1
|
Teymornejad S, Majka P, Worthy KH, Atapour N, Rosa MGP. Bilateral connections from the amygdala to extrastriate visual cortex in the marmoset monkey. Cereb Cortex 2024; 34:bhae348. [PMID: 39227312 DOI: 10.1093/cercor/bhae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
It is known that the primate amygdala forms projections to many areas of the ipsilateral cortex, but the extent to which it forms connections with the contralateral visual cortex remains less understood. Based on retrograde tracer injections in marmoset monkeys, we report that the amygdala forms widespread projections to the ipsilateral extrastriate cortex, including V1 and areas in both the dorsal (MT, V4T, V3a, 19M, and PG/PFG) and the ventral (VLP and TEO) streams. In addition, contralateral projections were found to target each of the extrastriate areas, but not V1. In both hemispheres, the tracer-labeled neurons were exclusively located in the basolateral nuclear complex. The number of labeled neurons in the contralateral amygdala was small relative to the ipsilateral connection (1.2% to 5.8%). The percentage of contralateral connections increased progressively with hierarchical level. An injection in the corpus callosum demonstrated that at least some of the amygdalo-cortical connections cross through this fiber tract, in addition to the previously documented path through the anterior commissure. Our results expand knowledge of the amygdalofugal projections to the extrastriate cortex, while also revealing pathways through which visual stimuli conveying affective content can directly influence early stages of neural processing in the contralateral visual field.
Collapse
Affiliation(s)
- Sadaf Teymornejad
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia
| | - Nafiseh Atapour
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia
| |
Collapse
|
2
|
Snelleksz M, Rossell SL, Gibbons A, Nithianantharajah J, Dean B. Evidence that the frontal pole has a significant role in the pathophysiology of schizophrenia. Psychiatry Res 2022; 317:114850. [PMID: 36174274 DOI: 10.1016/j.psychres.2022.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 01/04/2023]
Abstract
Different regions of the cortex have been implicated in the pathophysiology of schizophrenia. Recently published data suggested there are many more changes in gene expression in the frontal pole (Brodmann's Area (BA) 10) compared to the dorsolateral prefrontal cortex (BA 9) and the anterior cingulate cortex (BA 33) from patients with schizophrenia. These data argued that the frontal pole is significantly affected by the pathophysiology of schizophrenia. The frontal pole is a region necessary for higher cognitive functions and is highly interconnected with many other brain regions. In this review we summarise the growing body of evidence to support the hypothesis that a dysfunctional frontal pole, due at least in part to its widespread effects on brain function, is making an important contribution to the pathophysiology of schizophrenia. We detail the many structural, cellular and molecular abnormalities in the frontal pole from people with schizophrenia and present findings that argue the symptoms of schizophrenia are closely linked to dysfunction in this critical brain region.
Collapse
Affiliation(s)
- Megan Snelleksz
- Synaptic Biology and Cognition Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan L Rossell
- Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, Victoria, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Andrew Gibbons
- The Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Jess Nithianantharajah
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Brian Dean
- Synaptic Biology and Cognition Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Ferrucci L, Nougaret S, Ceccarelli F, Sacchetti S, Fascianelli V, Benozzo D, Genovesio A. Social monitoring of actions in the macaque frontopolar cortex. Prog Neurobiol 2022; 218:102339. [PMID: 35963359 DOI: 10.1016/j.pneurobio.2022.102339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
The frontopolar cortex (FPC) of primates appeared as a main innovation in the evolution of anthropoid primates and it has been placed at the top of the prefrontal hierarchy. The only study to date that investigated the activity of FPC neurons in monkeys performing a cognitive task suggested that these cells were involved in the monitoring of self-generated actions. We recorded the activity of neurons in the FPCs of two rhesus monkeys while they performed a social variant of a nonmatch-to-goal task that required monitoring the actions of a human or computer agent. We discovered that the role of FPC neurons extends beyond self-generated actions to include monitoring others' actions. Their monitoring activity was very specific. First, neurons in the FPC encoded the spatial position of the target but not its object features. Second, a dedicated representation of the human agent actions was tied to the time of target acquisition, while it was reduced or absent in the successive epochs of the trial. Finally, this other-specific neural substrate did not emerge during the interaction with a virtual agent such as the computer. These results provide a new perspective on the functions of a uniquely primate brain area, suggesting that FPC might play an important role in social behaviors.
Collapse
Affiliation(s)
- Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simon Nougaret
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Stefano Sacchetti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valeria Fascianelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Danilo Benozzo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
Preuss TM, Wise SP. Evolution of prefrontal cortex. Neuropsychopharmacology 2022; 47:3-19. [PMID: 34363014 PMCID: PMC8617185 DOI: 10.1038/s41386-021-01076-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Subdivisions of the prefrontal cortex (PFC) evolved at different times. Agranular parts of the PFC emerged in early mammals, and rodents, primates, and other modern mammals share them by inheritance. These are limbic areas and include the agranular orbital cortex and agranular medial frontal cortex (areas 24, 32, and 25). Rodent research provides valuable insights into the structure, functions, and development of these shared areas, but it contributes less to parts of the PFC that are specific to primates, namely, the granular, isocortical PFC that dominates the frontal lobe in humans. The first granular PFC areas evolved either in early primates or in the last common ancestor of primates and tree shrews. Additional granular PFC areas emerged in the primate stem lineage, as represented by modern strepsirrhines. Other granular PFC areas evolved in simians, the group that includes apes, humans, and monkeys. In general, PFC accreted new areas along a roughly posterior to anterior trajectory during primate evolution. A major expansion of the granular PFC occurred in humans in concert with other association areas, with modifications of corticocortical connectivity and gene expression, although current evidence does not support the addition of a large number of new, human-specific PFC areas.
Collapse
Affiliation(s)
- Todd M Preuss
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
| | - Steven P Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Bethesda, MD, 20814, USA
| |
Collapse
|
5
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
6
|
Bakola S, Burman KJ, Bednarek S, Chan JM, Jermakow N, Worthy KH, Majka P, Rosa MGP. Afferent Connections of Cytoarchitectural Area 6M and Surrounding Cortex in the Marmoset: Putative Homologues of the Supplementary and Pre-supplementary Motor Areas. Cereb Cortex 2021; 32:41-62. [PMID: 34255833 DOI: 10.1093/cercor/bhab193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Cortical projections to the caudomedial frontal cortex were studied using retrograde tracers in marmosets. We tested the hypothesis that cytoarchitectural area 6M includes homologues of the supplementary and pre-supplementary motor areas (SMA and pre-SMA) of other primates. We found that, irrespective of the injection sites' location within 6M, over half of the labeled neurons were located in motor and premotor areas. Other connections originated in prefrontal area 8b, ventral anterior and posterior cingulate areas, somatosensory areas (3a and 1-2), and areas on the rostral aspect of the dorsal posterior parietal cortex. Although the origin of afferents was similar, injections in rostral 6M received higher percentages of prefrontal afferents, and fewer somatosensory afferents, compared to caudal injections, compatible with differentiation into SMA and pre-SMA. Injections rostral to 6M (area 8b) revealed a very different set of connections, with increased emphasis on prefrontal and posterior cingulate afferents, and fewer parietal afferents. The connections of 6M were also quantitatively different from those of the primary motor cortex, dorsal premotor areas, and cingulate motor area 24d. These results show that the cortical motor control circuit is conserved in simian primates, indicating that marmosets can be valuable models for studying movement planning and control.
Collapse
Affiliation(s)
- Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jonathan M Chan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Piotr Majka
- Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia.,Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
DiNicola LM, Buckner RL. Precision Estimates of Parallel Distributed Association Networks: Evidence for Domain Specialization and Implications for Evolution and Development. Curr Opin Behav Sci 2021; 40:120-129. [PMID: 34263017 DOI: 10.1016/j.cobeha.2021.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Humans can reason about other minds, comprehend language and imagine. These abilities depend on association regions that exhibit evolutionary expansion and prolonged postnatal development. Precision maps within individuals reveal these expanded zones are populated by multiple specialized networks that each possess a spatially distributed motif but remain anatomically separated throughout the cortex for language, social and mnemonic / spatial functions. Rather than converge on multi-domain regions or hubs, these networks include distinct regions within rostral prefrontal and temporal association zones. To account for these observations, we propose the expansion-fractionation-specialization (EFS) hypothesis: evolutionary expansion of human association cortex may have allowed for an archetype distributed network to fractionate into multiple specialized networks. Human development may recapitulate fractionation and specialization when these abilities emerge.
Collapse
Affiliation(s)
- Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138 USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138 USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129 USA.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129 USA
| |
Collapse
|
8
|
Nadeau SE. Neural mechanisms of emotions, alexithymia, and depression. HANDBOOK OF CLINICAL NEUROLOGY 2021; 183:299-313. [PMID: 34389124 DOI: 10.1016/b978-0-12-822290-4.00014-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter brings the powerful conceptual tools of the science of parallel distributed processing (PDP) to bear on the cognitive neuroscience of emotions discussed in this book. Cerebral representations are encoded as patterns of activity involving billions of neurons. PDP across these neuronal populations provides the basis for a number of emergent properties: (1) processing occurs and knowledge (long term memories) is stored (as synaptic connection strengths) in exactly the same networks; (2) networks have the capacity for setting into stable attractor states corresponding to concepts, symbols, implicit rules, or data transformations; (3) networks provide the scaffold for the acquisition of knowledge, but knowledge is acquired through experience; (4) PDP networks are adept at incorporating the statistical regularities of experience as well as frequency and age of acquisition effects; (5) networks enable content-addressable memory; (6) because knowledge is distributed throughout networks, they exhibit the property of graceful degradation; (7) networks intrinsically provide the capacity for inference. With this perspective, I propose a new model of emotional function that reasonably accounts for the effects of focal lesions at various points (insula, orbitofrontal cortex, convexity cortex, and intervening white matter) due to stroke, trauma, surgery, and degenerative disease, as reflected in disorders of affective prosody, facial emotional comprehension and expression, emotional behavior, and personality. I consider a modification of the James Lange theory that takes into account the role of a lifetime of subjective knowledge acquisition by the orbitofrontal cortex. Alexithymia is conceptualized as a disorder of the insula/orbitofrontal cortex/dorsolateral prefrontal cortex (DL-PFC) system, the function of which can be disrupted by degradation of knowledge at a number of different locations. Finally, I consider the possibility that depression reflects pathological learning involving the medial and lateral orbitofrontal cortices such that there is a pathologic engagement of the two regions, as suggested by Rolls. I conclude with a consideration of the peculiar responsivity of depression to serotonergic and noradrenergic agents, as well as to surgical orbitofrontal undercutting, and what that might be telling us about the mechanisms of depression and its treatment.
Collapse
Affiliation(s)
- Stephen E Nadeau
- Research Service and the Brain Rehabilitation Research Center, Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, United States; Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
9
|
Wang XJ, Pereira U, Rosa MG, Kennedy H. Brain connectomes come of age. Curr Opin Neurobiol 2020; 65:152-161. [PMID: 33276230 PMCID: PMC7770070 DOI: 10.1016/j.conb.2020.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 01/06/2023]
Abstract
Databases of consistent, directed- and weighted inter-areal connectivity for mouse, macaque and marmoset monkeys have recently become available and begun to be used to build structural and dynamical models. A structural hierarchy can be defined based by laminar patterns of cortical connections. A large-scale dynamical model of the macaque cortex endowed with a laminar structure accounts for empirically observed frequency-modulated interplay between bottom-up and top-down processes. Signal propagation in the model with spiking neurons displays a threshold of stimulus amplitude for the activity to gain access to the prefrontal cortex, reminiscent of the ignition phenomenon associated with conscious perception. These two examples illustrate how connectomics inform structurally based dynamic models of multi-regional brain systems. Theory raises novel questions for future anatomical and physiological empirical research, in a back-and-forth collaboration between experimentalists and theorists. Directed- and weighted inter-areal cortical connectivity matrices of macaque, marmoset and mouse exhibit similarities as well as marked differences. The new connectomic data provide quantitative information for structural and dynamical modeling of multi-regional cortical circuit providing insight to the global cortical function. Quantification of cortical hierarchy guides investigations of interplay between bottom-up and top-down information processes.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| | - Ulises Pereira
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Marcello Gp Rosa
- Biomedicine Discovery Institute and Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Henry Kennedy
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai 200031, China
| |
Collapse
|
10
|
Dorsal prefrontal and premotor cortex of the ferret as defined by distinctive patterns of thalamo-cortical projections. Brain Struct Funct 2020; 225:1643-1667. [PMID: 32458050 PMCID: PMC7286872 DOI: 10.1007/s00429-020-02086-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/09/2020] [Indexed: 12/19/2022]
Abstract
Recent studies of the neurobiology of the dorsal frontal cortex (FC) of the ferret have illuminated its key role in the attention network, top-down cognitive control of sensory processing, and goal directed behavior. To elucidate the neuroanatomical regions of the dorsal FC, and delineate the boundary between premotor cortex (PMC) and dorsal prefrontal cortex (dPFC), we placed retrograde tracers in adult ferret dorsal FC anterior to primary motor cortex and analyzed thalamo-cortical connectivity. Cyto- and myeloarchitectural differences across dorsal FC and the distinctive projection patterns from thalamic nuclei, especially from the subnuclei of the medial dorsal (MD) nucleus and the ventral thalamic nuclear group, make it possible to clearly differentiate three separate dorsal FC fields anterior to primary motor cortex: polar dPFC (dPFCpol), dPFC, and PMC. Based on the thalamic connectivity, there is a striking similarity of the ferret's dorsal FC fields with other species. This possible homology opens up new questions for future comparative neuroanatomical and functional studies.
Collapse
|
11
|
The brain’s default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci 2019; 20:593-608. [DOI: 10.1038/s41583-019-0212-7] [Citation(s) in RCA: 421] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
|
12
|
Buckner RL, Margulies DS. Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey. Nat Commun 2019; 10:1976. [PMID: 31036823 PMCID: PMC6488644 DOI: 10.1038/s41467-019-09812-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Networks of widely distributed regions populate human association cortex. One network, often called the default network, is positioned at the apex of a gradient of sequential networks that radiate outward from primary cortex. Here, extensive anatomical data made available through the Marmoset Brain Architecture Project are explored to show a homologue exists in marmoset. Results reveal that a gradient of networks extend outward from primary cortex to progressively higher-order transmodal association cortex in both frontal and temporal cortex. The apex transmodal network comprises frontopolar and rostral temporal association cortex, parahippocampal areas TH / TF, the ventral posterior midline, and lateral parietal association cortex. The positioning of this network in the gradient and its composition of areas make it a candidate homologue to the human default network. That the marmoset, a physiologically- and genetically-accessible primate, might possess a default-network-like candidate creates opportunities for study of higher cognitive and social functions.
Collapse
Affiliation(s)
- Randy L Buckner
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France
| |
Collapse
|
13
|
Braga RM, Van Dijk KRA, Polimeni JR, Eldaief MC, Buckner RL. Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. J Neurophysiol 2019; 121:1513-1534. [PMID: 30785825 PMCID: PMC6485740 DOI: 10.1152/jn.00808.2018] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Examination of large-scale distributed networks within the individual reveals details of cortical network organization that are absent in group-averaged studies. One recent discovery is that a distributed transmodal network, often referred to as the "default network," comprises two closely interdigitated networks, only one of which is coupled to posterior parahippocampal cortex. Not all studies of individuals have identified the same networks, and questions remain about the degree to which the two networks are separate, particularly within regions hypothesized to be interconnected hubs. In this study we replicate the observation of network separation across analytical (seed-based connectivity and parcellation) and data projection (volume and surface) methods in two individuals each scanned 31 times. Additionally, three individuals were examined with high-resolution (7T; 1.35 mm) functional magnetic resonance imaging to gain further insight into the anatomical details. The two networks were identified with separate regions localized to adjacent portions of the cortical ribbon, sometimes inside the same sulcus. Midline regions previously implicated as hubs revealed near complete spatial separation of the two networks, displaying a complex spatial topography in the posterior cingulate and precuneus. The network coupled to parahippocampal cortex also revealed a separate region directly within the hippocampus, at or near the subiculum. These collective results support that the default network is composed of at least two spatially juxtaposed networks. Fine spatial details and juxtapositions of the two networks can be identified within individuals at high resolution, providing insight into the network organization of association cortex and placing further constraints on interpretation of group-averaged neuroimaging data. NEW & NOTEWORTHY Recent evidence has emerged that canonical large-scale networks such as the "default network" fractionate into parallel distributed networks when defined within individuals. This research uses high-resolution imaging to show that the networks possess juxtapositions sometimes evident inside the same sulcus and within regions that have been previously hypothesized to be network hubs. Distinct circumscribed regions of one network were also resolved in the hippocampal formation, at or near the parahippocampal cortex and subiculum.
Collapse
Affiliation(s)
- Rodrigo M Braga
- Department of Psychology, Center for Brain Science, Harvard University , Cambridge, Massachusetts
- The Computational, Cognitive & Clinical Neuroimaging Laboratory, Hammersmith Hospital Campus, Imperial College London , London , United Kingdom
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Koene R A Van Dijk
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Radiology, Harvard Medical School , Boston, Massachusetts
- Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Mark C Eldaief
- Department of Psychology, Center for Brain Science, Harvard University , Cambridge, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University , Cambridge, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Radiology, Harvard Medical School , Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
14
|
Majka P, Rosa MGP, Bai S, Chan JM, Huo BX, Jermakow N, Lin MK, Takahashi YS, Wolkowicz IH, Worthy KH, Rajan R, Reser DH, Wójcik DK, Okano H, Mitra PP. Unidirectional monosynaptic connections from auditory areas to the primary visual cortex in the marmoset monkey. Brain Struct Funct 2018; 224:111-131. [PMID: 30288557 PMCID: PMC6373361 DOI: 10.1007/s00429-018-1764-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022]
Abstract
Until the late twentieth century, it was believed that different sensory modalities were processed by largely independent pathways in the primate cortex, with cross-modal integration only occurring in specialized polysensory areas. This model was challenged by the finding that the peripheral representation of the primary visual cortex (V1) receives monosynaptic connections from areas of the auditory cortex in the macaque. However, auditory projections to V1 have not been reported in other primates. We investigated the existence of direct interconnections between V1 and auditory areas in the marmoset, a New World monkey. Labelled neurons in auditory cortex were observed following 4 out of 10 retrograde tracer injections involving V1. These projections to V1 originated in the caudal subdivisions of auditory cortex (primary auditory cortex, caudal belt and parabelt areas), and targeted parts of V1 that represent parafoveal and peripheral vision. Injections near the representation of the vertical meridian of the visual field labelled few or no cells in auditory cortex. We also placed 8 retrograde tracer injections involving core, belt and parabelt auditory areas, none of which revealed direct projections from V1. These results confirm the existence of a direct, nonreciprocal projection from auditory areas to V1 in a different primate species, which has evolved separately from the macaque for over 30 million years. The essential similarity of these observations between marmoset and macaque indicate that early-stage audiovisual integration is a shared characteristic of primate sensory processing.
Collapse
Affiliation(s)
- Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
| | - Marcello G P Rosa
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia.
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Shi Bai
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Jonathan M Chan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Bing-Xing Huo
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Meng K Lin
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
| | - Yeonsook S Takahashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
| | - Ianina H Wolkowicz
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Katrina H Worthy
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Ramesh Rajan
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - David H Reser
- School of Rural Health, Monash University, Churchill, VIC, 3842, Australia
| | - Daniel K Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Partha P Mitra
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia.
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|