1
|
Su CH, Huang KH, Yang Y, Gau SY, Chung NJ, Wu PT, Tsai TH, Lee CY. Cumulative Dose Effects of H1 Antihistamine Use on the Risk of Dementia in Patients With Allergic Rhinitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2155-2165. [PMID: 38935035 DOI: 10.1016/j.jaip.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND H1 antihistamines (AHs), categorized as first-generation antihistamines (FGAs) or second-generation antihistamines (SGAs), possess anticholinergic properties linked to heightened dementia risk. OBJECTIVES To explore dementia risk in patients with allergic rhinitis using AHs. METHODS Taiwanese patients with new-onset allergic rhinitis (2011-2017) constituted the study population (677,971 with FGAs or SGAs, 36,081 without AHs). AH use was measured in cumulative defined daily dose (cDDD). Patients were grouped by cDDD (nonuser, <60 cDDD, 60-120 cDDD, and >120 cDDD). A Cox proportional hazard model assessed the AH-dementia association. Sensitivity analysis explored AH effects on dementia risk across subgroups and associations between specific AHs and dementia types. RESULTS FGAs in patients with allergic rhinitis were associated with elevated dementia risk. At less than 60 cDDD, adjusted hazard ratio (aHR) was 1.13 (95% CI, 1.09-1.17); at 60 to 120 cDDD, aHR was 1.29 (95% CI, 1.21-1.38); and at more than 120 cDDD, aHR was 1.51 (95% CI, 1.42-1.62). SGAs also raised dementia risk. At less than 60 cDDD, aHR was 1.11 (95% CI, 1.05-1.17); at 60 to 120 cDDD, aHR was 1.19 (95% CI, 1.12-1.26); and at more than 120 cDDD, aHR was 1.26 (95% CI, 1.19-1.33). CONCLUSIONS Patients with allergic rhinitis on FGAs or SGAs face an escalating dementia risk with increasing cumulative dosage. Moreover, FGAs exhibit a higher dementia risk compared with SGAs. Nevertheless, extensive clinical trials are imperative for confirming the association between FGA use, SGA use, and dementia risk.
Collapse
Affiliation(s)
- Chun-Hung Su
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Yih Yang
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ning-Jen Chung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Tseng Wu
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Naseri A, Sadigh-Eteghad S, Seyedi-Sahebari S, Hosseini MS, Hajebrahimi S, Salehi-Pourmehr H. Cognitive effects of individual anticholinergic drugs: a systematic review and meta-analysis. Dement Neuropsychol 2023; 17:e20220053. [PMID: 37261256 PMCID: PMC10229087 DOI: 10.1590/1980-5764-dn-2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 06/02/2023] Open
Abstract
Anticholinergics (ACs) are among the most prescribed drugs. Investigating the impaired cognitive domains due to individual ACs usage is associated with controversial findings. Objective The objective of this study was to investigate the effects of individual ACs on different aspects of cognitive function based on clinical trial studies. Methods This systematic review was conducted following the PRISMA statement. A systematic search was performed in Embase, PubMed, Cochrane Library, Scopus, and Web of Science databases. Risk of bias (RoB) was assessed by the Joanna Briggs Institute checklists and the meta-analysis was performed using the CMA software. Results Out of 3,026 results of searching, 138 studies were included. A total of 38 studies that assess the cognitive impacts of scopolamine were included in the meta-analysis. Included studies reported cognitive effects of scopolamine, mecamylamine, atropine, biperiden, oxybutynin, trihexyphenidyl, benzhexol, and dicyclomine; however, glycopyrrolate, trospium, tolterodine, darifenacin, fesoterodine, tiotropium, and ipratropium were not associated with cognitive decline. Based on the meta-analyses, scopolamine was associated with reduced recognition (SDM -1.84; 95%CI -2.48 to -1.21; p<0.01), immediate recall (SDM -1.82; 95%CI -2.35 to -1.30; p<0.01), matching to sample (SDM -1.76; 95%CI -2.57 to -0.96; p<0.01), delayed recall (SDM -1.54; 95%CI -1.97 to -1.10; p<0.01), complex memory tasks (SDM -1.31; 95%CI -1.78 to -0.84; p<0.01), free recall (SDM -1.18; 95%CI -1.63 to -0.73; p<0.01), cognitive function (SDM -0.95; 95%CI -1.46 to -0.44; p<0.01), attention (SDM -0.85; 95%CI -1.38 to -0.33; p<0.01), and digit span (SDM -0.65; 95%CI -1.21 to -0.10; p=0.02). There was a high RoB in our included study, especially in terms of dealing with possible cofounders. Conclusion The limitations of this study suggest a need for more well-designed studies with a longer duration of follow-up on this topic to reach more reliable evidence.
Collapse
Affiliation(s)
- Amirreza Naseri
- Tabriz University of Medical Sciences, Student Research Committee, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Tabriz University of Medical Sciences, Neurosciences Research Center, Tabriz, Iran
| | | | | | - Sakineh Hajebrahimi
- Tabriz University of Medical Sciences, Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Tabriz University of Medical Sciences, Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz, Iran
| |
Collapse
|
3
|
Vidal B, Pereira M, Valdebenito M, Vidal L, Mouthon F, Zimmer L, Charvériat M, Droguerre M. Pharmaco-fUS in cognitive impairment: Lessons from a preclinical model. J Psychopharmacol 2022; 36:1273-1279. [PMID: 36205074 DOI: 10.1177/02698811221128963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND There is an urgent need to understand and reverse cognitive impairment. The lack of appropriate animal models combined with the limited knowledge of pathophysiological mechanisms makes the development of new cognition-enhancing drugs complex. Scopolamine is a pharmacologic agent which impairs cognition and functional imaging in a wide range of animal species, similarly to what is seen in cognitive impairment in humans. METHODS In this study, using a functional ultrasound (fUS) neuroimaging technique, we monitored the impact of donepezil (DPZ), a potent acetylcholinesterase inhibitor and first-line treatment in patients with mild to moderate Alzheimer's disease, in a scopolamine-induced mouse model. RESULTS We demonstrated that despite its low impact on the cerebral blood volume (CBV) signal, scopolamine injection produced an overall decrease in functional connectivity between various brain areas. In addition, we revealed that DPZ induced a strong decrease in CBV signal without causing a difference in functional connectivity. CONCLUSION Finally, our work highlighted that DPZ counteracted the impact of scopolamine on functional connectivity changes and confirmed the interest of using pharmaco-fUS imaging on cognitive disorders, both in frequent and rare neurological disorders.
Collapse
Affiliation(s)
- Benjamin Vidal
- Theranexus, Lyon, France.,Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon, France
| | - Mickaël Pereira
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon, France
| | | | - Louis Vidal
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon, France
| | | | - Luc Zimmer
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon, France.,CERMEP-imaging platform, Bron, France.,Hospices Civils de Lyon, Lyon, France
| | | | | |
Collapse
|
4
|
Feasibility and potential of a bedside mini-EEG for diagnosing delirium superimposed on dementia. Clin Neurophysiol 2022; 142:181-189. [PMID: 36041344 DOI: 10.1016/j.clinph.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Delirium superimposed on dementia (DSD) is difficult to diagnose because symptoms of delirium might be interpreted as symptoms of dementia. To improve diagnostic accuracy, we investigated the potential of a brief point-of-care EEG measurement. METHODS Thirty older patients were included, all with Major Neurocognitive Disorder (i.e. dementia) according to DSM-5 criteria. EEG was registered at right prefrontal and right temporal site, with eyes either open or closed for three minutes, simultaneously with the Discomfort Scale for Dementia of Alzheimer Type. The Confusion Assessment Method for the Intensive Care Unit was administered to determine the presence of symptoms of a delirium at the time of EEG administration. Video registrations were reviewed independently by two delirium experts. RESULTS Higher activities of delta and theta1, and lower activities of theta2, alpha, and beta activity, were found in DSD when compared to dementia only. The ratio of delta and theta power during eyes-open conditions had the highest accuracy (AUC = 0.80 [0.63-0.94]; p <.001) to distinguish DSD from dementia alone. All subjects were on benzodiazepines and half on clozapine, thus the effects of psychotropics on EEG cannot be fully excluded. CONCLUSIONS A brief point-of-care EEG at two sites of the head has the potential to aid in the detection of DSD. SIGNIFICANCE The diagnostic accuracy of EEG in recognizing or excluding delirium in patients who already have dementia is of large potential given the lack of proper diagnostic tools.
Collapse
|
5
|
Schiwy LC, Forlim CG, Fischer DJ, Kühn S, Becker M, Gallinat J. Aberrant functional connectivity within the salience network is related to cognitive deficits and disorganization in psychosis. Schizophr Res 2022; 246:103-111. [PMID: 35753120 DOI: 10.1016/j.schres.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/10/2022] [Accepted: 06/11/2022] [Indexed: 01/09/2023]
Abstract
In schizophrenia and schizoaffective disorder cognitive deficits are a reliable characteristic predicting a poor functional outcome. It has been theorized that both the default mode network (DMN) and the salience network (SN) play a crucial role in cognitive processes and aberrant functional connectivity within these networks in psychotic patients has been reported. The goal of this study was to reveal potential links between aberrant functional connectivity within these networks and impaired cognitive performance in psychosis. We chose two approaches for cognitive assessment, first the MATRICS Consensus Cognitive Battery (MCCB) combined into a global score and second the disorganization factor derived from a five-factor model of the Positive and Negative Syndrome Scale (PANSS) known to be relevant for cognitive performance. DMN and SN were identified using independent component analysis on resting-state functional magnetic resonance imaging data. We found significantly decreased connectivity within the right supplementary motor area (SMA) and bilateral putamen in patients with psychosis (n = 70; 27F/43M) compared to healthy controls (n = 72; 28F/44M). Within patients, linear regression analysis revealed that aberrant SMA connectivity was associated with impaired global cognition, while dysfunctional bilateral putamen connectivity predicted disorganization. There were no significant changes in connectivity within the DMN. Results support the hypothesis that SN dysfunctional connectivity is important in the pathobiology of cognitive deficits in psychosis. For the first time we were able to show the involvement of dysfunctional SMA connectivity in this context. We interpret the decreased SN connectivity as evidence of reduced functionality in recruiting brain areas necessary for cognitive processing.
Collapse
Affiliation(s)
- Lennart Christopher Schiwy
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany.
| | - Caroline Garcia Forlim
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| | - Djo Juliette Fischer
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| | - Simone Kühn
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany; Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195 Berlin, Germany
| | - Maxi Becker
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| | - Jürgen Gallinat
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Pruzin JJ, Klein H, Rabin JS, Schultz AP, Kirn DR, Yang H, Buckley RF, Scott MR, Properzi M, Rentz DM, Johnson KA, Sperling RA, Chhatwal JP. Physical activity is associated with increased resting-state functional connectivity in networks predictive of cognitive decline in clinically unimpaired older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12319. [PMID: 35821672 PMCID: PMC9261733 DOI: 10.1002/dad2.12319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 04/08/2023]
Abstract
Introduction Physical activity (PA) promotes resilience with respect to cognitive decline, although the underlying mechanisms are not well understood. We examined the associations between objectively measured PA and resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) across seven anatomically distributed neural networks. Methods rs-fcMRI, amyloid beta (Aβ) positron emission tomography (PET), PA (steps/day × 1 week), and longitudinal cognitive (Preclinical Alzheimer's Cognitive Composite) data from 167 cognitively unimpaired adults (ages 63 to 90) were used. We used linear and linear mixed-effects regression models to examine the associations between baseline PA and baseline network connectivity and between PA, network connectivity, and longitudinal cognitive performance. Results Higher PA was associated selectively with greater connectivity in three networks previously associated with cognitive decline (default, salience, left control). This association with network connectivity accounted for a modest portion of PA's effects on Aβ-related cognitive decline. Discussion Although other mechanisms are likely present, PA may promote resilience with respect to Aß-related cognitive decline, partly by increasing connectivity in a subset of cognitive networks.
Collapse
Affiliation(s)
- Jeremy J. Pruzin
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Banner Alzheimer's InstitutePhoenixArizonaUSA
| | - Hannah Klein
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer S. Rabin
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Harquail Centre for NeuromodulationSunnybrook Health Sciences CentreTorontoCanada
- Division of NeurologyDepartment of MedicineSunnybrook Health Sciences CentreUniversity of TorontoTorontoCanada
- Rehabilitation Sciences InstituteUniversity of TorontoTorontoCanada
| | - Aaron P. Schultz
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Dylan R. Kirn
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Hyun‐Sik Yang
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Rachel F. Buckley
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Florey InstituteUniversity of MelbourneParkvilleVictoriaAustralia
- Melbourne School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Mathew R. Scott
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of BiostatisticsBoston UniversityBostonMAUSA
| | - Michael Properzi
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Dorene M. Rentz
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Keith A. Johnson
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Reisa A. Sperling
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jasmeer P. Chhatwal
- Department of NeurologyMassachusetts General HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
7
|
Welk B, Richardson K, Panicker JN. The cognitive effect of anticholinergics for patients with overactive bladder. Nat Rev Urol 2021; 18:686-700. [PMID: 34429535 DOI: 10.1038/s41585-021-00504-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Overactive bladder (OAB) is often treated with medications that block the cholinergic receptors in the bladder (known as anticholinergics). The effect of this medication class on cognition and risk of dementia has been increasingly studied over the past 40 years after initial studies suggested that the anticholinergic medication class could affect memory. Short-term randomized clinical trials demonstrated that the administration of the anticholinergic oxybutynin leads to impaired memory and attention, and large, population-based studies showed associations between several different anticholinergic medications and dementia. However, trials involving anticholinergics other than oxybutynin have not shown such substantial effects on short-term cognitive function. This discordance in results between short-term cognitive safety of OAB anticholinergics and the long-term increased dementia risk could be explained by the high proportion of patients using oxybutynin in the OAB subgroups of the dementia studies, or a study duration that was too short in the prospective clinical trials on cognition with other OAB anticholinergics. Notably, all studies must be interpreted in the context of potential confounding factors, such as when prodromal urinary symptoms associated with the early stages of dementia lead to an increase in OAB medication use, rather than the use of OAB medication causing dementia. In patients with potential risk factors for cognitive impairment, the cautious use of selected OAB anticholinergic agents with favourable physicochemical and pharmacokinetic properties and clinical trial evidence of cognitive safety might be appropriate.
Collapse
Affiliation(s)
- Blayne Welk
- Department of Surgery and Epidemiology & Biostatistics, Western University, London, Ontario, Canada.
| | | | - Jalesh N Panicker
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, and UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| |
Collapse
|
8
|
Krivanek TJ, Gale SA, McFeeley BM, Nicastri CM, Daffner KR. Promoting Successful Cognitive Aging: A Ten-Year Update. J Alzheimers Dis 2021; 81:871-920. [PMID: 33935078 PMCID: PMC8293659 DOI: 10.3233/jad-201462] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
A decade has passed since we published a comprehensive review in this journal addressing the topic of promoting successful cognitive aging, making this a good time to take stock of the field. Because there have been limited large-scale, randomized controlled trials, especially following individuals from middle age to late life, some experts have questioned whether recommendations can be legitimately offered about reducing the risk of cognitive decline and dementia. Despite uncertainties, clinicians often need to at least make provisional recommendations to patients based on the highest quality data available. Converging lines of evidence from epidemiological/cohort studies, animal/basic science studies, human proof-of-concept studies, and human intervention studies can provide guidance, highlighting strategies for enhancing cognitive reserve and preventing loss of cognitive capacity. Many of the suggestions made in 2010 have been supported by additional research. Importantly, there is a growing consensus among major health organizations about recommendations to mitigate cognitive decline and promote healthy cognitive aging. Regular physical activity and treatment of cardiovascular risk factors have been supported by all of these organizations. Most organizations have also embraced cognitively stimulating activities, a heart-healthy diet, smoking cessation, and countering metabolic syndrome. Other behaviors like regular social engagement, limiting alcohol use, stress management, getting adequate sleep, avoiding anticholinergic medications, addressing sensory deficits, and protecting the brain against physical and toxic damage also have been endorsed, although less consistently. In this update, we review the evidence for each of these recommendations and offer practical advice about behavior-change techniques to help patients adopt brain-healthy behaviors.
Collapse
Affiliation(s)
- Taylor J. Krivanek
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Seth A. Gale
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Brittany M. McFeeley
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Casey M. Nicastri
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Kirk R. Daffner
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Pharmaco-fUS: Quantification of pharmacologically-induced dynamic changes in brain perfusion and connectivity by functional ultrasound imaging in awake mice. Neuroimage 2020; 222:117231. [DOI: 10.1016/j.neuroimage.2020.117231] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 11/20/2022] Open
|
10
|
Schultz AP, Buckley RF, Hampton OL, Scott MR, Properzi MJ, Peña-Gómez C, Pruzin JJ, Yang HS, Johnson KA, Sperling RA, Chhatwal JP. Longitudinal degradation of the default/salience network axis in symptomatic individuals with elevated amyloid burden. Neuroimage Clin 2019; 26:102052. [PMID: 31711955 PMCID: PMC7229343 DOI: 10.1016/j.nicl.2019.102052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/09/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022]
Abstract
Resting-state functional connectivity MRI (rs-fcMRI) is a non-invasive imaging technique that has come into increasing use to understand disrupted neural network function in neuropsychiatric disease. However, despite extensive study over the past 15 years, the development of rs-fcMRI as a biomarker has been impeded by a lack of reliable longitudinal rs-fcMRI measures. Here we focus on longitudinal change along the Alzheimer's disease (AD) trajectory and demonstrate the utility of Template Based Rotation (TBR) in detecting differential longitudinal rs-fcMRI change between higher and lower amyloid burden individuals with mildly impaired cognition. Specifically, we examine a small (N = 24), but densely sampled (~5 observations over ~3 years), cohort of symptomatic individuals with serial rs-fcMRI imaging and PiB-PET imaging for β-amyloid pathology. We observed longitudinal decline of the Default Mode and Salience network axis (DMN/SAL) among impaired individuals with high amyloid burden. No other networks showed differential change in high vs. low amyloid individuals over time. The standardized effect size of AD related DMN/SAL change is comparable to the standardized effect size of amyloid-related change on the mini-mental state exam (MMSE) and hippocampal volume (HV). Last, we show that the AD-related change in DMN/SAL connectivity is almost completely independent of change on MMSE or HV, suggesting that rs-fcMRI is sensitive to an aspect of AD progression that is not captured by these other measures. Together these analyses demonstrate that longitudinal rs-fcMRI using TBR can capture disease-relevant network disruption in a clinical population.
Collapse
Affiliation(s)
- Aaron P Schultz
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rachel F Buckley
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Olivia L Hampton
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Matthew R Scott
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael J Properzi
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cleofé Peña-Gómez
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Jeremy J Pruzin
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Hyun-Sik Yang
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Reisa A Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Jasmeer P Chhatwal
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|