zones, in which MD zones projecting to more caudal LPF sectors are located more rostral than those projecting to intermediate LPF sectors. Furthermore, the MD zones projecting to the rostral LPF sectors tended to be much more extensive in the rostrocaudal direction. One rostrolateral MD sector appeared to be a common source of projections to caudal prefrontal areas involved in the oculomotor frontal domain, a more caudal and ventral MD sector to a large extent of the ventral LPF, and middle and dorsal MD sectors to most of the dorsal LPF. Additional topographically organized projections to LPF areas originated from the nucleus pulvinaris medialis and projections from the nucleus anterior medialis selectively targeted more rostral sectors of LPF. Thus, the present data suggest that the topography of the MD-LPF projections does not adhere to simple topological rules, but is mainly organized according to functional criteria.
Collapse
Affiliation(s)
| | | | - Giuseppe Luppino
- Neuroscience Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Rapan L, Froudist-Walsh S, Niu M, Xu T, Zhao L, Funck T, Wang XJ, Amunts K, Palomero-Gallagher N. Cytoarchitectonic, receptor distribution and functional connectivity analyses of the macaque frontal lobe. eLife 2023; 12:e82850. [PMID: 37578332 PMCID: PMC10425179 DOI: 10.7554/elife.82850] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/14/2023] [Indexed: 08/15/2023] Open
Abstract
Based on quantitative cyto- and receptor architectonic analyses, we identified 35 prefrontal areas, including novel subdivisions of Walker's areas 10, 9, 8B, and 46. Statistical analysis of receptor densities revealed regional differences in lateral and ventrolateral prefrontal cortex. Indeed, structural and functional organization of subdivisions encompassing areas 46 and 12 demonstrated significant differences in the interareal levels of α2 receptors. Furthermore, multivariate analysis included receptor fingerprints of previously identified 16 motor areas in the same macaque brains and revealed 5 clusters encompassing frontal lobe areas. We used the MRI datasets from the non-human primate data sharing consortium PRIME-DE to perform functional connectivity analyses using the resulting frontal maps as seed regions. In general, rostrally located frontal areas were characterized by bigger fingerprints, that is, higher receptor densities, and stronger regional interconnections. Whereas more caudal areas had smaller fingerprints, but showed a widespread connectivity pattern with distant cortical regions. Taken together, this study provides a comprehensive insight into the molecular structure underlying the functional organization of the cortex and, thus, reconcile the discrepancies between the structural and functional hierarchical organization of the primate frontal lobe. Finally, our data are publicly available via the EBRAINS and BALSA repositories for the entire scientific community.
Collapse
Affiliation(s)
- Lucija Rapan
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Sean Froudist-Walsh
- Center for Neural Science, New York UniversityNew YorkUnited States
- Bristol Computational Neuroscience Unit, Faculty of Engineering, University of BristolBristolUnited Kingdom
| | - Meiqi Niu
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Ting Xu
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
| | - Ling Zhao
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Thomas Funck
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Katrin Amunts
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| |
Collapse
|
7
|
Watakabe A, Skibbe H, Nakae K, Abe H, Ichinohe N, Rachmadi MF, Wang J, Takaji M, Mizukami H, Woodward A, Gong R, Hata J, Van Essen DC, Okano H, Ishii S, Yamamori T. Local and long-distance organization of prefrontal cortex circuits in the marmoset brain. Neuron 2023; 111:2258-2273.e10. [PMID: 37196659 PMCID: PMC10789578 DOI: 10.1016/j.neuron.2023.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
The prefrontal cortex (PFC) has dramatically expanded in primates, but its organization and interactions with other brain regions are only partially understood. We performed high-resolution connectomic mapping of the marmoset PFC and found two contrasting corticocortical and corticostriatal projection patterns: "patchy" projections that formed many columns of submillimeter scale in nearby and distant regions and "diffuse" projections that spread widely across the cortex and striatum. Parcellation-free analyses revealed representations of PFC gradients in these projections' local and global distribution patterns. We also demonstrated column-scale precision of reciprocal corticocortical connectivity, suggesting that PFC contains a mosaic of discrete columns. Diffuse projections showed considerable diversity in the laminar patterns of axonal spread. Altogether, these fine-grained analyses reveal important principles of local and long-distance PFC circuits in marmosets and provide insights into the functional organization of the primate brain.
Collapse
Affiliation(s)
- Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Ken Nakae
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Kyoto 606-8501, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hiroshi Abe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Noritaka Ichinohe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
| | - Muhammad Febrian Rachmadi
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Faculty of Computer Science, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia
| | - Jian Wang
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Masafumi Takaji
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Alexander Woodward
- Connectome Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Rui Gong
- Connectome Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Junichi Hata
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
| | - David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 108-8345, Japan
| | - Shin Ishii
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan.
| |
Collapse
|
8
|
Amiez C, Sallet J, Giacometti C, Verstraete C, Gandaux C, Morel-Latour V, Meguerditchian A, Hadj-Bouziane F, Ben Hamed S, Hopkins WD, Procyk E, Wilson CRE, Petrides M. A revised perspective on the evolution of the lateral frontal cortex in primates. SCIENCE ADVANCES 2023; 9:eadf9445. [PMID: 37205762 DOI: 10.1126/sciadv.adf9445] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Detailed neuroscientific data from macaque monkeys have been essential in advancing understanding of human frontal cortex function, particularly for regions of frontal cortex without homologs in other model species. However, precise transfer of this knowledge for direct use in human applications requires an understanding of monkey to hominid homologies, particularly whether and how sulci and cytoarchitectonic regions in the frontal cortex of macaques relate to those in hominids. We combine sulcal pattern analysis with resting-state functional magnetic resonance imaging and cytoarchitectonic analysis to show that old-world monkey brains have the same principles of organization as hominid brains, with the notable exception of sulci in the frontopolar cortex. This essential comparative framework provides insights into primate brain evolution and a key tool to drive translation from invasive research in monkeys to human applications.
Collapse
Affiliation(s)
- Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Jérôme Sallet
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
- Wellcome Integrative Neuroimaging Centre, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Camille Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Charles Verstraete
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Clémence Gandaux
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Valentine Morel-Latour
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille, CNRS, 13331 Marseille, France
- Station de Primatologie CNRS, UPS846, 13790 Rousset, France
- Brain and Language Research Institute, Université Aix-Marseille, CNRS, 13604 Aix-en-Provence, France
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, Lyon, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-Université Claude Bernard Lyon I, Bron, France
| | - William D Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, 78602, USA
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Charles R E Wilson
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Michael Petrides
- Department of Neurology and Neurosurgery and Department of Psychology, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Yusif Rodriguez N, McKim TH, Basu D, Ahuja A, Desrochers TM. Monkey Dorsolateral Prefrontal Cortex Represents Abstract Visual Sequences during a No-Report Task. J Neurosci 2023; 43:2741-2755. [PMID: 36868856 PMCID: PMC10089245 DOI: 10.1523/jneurosci.2058-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Monitoring sequential information is an essential component of our daily lives. Many of these sequences are abstract, in that they do not depend on the individual stimuli, but do depend on an ordered set of rules (e.g., chop then stir when cooking). Despite the ubiquity and utility of abstract sequential monitoring, little is known about its neural mechanisms. Human rostrolateral prefrontal cortex (RLPFC) exhibits specific increases in neural activity (i.e., "ramping") during abstract sequences. Monkey dorsolateral prefrontal cortex (DLPFC) has been shown to represent sequential information in motor (not abstract) sequence tasks, and contains a subregion, area 46, with homologous functional connectivity to human RLPFC. To test the prediction that area 46 may represent abstract sequence information, and do so with parallel dynamics to those found in humans, we conducted functional magnetic resonance imaging (fMRI) in three male monkeys. When monkeys performed no-report abstract sequence viewing, we found that left and right area 46 responded to abstract sequential changes. Interestingly, responses to rule and number changes overlapped in right area 46 and left area 46 exhibited responses to abstract sequence rules with changes in ramping activation, similar to that observed in humans. Together, these results indicate that monkey DLPFC monitors abstract visual sequential information, potentially with a preference for different dynamics in the two hemispheres. More generally, these results show that abstract sequences are represented in functionally homologous regions across monkeys and humans.SIGNIFICANCE STATEMENT Daily, we complete sequences that are "abstract" because they depend on an ordered set of rules (e.g., chop then stir when cooking) rather than the identity of individual items. Little is known about how the brain tracks, or monitors, this abstract sequential information. Based on previous human work showing abstract sequence related dynamics in an analogous area, we tested whether monkey dorsolateral prefrontal cortex (DLPFC), specifically area 46, represents abstract sequential information using awake monkey functional magnetic resonance imaging (fMRI). We found that area 46 responded to abstract sequence changes, with a preference for more general responses on the right and dynamics similar to humans on the left. These results suggest that abstract sequences are represented in functionally homologous regions across monkeys and humans.
Collapse
Affiliation(s)
- Nadira Yusif Rodriguez
- Department of Neuroscience, Brown University, Providence, RI 02912
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Theresa H McKim
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Debaleena Basu
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Aarit Ahuja
- Department of Neuroscience, Brown University, Providence, RI 02912
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Theresa M Desrochers
- Department of Neuroscience, Brown University, Providence, RI 02912
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02912
| |
Collapse
|
10
|
Do we understand the prefrontal cortex? Brain Struct Funct 2022:10.1007/s00429-022-02587-7. [DOI: 10.1007/s00429-022-02587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
|
11
|
Xu R, Bichot NP, Takahashi A, Desimone R. The cortical connectome of primate lateral prefrontal cortex. Neuron 2022; 110:312-327.e7. [PMID: 34739817 PMCID: PMC8776613 DOI: 10.1016/j.neuron.2021.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
The lateral prefrontal cortex (LPFC) of primates plays an important role in executive control, but how it interacts with the rest of the cortex remains unclear. To address this, we densely mapped the cortical connectome of LPFC, using electrical microstimulation combined with functional MRI (EM-fMRI). We found isomorphic mappings between LPFC and five major processing domains composing most of the cerebral cortex except early sensory and motor areas. An LPFC grid of ∼200 stimulation sites topographically mapped to separate grids of activation sites in the five domains, coarsely resembling how the visual cortex maps the retina. The temporal and parietal maps largely overlapped in LPFC, suggesting topographically organized convergence of the ventral and dorsal streams, and the other maps overlapped at least partially. Thus, the LPFC contains overlapping, millimeter-scale maps that mirror the organization of major cortical processing domains, supporting LPFC's role in coordinating activity within and across these domains.
Collapse
Affiliation(s)
- Rui Xu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Narcisse P Bichot
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atsushi Takahashi
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Desimone
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
12
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
14
|
Bakola S, Burman KJ, Bednarek S, Chan JM, Jermakow N, Worthy KH, Majka P, Rosa MGP. Afferent Connections of Cytoarchitectural Area 6M and Surrounding Cortex in the Marmoset: Putative Homologues of the Supplementary and Pre-supplementary Motor Areas. Cereb Cortex 2021; 32:41-62. [PMID: 34255833 DOI: 10.1093/cercor/bhab193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Cortical projections to the caudomedial frontal cortex were studied using retrograde tracers in marmosets. We tested the hypothesis that cytoarchitectural area 6M includes homologues of the supplementary and pre-supplementary motor areas (SMA and pre-SMA) of other primates. We found that, irrespective of the injection sites' location within 6M, over half of the labeled neurons were located in motor and premotor areas. Other connections originated in prefrontal area 8b, ventral anterior and posterior cingulate areas, somatosensory areas (3a and 1-2), and areas on the rostral aspect of the dorsal posterior parietal cortex. Although the origin of afferents was similar, injections in rostral 6M received higher percentages of prefrontal afferents, and fewer somatosensory afferents, compared to caudal injections, compatible with differentiation into SMA and pre-SMA. Injections rostral to 6M (area 8b) revealed a very different set of connections, with increased emphasis on prefrontal and posterior cingulate afferents, and fewer parietal afferents. The connections of 6M were also quantitatively different from those of the primary motor cortex, dorsal premotor areas, and cingulate motor area 24d. These results show that the cortical motor control circuit is conserved in simian primates, indicating that marmosets can be valuable models for studying movement planning and control.
Collapse
Affiliation(s)
- Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jonathan M Chan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Piotr Majka
- Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia.,Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
15
|
Hupalo S, Spencer RC, Berridge CW. Prefrontal corticotropin-releasing factor neurons impair sustained attention via distal transmitter release. Eur J Neurosci 2021; 54:10.1111/ejn.15260. [PMID: 33949025 PMCID: PMC9215710 DOI: 10.1111/ejn.15260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/18/2021] [Accepted: 04/21/2021] [Indexed: 12/01/2022]
Abstract
The prefrontal cortex (PFC) supports cognitive processes critical for goal-directed behavior. Although the PFC contains a high density of corticotropin-releasing factor (CRF) neurons, their role in cognition has been largely unexplored. We recently demonstrated that CRF neurons in the caudal dorsomedial PFC (dmPFC) of rats act to impair working memory via activation of local CRF receptors. However, there is heterogeneity in the neural mechanisms that support the diversity of PFC-dependent cognitive processes. Currently, the degree to which PFC CRF neurons impact other forms of PFC-dependent cognition is unknown. To address this issue, the current studies examined the effects of chemogenetic manipulations of PFC CRF neurons on sustained attention in male rats. Similar to working memory, activation of caudal dmPFC CRF neurons impaired, while inhibition of these neurons or global CRF receptor antagonism improved, sustained attention. However, unlike working memory, the sustained attention-impairing effect of PFC CRF neurons was not dependent on local CRF receptors. Moreover, CRF infusion into the caudal dmPFC or other medial PFC subregions had no effect on task performance. Together, these observations demonstrate that while caudal dmPFC CRF neurons impair both working memory and sustained attention, these actions involve distinct neural circuits (local CRF release for working memory and extra-PFC release for sustained attention). Nonetheless, the procognitive actions of systemically administered CRF antagonists across both tasks are similar to those seen with attention deficit hyperactivity disorder-related treatments. Thus, CRF antagonists may have potential for use in the treatment of PFC cognitive dysfunction.
Collapse
Affiliation(s)
| | - Robert C. Spencer
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706
| | - Craig W. Berridge
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
16
|
Hayashi T, Hou Y, Glasser MF, Autio JA, Knoblauch K, Inoue-Murayama M, Coalson T, Yacoub E, Smith S, Kennedy H, Van Essen DC. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage 2021; 229:117726. [PMID: 33484849 PMCID: PMC8079967 DOI: 10.1016/j.neuroimage.2021.117726] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022] Open
Abstract
Multi-modal neuroimaging projects such as the Human Connectome Project (HCP) and UK Biobank are advancing our understanding of human brain architecture, function, connectivity, and their variability across individuals using high-quality non-invasive data from many subjects. Such efforts depend upon the accuracy of non-invasive brain imaging measures. However, 'ground truth' validation of connectivity using invasive tracers is not feasible in humans. Studies using nonhuman primates (NHPs) enable comparisons between invasive and non-invasive measures, including exploration of how "functional connectivity" from fMRI and "tractographic connectivity" from diffusion MRI compare with long-distance connections measured using tract tracing. Our NonHuman Primate Neuroimaging & Neuroanatomy Project (NHP_NNP) is an international effort (6 laboratories in 5 countries) to: (i) acquire and analyze high-quality multi-modal brain imaging data of macaque and marmoset monkeys using protocols and methods adapted from the HCP; (ii) acquire quantitative invasive tract-tracing data for cortical and subcortical projections to cortical areas; and (iii) map the distributions of different brain cell types with immunocytochemical stains to better define brain areal boundaries. We are acquiring high-resolution structural, functional, and diffusion MRI data together with behavioral measures from over 100 individual macaques and marmosets in order to generate non-invasive measures of brain architecture such as myelin and cortical thickness maps, as well as functional and diffusion tractography-based connectomes. We are using classical and next-generation anatomical tracers to generate quantitative connectivity maps based on brain-wide counting of labeled cortical and subcortical neurons, providing ground truth measures of connectivity. Advanced statistical modeling techniques address the consistency of both kinds of data across individuals, allowing comparison of tracer-based and non-invasive MRI-based connectivity measures. We aim to develop improved cortical and subcortical areal atlases by combining histological and imaging methods. Finally, we are collecting genetic and sociality-associated behavioral data in all animals in an effort to understand how genetic variation shapes the connectome and behavior.
Collapse
Affiliation(s)
- Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yujie Hou
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Matthew F Glasser
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA; Department of Neuroscience and Radiology, Washington University Medical School, St Louis, MO USA
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kenneth Knoblauch
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | | | - Tim Coalson
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Stephen Smith
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Henry Kennedy
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai, China
| | - David C Van Essen
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| |
Collapse
|
17
|
Orban GA, Lanzilotto M, Bonini L. From Observed Action Identity to Social Affordances. Trends Cogn Sci 2021; 25:493-505. [PMID: 33745819 DOI: 10.1016/j.tics.2021.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Others' observed actions cause continuously changing retinal images, making it challenging to build neural representations of action identity. The monkey anterior intraparietal area (AIP) and its putative human homologue (phAIP) host neurons selective for observed manipulative actions (OMAs). The neuronal activity of both AIP and phAIP allows a stable readout of OMA identity across visual formats, but human neurons exhibit greater invariance and generalize from observed actions to action verbs. These properties stem from the convergence in AIP of superior temporal signals concerning: (i) observed body movements; and (ii) the changes in the body-object relationship. We propose that evolutionarily preserved mechanisms underlie the specification of observed-actions identity and the selection of motor responses afforded by them, thereby promoting social behavior.
Collapse
Affiliation(s)
- G A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - M Lanzilotto
- Department of Psychology, University of Turin, Turin, Italy
| | - L Bonini
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
18
|
Borra E, Luppino G. Comparative anatomy of the macaque and the human frontal oculomotor domain. Neurosci Biobehav Rev 2021; 126:43-56. [PMID: 33737106 DOI: 10.1016/j.neubiorev.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 11/15/2022]
Abstract
In non-human primates, at the junction of the prefrontal with the premotor cortex, there is a sector designated as frontal eye field (FEF), involved in controlling oculomotor behavior and spatial attention. Evidence for at least two FEFs in humans is at the basis of the still open issue of the possible homologies between the macaque and the human frontal oculomotor system. In this review article we address this issue suggesting a new view solidly grounded on evidence from the last decade showing that, in macaques, the FEF is at the core of an oculomotor domain in which several distinct areas, including areas 45A and 45B, provide the substrate for parallel processing of different aspects of oculomotor behavior. Based on comparative considerations, we will propose a correspondence between some of the macaque and the human oculomotor fields, thus suggesting sharing of neural substrate for oculomotor control, gaze processing, and orienting attention in space. Accordingly, this article could contribute to settle some aspects of the so-called "enigma" of the human FEF anatomy.
Collapse
Affiliation(s)
- Elena Borra
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy.
| | - Giuseppe Luppino
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy
| |
Collapse
|
19
|
Reward-related choices determine information timing and flow across macaque lateral prefrontal cortex. Nat Commun 2021; 12:894. [PMID: 33563989 PMCID: PMC7873307 DOI: 10.1038/s41467-021-20943-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/16/2020] [Indexed: 01/25/2023] Open
Abstract
Prefrontal cortex is critical for cognition. Although much is known about the representation of cognitive variables in the prefrontal cortex, much less is known about the spatio-temporal neural dynamics that underlie cognitive operations. In the present study, we examined information timing and flow across the lateral prefrontal cortex (LPFC), while monkeys carried out a two-armed bandit reinforcement learning task in which they had to learn to select rewarding actions or rewarding objects. When we analyzed signals independently within subregions of the LPFC, we found a task-specific, caudo-rostral gradient in the strength and timing of signals related to chosen objects and chosen actions. In addition, when we characterized information flow among subregions, we found that information flow from action to object representations was stronger from the dorsal to ventral LPFC, and information flow from object to action representations was stronger from the ventral to dorsal LPFC. The object to action effects were more pronounced in object blocks, and also reflected learning specifically in these blocks. These results suggest anatomical segregation followed by the rapid integration of information within the LPFC. Previous studies provided conflicting evidence on the functional organization of the lateral prefrontal cortex. The authors show task-specific information flows along the caudo-rostral and dorso-ventral axes, reflecting the cognitive process of identifying the location or identity of a valuable object.
Collapse
|
20
|
Li S, Zhou X, Constantinidis C, Qi XL. Plasticity of Persistent Activity and Its Constraints. Front Neural Circuits 2020; 14:15. [PMID: 32528254 PMCID: PMC7247814 DOI: 10.3389/fncir.2020.00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Stimulus information is maintained in working memory by action potentials that persist after the stimulus is no longer physically present. The prefrontal cortex is a critical brain area that maintains such persistent activity due to an intrinsic network with unique synaptic connectivity, NMDA receptors, and interneuron types. Persistent activity can be highly plastic depending on task demands but it also appears in naïve subjects, not trained or required to perform a task at all. Here, we review what aspects of persistent activity remain constant and what factors can modify it, focusing primarily on neurophysiological results from non-human primate studies. Changes in persistent activity are constrained by anatomical location, with more ventral and more anterior prefrontal areas exhibiting the greatest capacity for plasticity, as opposed to posterior and dorsal areas, which change relatively little with training. Learning to perform a cognitive task for the first time, further practicing the task, and switching between learned tasks can modify persistent activity. The ability of the prefrontal cortex to generate persistent activity also depends on age, with changes noted between adolescence, adulthood, and old age. Mean firing rates, variability and correlation of persistent discharges, but also time-varying firing rate dynamics are altered by these factors. Plastic changes in the strength of intrinsic network connections can be revealed by the analysis of synchronous spiking between neurons. These results are essential for understanding how the prefrontal cortex mediates working memory and intelligent behavior.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xin Zhou
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Computer Science, Stanford University, Stanford, CA, United States
| | - Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xue-Lian Qi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
21
|
Adam R, Johnston K, Menon RS, Everling S. Functional reorganization during the recovery of contralesional target selection deficits after prefrontal cortex lesions in macaque monkeys. Neuroimage 2020; 207:116339. [DOI: 10.1016/j.neuroimage.2019.116339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/08/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
|
22
|
Constantinidis C, Qi XL. Representation of Spatial and Feature Information in the Monkey Dorsal and Ventral Prefrontal Cortex. Front Integr Neurosci 2018; 12:31. [PMID: 30131679 PMCID: PMC6090048 DOI: 10.3389/fnint.2018.00031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/17/2018] [Indexed: 01/04/2023] Open
Abstract
The primate prefrontal cortex (PFC) is critical for executive functions including working memory, task switching and response selection. The functional organization of this area has been a matter of debate over a period of decades. Early models proposed segregation of spatial and object information represented in working memory in the dorsal and ventral PFC, respectively. Other models emphasized the integrative ability of the entire PFC depending on task demands, not necessarily tied to working memory. An anterior-posterior hierarchy of specialization has also been speculated, in which progressively more abstract information is represented more anteriorly. Here we revisit this debate, updating these arguments in light of recent evidence in non-human primate neurophysiology studies. We show that spatial selectivity is predominantly represented in the posterior aspect of the dorsal PFC, regardless of training history and task performed. Objects of different features excite both dorsal and ventral prefrontal neurons, however neurons highly specialized for feature information are located predominantly in the posterior aspect of the ventral PFC. In accordance with neuronal selectivity, spatial working memory is primarily impaired by inactivation or lesion of the dorsal PFC and object working memory by ventral inactivation or lesion. Neuronal responses are plastic depending on task training but training too has dissociable effects on ventral and dorsal PFC, with the latter appearing to be more plastic. Despite the absence of an overall topography, evidence exists for the orderly localization of stimulus information at a sub-millimeter scale, within the dimensions of a cortical column. Unresolved questions remain, regarding the existence or not of a functional map at the areal and columnar scale, and the link between behavior and neuronal activity for different prefrontal subdivisions.
Collapse
Affiliation(s)
- Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Xue-Lian Qi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|