1
|
Cromb D, Wilson S, Bonthrone AF, Chew A, Kelly C, Kumar M, Cawley P, Dimitrova R, Arichi T, Tournier JD, Pushparajah K, Simpson J, Rutherford M, Hajnal JV, Edwards AD, Nosarti C, O’Muircheartaigh J, Counsell SJ. Individualized cortical gyrification in neonates with congenital heart disease. Brain Commun 2024; 6:fcae356. [PMID: 39429246 PMCID: PMC11487749 DOI: 10.1093/braincomms/fcae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/08/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Congenital heart disease is associated with impaired early brain development and adverse neurodevelopmental outcomes. This study investigated how individualized measures of preoperative cortical gyrification index differ in 142 infants with congenital heart disease, using a normative modelling approach with reference data from 320 typically developing infants. Gyrification index Z-scores for the whole brain and six major cortical areas were generated using two different normative models: one accounting for post-menstrual age at scan, post-natal age at scan and sex, and another additionally accounting for supratentorial brain volume. These Z-scores were compared between congenital heart disease and control groups to test the hypothesis that cortical folding in infants with congenital heart disease deviates from the normal developmental trajectory. The relationships between whole-brain gyrification index Z-scores from the two normative models and both cerebral oxygen delivery and neurodevelopmental outcomes were also investigated. Global and regional brain gyrification was significantly reduced in neonates with congenital heart disease, but not when supratentorial brain volume was accounted for. This finding suggests that whilst cortical folding is reduced in congenital heart disease, it is primarily driven by a reduction in brain size. There was a significant positive correlation between cerebral oxygen delivery and whole-brain gyrification index Z-scores in congenital heart disease, but not when supratentorial brain volume was accounted for. Cerebral oxygen delivery is therefore likely to play a more important role in the biological processes underlying volumetric brain growth than cortical folding. No significant associations between whole-brain gyrification index Z-scores and motor/cognitive outcomes or autism traits were identified in the 70 infants with congenital heart disease who underwent neurodevelopmental assessment at 22-months. Our results suggest that chronic in utero and early post-natal hypoxia in congenital heart disease is associated with reductions in cortical folding that are proportional to reductions in supratentorial brain volume.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Siân Wilson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Manu Kumar
- GKT Medical School, King’s College London, London SE1 7EH, UK
| | - Paul Cawley
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, London SE1 7EH, UK
| | - J Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Kuberan Pushparajah
- Department of Cardiovascular Imaging, King’s College London, London SE1 7EH, UK
- Department of Fetal and Paediatric Cardiology, Evelina London Children’s Hospital, London SE1 7EH, UK
| | - John Simpson
- Department of Cardiovascular Imaging, King’s College London, London SE1 7EH, UK
- Department of Fetal and Paediatric Cardiology, Evelina London Children’s Hospital, London SE1 7EH, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, London SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
2
|
Yang F, Zhong J, Liu P, Yu W, Liu Y, Zhu M, Yang M, Mo X. Radiomics with structural magnetic resonance imaging, surface morphometry features, neurology scales, and clinical metrics to evaluate the neurodevelopment of preschool children with corrected tetralogy of Fallot. Transl Pediatr 2024; 13:1571-1587. [PMID: 39399711 PMCID: PMC11467234 DOI: 10.21037/tp-24-219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Background Despite the improved survival rates of children with tetralogy of Fallot (TOF), various degrees of neurodevelopmental disorders persist. Currently, there is a lack of quantitative and objective imaging markers to assess the neurodevelopment of individuals with TOF. This study aimed to noninvasively examine potential quantitative imaging markers of TOF neurodevelopment by combining radiomics signatures and morphological features and to further clarify the relationship between imaging markers and clinical neurodevelopment metrics. Methods This study included 33 preschool children who had undergone surgical correction for TOF and 29 healthy controls (36 in the training cohort and 26 in the testing cohort), all of whom underwent three-dimensional T1-weighted high-resolution (T1-3D) head magnetic resonance imaging (MRI). Radiomics features were extracted by Pyradiomics to construct radiomics models, while surface morphometry (surface and volumetric) features were analyzed to build morphometry models. Merged models integrating radiomics and morphometry features were subsequently developed. The optimal discriminative radiomics signatures were identified via least absolute shrinkage and selection operator (LASSO). Machine learning classification models include support vector machine (SVM) with radial basis function (RBF) and multivariable logistic regression (MLR) models, both of which were used to evaluate the potential imaging biomarkers. Performances of models were evaluated based on their calibration and classification metrics. The area under the receiver operating characteristic curves (AUCs) of the models were evaluated using the Delong test. Neurodevelopmental assessments for children with corrected TOF were conducted with the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV). Furthermore, the correlation of the significant discriminative indicators with clinical metrics and neurodevelopmental scales was evaluated. Results Twelve discriminative radiomics signatures, optimized for classification, were identified. The performance of the merged model (AUCs of 0.922 and 0.917 for the training set and test set with SVM, respectively) was superior to that of the single radiomics model (AUCs of 0.915 and 0.917 for the training set and test set with SVM, respectively) and that of the single morphometric models (AUCs of 0.803 and 0.756 for the training set and test set with SVM, respectively). The radiomics model demonstrated higher significance than did the morphometric models in training set with SVM (AUC: 0.915 vs. 0.803; P<0.001). Additionally, the significant indicators showed a correlation with clinical indicators and neurodevelopmental scales. Conclusions MRI-based radiomics features combined with morphometry features can provide complementary information to identify neurodevelopmental abnormalities in children with corrected TOF, which will provide potential evidence for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Feng Yang
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Zhong
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Liu
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Yu
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | | | - Meijiao Zhu
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Yang
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Zhao X, Wang Y, Wu X, Liu S. An MRI Study of Morphology, Asymmetry, and Sex Differences of Inferior Precentral Sulcus. Brain Topogr 2024; 37:748-763. [PMID: 38374489 PMCID: PMC11393153 DOI: 10.1007/s10548-024-01035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
Numerous studies utilizing magnetic resonance imaging (MRI) have observed sex and interhemispheric disparities in sulcal morphology, which could potentially underpin certain functional disparities in the human brain. Most of the existing research examines the precentral sulcus comprehensively, with a rare focus on its subsections. To explore the morphology, asymmetry, and sex disparities within the inferior precentral sulcus (IPCS), we acquired 3.0T magnetic resonance images from 92 right-handed Chinese adolescents. Brainvisa was used to reconstruct the IPCS structure and calculate its mean depth (MD). Based on the morphological patterns of IPCS, it was categorized into five distinct types. Additionally, we analyzed four different types of spatial relationships between IPCS and inferior frontal sulcus (IFS). There was a statistically significant sex disparity in the MD of IPCS, primarily observed in the right hemisphere. Females exhibited significantly greater asymmetry in the MD of IPCS compared to males. No statistically significant sex or hemispheric variations were identified in sulcal patterns. Our findings expand the comprehension of inconsistencies in sulcal structure, while also delivering an anatomical foundation for the study of related regions' function.
Collapse
Affiliation(s)
- Xinran Zhao
- Department of Clinical Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Wang
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaokang Wu
- Department of Clinical Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Shuwei Liu
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Hossin H, Sleiay M, Kouran J, Alsuliman RM, Kojok MHDA, Alkhateb NMN, Ghanem SG, Mansour M, Alsuliman T, Takkem S. A complex case of univentricular heart with multiple congenital malformations diagnosed in a newborn: a case report and literature review. Ann Med Surg (Lond) 2024; 86:4146-4151. [PMID: 38989176 PMCID: PMC11230730 DOI: 10.1097/ms9.0000000000002041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/29/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Univentricular heart disease is a relatively rare condition that affects infants, with a prevalence ranging from 0.05 to 0.1 per 1000 live births. It is characterized by an abnormality in the structure of the heart, specifically the presence of only one main pumping chamber (ventricle) instead of the usual two. Presentation of case In this particular case, a newborn male was diagnosed with double-inlet left ventricle (DILV), a specific form of univentricular heart disease. Following his birth, he exhibited symptoms of central cyanosis (a bluish tint to the skin due to poor oxygenation) and difficulties with breastfeeding. Clinical evaluation, along with a heart ultrasound, confirmed the need for palliative surgery. At the age of 6 months, the patient is scheduled to undergo the Glenn procedure, a surgical intervention that aims to redirect blood flow to the lungs and improve oxygenation. Clinical discussion Given the complexity of double-inlet single ventricle anomalies, there are multiple differential diagnoses that need to be considered for accurate diagnosis, including conditions such as tricuspid atresia, large ventricular septal defect and corrected transposition of the great arteries with ventricular septal defect. Conclusion Early intervention in the immediate postnatal period plays a crucial role in improving survival rates and reducing long-term complications. It is, therefore, essential to continue researching and refining treatment approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marah Mansour
- Faculty of Medicine, Tartous University, Tartous
- Division of Colon and Rectal Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Tamim Alsuliman
- Hematology and Cell Therapy Department, Saint-Antoine Hospital, AP-HP Sorbonne University, Paris, France
| | - Saleh Takkem
- Department of Cardiology Department, Alwatani Hospital, Hama University, Hama
| |
Collapse
|
5
|
Maleyeff L, Newburger JW, Wypij D, Thomas NH, Anagnoustou E, Brueckner M, Chung WK, Cleveland J, Cunningham S, Gelb BD, Goldmuntz E, Hagler DJ, Huang H, King E, McQuillen P, Miller TA, Norris‐Brilliant A, Porter GA, Roberts AE, Grant PE, Im K, Morton SU. Association of genetic and sulcal traits with executive function in congenital heart disease. Ann Clin Transl Neurol 2024; 11:278-290. [PMID: 38009418 PMCID: PMC10863927 DOI: 10.1002/acn3.51950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
OBJECTIVE Persons with congenital heart disease (CHD) are at increased risk of neurodevelopmental disabilities, including impairments to executive function. Sulcal pattern features correlate with executive function in adolescents with single-ventricle heart disease and tetralogy of Fallot. However, the interaction of sulcal pattern features with genetic and participant factors in predicting executive dysfunction is unknown. METHODS We studied sulcal pattern features, participant factors, and genetic risk for executive function impairment in a cohort with multiple CHD types using stepwise linear regression and machine learning. RESULTS Genetic factors, including predicted damaging de novo or rare inherited variants in neurodevelopmental disabilities risk genes, apolipoprotein E genotype, and principal components of sulcal pattern features were associated with executive function measures after adjusting for age at testing, sex, mother's education, and biventricular versus single-ventricle CHD in a linear regression model. Using regression trees and bootstrap validation, younger participant age and larger alterations in sulcal pattern features were consistently identified as important predictors of decreased cognitive flexibility with left hemisphere graph topology often selected as the most important predictor. Inclusion of both sulcal pattern and genetic factors improved model fit compared to either alone. INTERPRETATION We conclude that sulcal measures remain important predictors of cognitive flexibility, and the model predicting executive outcomes is improved by inclusion of potential genetic sources of neurodevelopmental risk. If confirmed, measures of sulcal patterning may serve as early imaging biomarkers to identify those at heightened risk for future neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Lara Maleyeff
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Jane W. Newburger
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Department of CardiologyBoston Children's HospitalBostonMassachusettsUSA
| | - David Wypij
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Department of CardiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Nina H. Thomas
- Department of Child and Adolescent Psychiatry and Behavioral Sciences and Center for Human Phenomic ScienceChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Evdokia Anagnoustou
- Department of PediatricsHolland Bloorview Kids Rehabilitation Hospital, University of TorontoTorontoOntarioCanada
| | - Martina Brueckner
- Department of GeneticsYale University School of MedicineNew HavenConnecticutUSA
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Wendy K. Chung
- Department of PediatricsColumbia University Medical CenterNew YorkNew YorkUSA
- Department of MedicineColumbia University Medical CenterNew YorkNew YorkUSA
| | - John Cleveland
- Department of Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Pediatrics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sean Cunningham
- Division of General Pediatrics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute and Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Department of PediatricsChildren's Hospital of Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Donald J Hagler
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoSan DiegoCaliforniaUSA
- Department of Radiology, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Hao Huang
- Department of RadiologyChildren's Hospital of Philadelphia, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Eileen King
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUSA
- Division of Biostatistics and EpidemiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Patrick McQuillen
- Department of PediatricsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Thomas A. Miller
- Department of PediatricsPrimary Children's Hospital, University of UtahSalt Lake CityUtahUSA
- Division of Pediatric CardiologyMaine Medical CenterPortlandMaineUSA
| | - Ami Norris‐Brilliant
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - George A. Porter
- Department of PediatricsUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Amy E. Roberts
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Department of CardiologyBoston Children's HospitalBostonMassachusettsUSA
- Division of Genetics and GenomicsBoston Children's HospitalBostonMassachusettsUSA
| | - P. Ellen Grant
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Division of Newborn Medicine, Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
- Fetal Neonatal Neuroimaging and Developmental Science CenterBoston Children's HospitalBostonMassachusettsUSA
- Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Kiho Im
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Division of Newborn Medicine, Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
- Fetal Neonatal Neuroimaging and Developmental Science CenterBoston Children's HospitalBostonMassachusettsUSA
| | - Sarah U. Morton
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Division of Newborn Medicine, Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
- Fetal Neonatal Neuroimaging and Developmental Science CenterBoston Children's HospitalBostonMassachusettsUSA
| |
Collapse
|
6
|
Phillips K, Callaghan B, Rajagopalan V, Akram F, Newburger JW, Kasparian NA. Neuroimaging and Neurodevelopmental Outcomes Among Individuals With Complex Congenital Heart Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:2225-2245. [PMID: 38030353 DOI: 10.1016/j.jacc.2023.09.824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023]
Abstract
Although neuroimaging advances have deepened our understanding of brain health in individuals with congenital heart disease (CHD), it is less clear how neuroimaging findings relate to neurodevelopmental and mental health outcomes across the lifespan. We systematically synthesized and critically evaluated evidence on associations between neuroimaging and neurodevelopmental, neurocognitive, psychiatric, or behavioral outcomes among individuals with transposition of great arteries or single-ventricle CHD (Protocol CRD42021229617). Six databases were searched and 45 papers from 25 unique studies were identified. Structural brain injury was generally linked to poorer neurodevelopment in infancy. Brain volumes and microstructural and functional brain changes appear linked to neurocognitive outcomes, including deficits in attention, learning, memory, and executive function in children and adolescents. Fetal neuroimaging studies were limited. Four papers investigated psychiatric outcomes; none found associations with neuroimaging. Multicenter, longitudinal studies incorporating functional neuroimaging and mental health outcomes are much-needed to inform early neuroprotective and therapeutic strategies in CHD.
Collapse
Affiliation(s)
- Katelyn Phillips
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Bridget Callaghan
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Vidya Rajagopalan
- Department of Radiology, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Farah Akram
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Nadine A Kasparian
- Heart and Mind Wellbeing Center, Heart Institute and the Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
7
|
Peng R, Yin X, Liu Y, He M, Wu HL, Xie HN. Development and validation of a predictive model for fetal cerebral maturation using ultrasound for fetuses with normal growth and fetal growth restriction. Quant Imaging Med Surg 2023; 13:8435-8446. [PMID: 38106296 PMCID: PMC10722076 DOI: 10.21037/qims-23-786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/11/2023] [Indexed: 12/19/2023]
Abstract
Background Investigation of fetal cerebral maturation (FCM) is necessary and important to provide crucial prognostic information for normal and high-risk fetuses. The study aimed to develop a valid and quantitative predictive model for assessing FCM using ultrasound and validate the model for fetuses with normal and restricted growth. Methods This was a multicenter prospective observational study. Fetuses with normal growth recruited from a university teaching hospital (Center 1) and a municipal maternal unit (Center 2) were included in the training set and external validation set 1, respectively. The 124 growth-restricted fetuses enrolled in Center 1 were included in validation set 2. FCM was used to describe the gestational age (GA) in this study. The model was developed based on the sum of fetal cranial parameters (total fetal cranial parameters), including head circumference (HC) and depths of the insula (INS) and sylvian fissure (SF), parieto-occipital fissure (POF), and calcarine fissure (CF). A regression model, constructed based on total fetal cranial parameters and predicted GA, was established using the training set and validated using external validation set 1 and validation set 2. Results The intra- and interobserver intraclass correlation coefficients for HC, and depths of the INS and SF, POF, and CF were >0.90. An exponential regression equation was used to predict FCM: predicted GA of FCM (weeks) =11.16 × exp (0.003 × total fetal cranial parameters) (P<0.001; adjusted R2=0.973), standard error of estimate, 0.67 weeks. The standard error of the predicted GA of FCM from the model was ±4.7 days. In the validation set 1, the mean standard error of the developed prediction model for FCM was 0.97 weeks. The predictive model showed that FCM was significantly delayed in validation set 2 (2.10±1.31 weeks, P<0.001), considering the GA per the last menstrual period. Conclusions The predictive performance of the FCM model developed in this study was excellent, and the novel model may be a valuable investigative tool during clinical implementation.
Collapse
Affiliation(s)
- Ruan Peng
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xia Yin
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- Department of Ultrasound, Dalian Municipal Women and Children’s Medical Center, Dalian, China
| | - Miao He
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Li Wu
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Ning Xie
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Wehrle FM, Furrer M, Feldmann M, Liamlahi R, Naef N, O'Gorman R, Latal B, Huber R. Functional networks of working memory abilities in children with complex congenital heart disease: a sleep EEG study. Child Neuropsychol 2023; 29:1109-1127. [PMID: 36324058 DOI: 10.1080/09297049.2022.2140796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Working memory is frequently impaired in children with complex congenital heart disease (CHD), but little is known about the functional neuronal correlates. Sleep slow wave activity (SWA; 1-4.5 Hz EEG power) has previously been shown to reliably map neurofunctional networks of cognitive abilities in children with and without neurodevelopmental impairments. This study investigated whether functional networks of working memory abilities are altered in children with complex CHD using EEG recordings during sleep. Twenty-one children with complex CHD (aged 10.9 [SD: 0.3] years) and 17 typically-developing peers (10.5 [0.7] years) completed different working memory tasks and an overnight high-density sleep EEG recording (128 electrodes). The combined working memory score tended to be lower in children with complex CHD (CHD group: -0.44 [1.12], typically-developing group: 0.55 [1.24], d = 0.59, p = .06). The working memory score and sleep SWA of the first hour of deep sleep were correlated over similar brain regions in both groups: Strong positive associations were found over prefrontal and fronto-parietal brain regions - known to be part of the working memory network - and strong negative associations were found over central brain regions. Within these working memory networks, the associations between working memory abilities and sleep SWA (r between -.36 and .58, all p < .03) were not different between the two groups (no interactions, all p > .05). The current findings suggest that sleep SWA reliably maps working memory networks in children with complex CHD and that these functional networks are generally preserved in these patients.
Collapse
Affiliation(s)
- Flavia M Wehrle
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neonatology and Intensive Care, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Melanie Furrer
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Feldmann
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Rabia Liamlahi
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nadja Naef
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ruth O'Gorman
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Brossard-Racine M, Panigrahy A. Structural Brain Alterations and Their Associations With Function in Children, Adolescents, and Young Adults With Congenital Heart Disease. Can J Cardiol 2023; 39:123-132. [PMID: 36336305 DOI: 10.1016/j.cjca.2022.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Most neonates who receive surgery for complex congenital heart disease (CHD) will survive well into adulthood, however, many of them will face functional challenges at one point during their life as a consequence of their atypical neurodevelopment. Recent advances in neuroscience and the increasing accessibility of magnetic resonance imaging have allowed numerous studies to identify the nature and extent of the brain alterations that are particular to survivors with CHD. Nevertheless, and considering that the range of outcomes is broad in this population, the functional consequences of these brain differences is not always evident. In this review, we summarize the present state of knowledge regarding the structure-function relationships evaluated in children, adolescents, and young adults with CHD using structural magnetic resonance imaging. Overall smaller total and regional brain volume, as well as lower fractional anisotropy in numerous brain regions, were frequently associated with lower cognitive outcomes including executive functioning and memory in adolescents and young adults with CHD. However, we identify several gaps in knowledge including the limited number of prospective investigations involving neonatal imaging and follow-up during childhood or adolescence, as well as the need for studies that evaluate a broader range of functional outcomes and not only the cognitive abilities. Future interdisciplinary investigations using multimodal imaging techniques could help address these gaps.
Collapse
Affiliation(s)
- Marie Brossard-Racine
- Advances in Brain and Child Development Research Laboratory, Research Institute of McGill University Health Center - Child Heald and Human Development, and School of Physical and Occupational Therapy, Department of Pediatrics - Division of Neonatology and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| | - Ashok Panigrahy
- Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC, and Clinical and Translational Imaging Research, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Ortinau CM, Smyser CD, Arthur L, Gordon EE, Heydarian HC, Wolovits J, Nedrelow J, Marino BS, Levy VY. Optimizing Neurodevelopmental Outcomes in Neonates With Congenital Heart Disease. Pediatrics 2022; 150:e2022056415L. [PMID: 36317967 PMCID: PMC10435013 DOI: 10.1542/peds.2022-056415l] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Neurodevelopmental impairment is a common and important long-term morbidity among infants with congenital heart disease (CHD). More than half of those with complex CHD will demonstrate some form of neurodevelopmental, neurocognitive, and/or psychosocial dysfunction requiring specialized care and impacting long-term quality of life. Preventing brain injury and treating long-term neurologic sequelae in this high-risk clinical population is imperative for improving neurodevelopmental and psychosocial outcomes. Thus, cardiac neurodevelopmental care is now at the forefront of clinical and research efforts. Initial research primarily focused on neurocritical care and operative strategies to mitigate brain injury. As the field has evolved, investigations have shifted to understanding the prenatal, genetic, and environmental contributions to impaired neurodevelopment. This article summarizes the recent literature detailing the brain abnormalities affecting neurodevelopment in children with CHD, the impact of genetics on neurodevelopmental outcomes, and the best practices for neonatal neurocritical care, focusing on developmental care and parental support as new areas of importance. A framework is also provided for the infrastructure and resources needed to support CHD families across the continuum of care settings.
Collapse
Affiliation(s)
- Cynthia M. Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Christopher D. Smyser
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Lindsay Arthur
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Erin E. Gordon
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haleh C. Heydarian
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Cardiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Joshua Wolovits
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jonathan Nedrelow
- Department of Neonatology, Cook Children’s Medical Center, Fort Worth, Texas
| | - Bradley S. Marino
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Divisions of Cardiology and Critical Care Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Victor Y. Levy
- Department of Pediatrics, Stanford University School of Medicine, Lucile Packard Children’s Hospital, Palo Alto, California
| |
Collapse
|
11
|
Majeed A, Rofeberg V, Bellinger DC, Wypij D, Newburger JW. Machine Learning to Predict Executive Function in Adolescents with Repaired d-Transposition of the Great Arteries, Tetralogy of Fallot, and Fontan Palliation. J Pediatr 2022; 246:145-153. [PMID: 35314155 DOI: 10.1016/j.jpeds.2022.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To identify predictors of impaired executive function in adolescents after surgical repair of critical congenital heart disease (CHD). STUDY DESIGN We analyzed patient factors, medical and surgical history, and family social class from 3 single-center studies of adolescents with d-transposition of the great arteries (d-TGA), tetralogy of Fallot (TOF), and Fontan repair. Machine learning models were developed using recursive partitioning to predict an executive function composite score based on five subtests (population mean 10, SD 3) of the Delis-Kaplan Executive Function System. RESULTS The sample included 386 patients (139 d-TGA, 91 TOF, 156 Fontan) of age 15.1 ± 2.1 (mean ± SD) years and an executive function composite score of 8.6 ± 2.4. Family social class emerged as the most important predictive factor. The lowest (worst) mean executive function score (5.3) occurred in patients with low to medium social class (Hollingshead index <56) with one or more neurologic events and a diagnosis of TOF. The highest (best) mean score (9.7) occurred in subjects with high social class (Hollingshead index ≥56) and shorter duration of deep hypothermic circulatory arrest. Other factors predicting lower executive function scores included low birth weight and a greater number of catheterizations. CONCLUSIONS In regression tree modeling, family social class was the strongest predictor of executive function in adolescents with critical CHD, even in the presence of medical risk factors. Additional predictors included CHD diagnosis, birth weight, neurologic events, and number of procedures. These data highlight the importance of social class in mitigating risks of executive dysfunction in CHD.
Collapse
Affiliation(s)
- Amara Majeed
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Valerie Rofeberg
- Department of Cardiology, Boston Children's Hospital, Boston, MA
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA
| | - David Wypij
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA.
| |
Collapse
|
12
|
Altered brain structure in preschool-aged children with tetralogy of Fallot. Pediatr Res 2022; 93:1321-1327. [PMID: 35194163 DOI: 10.1038/s41390-022-01987-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neurodevelopmental abnormalities are prevalent in children with tetralogy of Fallot. Our aim was to investigate the structural brain alterations of preschool-aged children with tetralogy of Fallot and its correlation with neurodevelopmental outcome. METHODS T1-weighted structural images were obtained from 25 children with tetralogy of Fallot who had undergone cardiopulmonary bypass surgery and from 24 normal controls. Cortical morphological indices including gray matter volume, cortical thickness, sulcal depth, gyrification, and cortical surface complexity were compared between the two groups. Neurodevelopmental assessments of the children with tetralogy of Fallot were performed with the Wechsler Preschool and Primary Scale of Intelligence. RESULTS Cortical morphological differences between groups were distributed throughout the right caudal middle frontal gyrus, right fusiform gyrus, right lateral occipital gyrus, right precuneus, and left inferior parietal lobule. Among children with tetralogy of Fallot, altered cortical structures were correlated with the visual spatial index, working memory index, and perioperative variables. CONCLUSION Our results suggested that abnormal cortical structure in preschool-aged children with tetralogy of Fallot may be the persistent consequence of delayed cortical development in fetuses and cortical morphology can be used as an early potential biomarker to capture regional brain abnormalities that are relevant to neurodevelopmental outcomes. IMPACT Altered cortical structures in preschool-aged children with ToF were correlated with both neurodevelopmental outcomes and clinical risk factors. Cortical morphology can be used as an effective tool to evaluate neuroanatomical changes and detect underlying neural mechanisms in ToF patients. Abnormal cortical structure may be the continuous consequence of delayed fetal brain development in children with ToF.
Collapse
|
13
|
Brain MRI Radiomics Analysis of School-Aged Children with Tetralogy of Fallot. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2380346. [PMID: 34745322 PMCID: PMC8570890 DOI: 10.1155/2021/2380346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022]
Abstract
Introduction Radiomics could be potential imaging biomarkers by capturing and analyzing the features. Children and adolescents with CHD have worse neurodevelopmental and functional outcomes compared with their peers. Early diagnosis and intervention are the necessity to improve neurological outcomes in CHD patients. Methods School-aged TOF patients and their healthy peers were recruited for MRI and neurodevelopmental assessment. LASSO regression was used for dimension reduction. ROC curve graph showed the performance of the model. Results Six related features were finally selected for modeling. The final model AUC was 0.750. The radiomics features can be potential significant predictors for neurodevelopmental diagnoses. Conclusion The radiomics on the conventional MRI can help predict the neurodevelopment of school-aged children and provide parents with rehabilitation advice as early as possible.
Collapse
|
14
|
Burns J, Varughese R, Ganigara M, Kothare SV, McPhillips LA, Dhar A. Neurodevelopmental outcomes in congenital heart disease through the lens of single ventricle patients. Curr Opin Pediatr 2021; 33:535-542. [PMID: 34369410 DOI: 10.1097/mop.0000000000001052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize and organize the current body of literature on this contemporary topic, alongside a more general discussion of neurodevelopmental complications of congenital heart disease. RECENT FINDINGS It is theorized that the causes of the neurodevelopment disabilities are multifactorial resulting from structural central nervous system abnormalities, haemodynamic alterations and/or biochemical changes. It is therefore imperative that all patients with single ventricle anatomy and physiology receive long-term neurologic and developmental assessments in addition to their cardiac monitoring. SUMMARY Advancements in surgical techniques and medical management have improved survivorship of these medically complex patients. Neurodevelopmental sequelae are one of the most common comorbidities affecting this patient population leading to long-term challenges in motor, language, social and cognitive skills.
Collapse
Affiliation(s)
| | - Robin Varughese
- Division of Pediatric Neurology, Cohen Children's Medical Center of New York, New Hyde Park, New York
| | - Madhusudan Ganigara
- Children's Medical Center, Division of Pediatric Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sanjeev V Kothare
- Division of Pediatric Neurology, Cohen Children's Medical Center of New York, New Hyde Park, New York
| | - Lindsey A McPhillips
- Division of Pediatric Cardiology, Cohen Children's Medical Center of New York, New Hyde Park, New York, USA
| | - Arushi Dhar
- Division of Pediatric Cardiology, Cohen Children's Medical Center of New York, New Hyde Park, New York, USA
| |
Collapse
|
15
|
Morton SU, Maleyeff L, Wypij D, Yun HJ, Rollins CK, Watson CG, Newburger JW, Bellinger DC, Roberts AE, Rivkin MJ, Grant PE, Im K. Abnormal Right-Hemispheric Sulcal Patterns Correlate with Executive Function in Adolescents with Tetralogy of Fallot. Cereb Cortex 2021; 31:4670-4680. [PMID: 34009260 PMCID: PMC8408447 DOI: 10.1093/cercor/bhab114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022] Open
Abstract
Neurodevelopmental disabilities are the most common noncardiac conditions in patients with congenital heart disease (CHD). Executive function skills have been frequently observed to be decreased among children and adults with CHD compared with peers, but a neuroanatomical basis for the association is yet to be identified. In this study, we quantified sulcal pattern features from brain magnetic resonance imaging data obtained during adolescence among 41 participants with tetralogy of Fallot (ToF) and 49 control participants using a graph-based pattern analysis technique. Among patients with ToF, right-hemispheric sulcal pattern similarity to the control group was decreased (0.7514 vs. 0.7553, P = 0.01) and positively correlated with neuropsychological testing values including executive function (r = 0.48, P < 0.001). Together these findings suggest that sulcal pattern analysis may be a useful marker of neurodevelopmental risk in patients with CHD. Further studies may elucidate the mechanisms leading to different alterations in sulcal patterning.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lara Maleyeff
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Wypij
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jane W Newburger
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David C Bellinger
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Amy E Roberts
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Michael J Rivkin
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Radiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Stroke and Cerebrovascular Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - P Ellen Grant
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Kiho Im
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
16
|
Asschenfeldt B, Evald L, Yun HJ, Heiberg J, Østergaard L, Grant PE, Hjortdal VE, Im K, Eskildsen SF. Abnormal Left-Hemispheric Sulcal Patterns in Adults With Simple Congenital Heart Defects Repaired in Childhood. J Am Heart Assoc 2021; 10:e018580. [PMID: 33745293 PMCID: PMC8174332 DOI: 10.1161/jaha.120.018580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Children operated on for a simple congenital heart defect (CHD) are at risk of neurodevelopmental abnormalities. Abnormal cortical development and folding have been observed in fetuses with CHD. We examined whether sulcal folding patterns in adults operated on for simple CHD in childhood differ from those of healthy controls, and whether such differences are associated with neuropsychological outcomes. Methods and Results Patients (mean age, 24.5 years) who underwent childhood surgery for isolated atrial septal defect (ASD; n=33) or ventricular septal defect (VSD; n=30) and healthy controls (n=37) were enrolled. Sulcal pattern similarity to healthy controls was determined using magnetic resonance imaging and looking at features of sulcal folds, their intersulcal relationships, and sulcal graph topology. The sulcal pattern similarity values were tested for associations with comprehensive neuropsychological scores. Patients with both ASD and VSD had decreased sulcal pattern similarity in the left hemisphere compared with controls. The differences were found in the left temporal lobe in the ASD group and in the whole left hemisphere in the VSD group (P=0.033 and P=0.039, respectively). The extent of abnormal left hemispheric sulcal pattern similarity was associated with worse neuropsychological scores (intelligence, executive function, and visuospatial abilities) in the VSD group, and special educational support in the ASD group. Conclusions Adults who underwent surgery for simple CHD in childhood display altered left hemisphere sulcal folding patterns, commensurate with neuropsychological scores for patients with VSD and special educational support for ASD. This may indicate that simple CHD affects early brain development. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03871881.
Collapse
Affiliation(s)
- Benjamin Asschenfeldt
- Department of Cardiothoracic and Vascular Surgery Aarhus University Hospital Aarhus N Denmark.,Department of Clinical Medicine Aarhus University Aarhus N Denmark
| | - Lars Evald
- Department of Clinical Medicine Aarhus University Aarhus N Denmark.,Hammel Neurorehabilitation Centre and University Research Clinic Hammel Denmark
| | - Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center Boston Children's Hospital Boston MA.,Division of Newborn Medicine Boston Children's Hospital Boston MA.,Harvard Medical School Boston MA
| | - Johan Heiberg
- Department of Cardiothoracic and Vascular Surgery Aarhus University Hospital Aarhus N Denmark.,Department of Clinical Medicine Aarhus University Aarhus N Denmark
| | - Leif Østergaard
- Department of Clinical Medicine Aarhus University Aarhus N Denmark.,Center of Functionally Integrative Neuroscience Aarhus University Aarhus C Denmark
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center Boston Children's Hospital Boston MA.,Division of Newborn Medicine Boston Children's Hospital Boston MA.,Department of Radiology Boston Children's Hospital Boston MA.,Harvard Medical School Boston MA
| | - Vibeke Elisabeth Hjortdal
- Department of Clinical Medicine Aarhus University Aarhus N Denmark.,Department of Cardiothoracic Surgery RigshospitaletCopenhagen Denmark.,Institute of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center Boston Children's Hospital Boston MA.,Division of Newborn Medicine Boston Children's Hospital Boston MA.,Harvard Medical School Boston MA
| | - Simon Fristed Eskildsen
- Department of Clinical Medicine Aarhus University Aarhus N Denmark.,Center of Functionally Integrative Neuroscience Aarhus University Aarhus C Denmark
| |
Collapse
|
17
|
Ahtam B, Turesky TK, Zöllei L, Standish J, Grant PE, Gaab N, Im K. Intergenerational Transmission of Cortical Sulcal Patterns from Mothers to their Children. Cereb Cortex 2021; 31:1888-1897. [PMID: 33230560 PMCID: PMC7945013 DOI: 10.1093/cercor/bhaa328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Intergenerational effects are described as the genetic, epigenetic, as well as pre- and postnatal environmental influence parents have on their offspring's behavior, cognition, and brain. During fetal brain development, the primary cortical sulci emerge with a distinctive folding pattern that are under strong genetic influence and show little change of this pattern throughout postnatal brain development. We examined intergenerational transmission of cortical sulcal patterns by comparing primary sulcal patterns between children (N = 16, age 5.5 ± 0.81 years, 8 males) and their biological mothers (N = 15, age 39.72 ± 4.68 years) as well as between children and unrelated adult females. Our graph-based sulcal pattern comparison method detected stronger sulcal pattern similarity for child-mother pairs than child-unrelated pairs, where higher similarity between child-mother pairs was observed mostly for the right lobar regions. Our results also show that child-mother versus child-unrelated pairs differ for daughters and sons with a trend toward significance, particularly for the left hemisphere lobar regions. This is the first study to reveal significant intergenerational transmission of cortical sulcal patterns, and our results have important implications for the study of the heritability of complex behaviors, brain-based disorders, the identification of biomarkers, and targets for interventions.
Collapse
Affiliation(s)
- Banu Ahtam
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA
| | - Ted K Turesky
- Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Julianna Standish
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA
| | - Nadine Gaab
- Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kiho Im
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA
| |
Collapse
|
18
|
Barkhuizen M, Abella R, Vles JSH, Zimmermann LJI, Gazzolo D, Gavilanes AWD. Antenatal and Perioperative Mechanisms of Global Neurological Injury in Congenital Heart Disease. Pediatr Cardiol 2021; 42:1-18. [PMID: 33373013 PMCID: PMC7864813 DOI: 10.1007/s00246-020-02440-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022]
Abstract
Congenital heart defects (CHD) is one of the most common types of birth defects. Thanks to advances in surgical techniques and intensive care, the majority of children with severe forms of CHD survive into adulthood. However, this increase in survival comes with a cost. CHD survivors have neurological functioning at the bottom of the normal range. A large spectrum of central nervous system dysmaturation leads to the deficits seen in critical CHD. The heart develops early during gestation, and CHD has a profound effect on fetal brain development for the remainder of gestation. Term infants with critical CHD are born with an immature brain, which is highly susceptible to hypoxic-ischemic injuries. Perioperative blood flow disturbances due to the CHD and the use of cardiopulmonary bypass or circulatory arrest during surgery cause additional neurological injuries. Innate patient factors, such as genetic syndromes and preterm birth, and postoperative complications play a larger role in neurological injury than perioperative factors. Strategies to reduce the disability burden in critical CHD survivors are urgently needed.
Collapse
Affiliation(s)
- Melinda Barkhuizen
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Raul Abella
- Department of Pediatric Cardiac Surgery, University of Barcelona, Vall d'Hebron, Spain
| | - J S Hans Vles
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Luc J I Zimmermann
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Diego Gazzolo
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Fetal, Maternal and Neonatal Health, C. Arrigo Children's Hospital, Alessandria, Italy
| | - Antonio W D Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
- Instituto de Investigación e Innovación de Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Guayaquil, Guayaquil, Ecuador.
- Department of Pediatrics, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Abstract
Most children born with even the most critical forms of CHD are now surviving well into adulthood. However, with increased survival has come increased recognition of the diverse neurobehavioural and psychosocial challenges these children experience. Among these challenges are deficits in executive function skills, including inhibitory control, working memory, and cognitive flexibility. Over the past several years, whereas inhibitory control and working memory deficits have garnered particular attention among clinicians and interventionists, relatively less attention has been paid to cognitive flexibility. This is unfortunate given both the high prevalence of cognitive flexibility deficits observed in children and adolescents with critical CHD, and also the far-reaching relevance of cognitive flexibility in helping individuals achieve optimal quality of life across the lifespan. This paper reviews the construct of cognitive flexibility, including its definition, development, measurement, and neuroanatomical basis, provides a summary of how cognitive flexibility is affected by CHD, and offers evidence-based recommendations to systematically support the development of cognitive flexibility within the context of CHD.
Collapse
|
20
|
Ortinau CM, Shimony JS. The Congenital Heart Disease Brain: Prenatal Considerations for Perioperative Neurocritical Care. Pediatr Neurol 2020; 108:23-30. [PMID: 32107137 PMCID: PMC7306416 DOI: 10.1016/j.pediatrneurol.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/21/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
Abstract
Altered brain development has been highlighted as an important contributor to adverse neurodevelopmental outcomes in children with congenital heart disease. Abnormalities begin prenatally and include micro- and macrostructural disturbances that lead to an altered trajectory of brain growth throughout gestation. Recent progress in fetal imaging has improved understanding of the neurobiological mechanisms and risk factors for impaired fetal brain development. The impact of the prenatal environment on postnatal neurological care has also gained increased focus. This review summarizes current data on the timing and pattern of altered prenatal brain development in congenital heart disease, the potential mechanisms of these abnormalities, and the association with perioperative neurological complications.
Collapse
Affiliation(s)
- Cynthia M Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri.
| | - Joshua S Shimony
- Mallinkrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
21
|
Vasung L, Yun HJ, Feldman HA, Grant PE, Im K. An Atypical Sulcal Pattern in Children with Disorders of the Corpus Callosum and Its Relation to Behavioral Outcomes. Cereb Cortex 2020; 30:4790-4799. [PMID: 32307538 DOI: 10.1093/cercor/bhaa067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 01/05/2023] Open
Abstract
Hypogenesis (hCC) and dysgenesis (dCC) of the corpus callosum (CC) are characterized by its smaller size or absence. The outcomes of these patients vary considerably and are unrelated to the size of the CC abnormality. The aim of the current study was to characterize the sulcal pattern in children with hCC and dCC and to explore its relation to clinical outcome. We used quantitative sulcal pattern analysis that measures deviation (similarity index, SI) of the composite or individual sulcal features (position, depth, area, and graph topology) compared to the control group. We calculated SI for each hemisphere and lobe in 11 children with CC disorder (hCC = 4, dCC = 7) and 15 controls. hCC and dCC had smaller hemispheric SI compared to controls. dCC subjects had smaller regional SI in the frontal and occipital lobes, which were driven by a smaller SI in a position or a graph topology. The significantly decreased SI gradient was found across groups only in the sulcal graph topology of the temporal lobes (controls > hCC > dCC) and was related to clinical outcome. Our results suggest that careful examination of sulcal pattern in hCC and dCC patients could be a useful biomarker of outcome.
Collapse
Affiliation(s)
- Lana Vasung
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Henry A Feldman
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA.,Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kiho Im
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|