1
|
Xia H, Wu Q, Shields GS, Nie H, Hu X, Liu S, Zhou Z, Chen H, Yang Y. Neural activity and connectivity are related to food preference changes induced by food go/no-go training. Neuropsychologia 2024; 201:108919. [PMID: 38825226 DOI: 10.1016/j.neuropsychologia.2024.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Simply withholding a response while viewing an appetizing food, over the course of many presentations (i.e., during food go/no-go training) can modify individuals' food preferences-which could, in turn, promote healthier eating behaviors. However, the neural mechanisms underlying this food go/no-go training-induced change in food preferences are still relatively unclear. We addressed this issue in the present functional magnetic resonance imaging (fMRI) study. To this end, we administered a novel passive viewing task before and after food go/no-go training to 91 participants in the scanner. Participants' food preferences were measured with a binary food choice task. At the behavioral level, we found the expected training effect on food preferences: Participants preferred go over no-go foods following training. At the neural level, we found that changes in food preferences were associated with training-related go vs. no-go differences in activity and functional connectivity, such as less activity in the anterior cingulate cortex and superior frontal gyrus but greater functional connectivity between the superior frontal gyrus and middle occipital gyrus. Critically, Dynamic causal modeling showed that this preference change effect was largely driven by top-down influence from the superior frontal gyrus to the middle occipital gyrus. Together, these findings suggest a neural mechanism of the food go/no-go training effect-namely, that the food-viewing-related interplay between prefrontal regions and visual regions might be related to the food preference change following food go/no-go training.
Collapse
Affiliation(s)
- Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Qian Wu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Grant S Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Haoyu Nie
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xin Hu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Shiyu Liu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Zhehan Zhou
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, China; Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, China.
| | - Yingkai Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, China.
| |
Collapse
|
2
|
Yao Z, Xia T, Wei J, Zhang Z, Lin X, Zhang D, Qin P, Ma Y, Hu X. Reactivating cue approached positive personality traits during sleep promotes positive self-referential processing. iScience 2024; 27:110341. [PMID: 39055925 PMCID: PMC11269284 DOI: 10.1016/j.isci.2024.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
People preferentially endorse positive personality traits as more self-descriptive than negative ones, a positivity self-referential bias. Here, we investigated how to enhance positive self-referential processing, integrating wakeful cue-approach training task (CAT) and sleep-based targeted memory reactivation (TMR). In the CAT, participants gave speeded motor responses to cued positive personality traits. In a subsequent nap, we unobtrusively re-played half of the trained positive traits during slow-wave sleep (TMR). Upon awakening, CAT+TMR facilitated participants' speed in endorsing positive traits in immediate tests, and rendered participants endorse more positive traits as self-descriptive after one week. Notably, these enhancements were associated with the directionality of cue-related 1-4 Hz slow traveling waves (STW) that propagate across brain regions. Specifically, anterior-to-posterior backward STW was positively associated with these benefits, whereas forward STW showed negative associations. These findings demonstrate the potential benefits of integrated wakeful cue-approach training and sleep-based memory reactivation in strengthening positive self-referential processing.
Collapse
Affiliation(s)
- Ziqing Yao
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Tao Xia
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jinwen Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen 518055, China
| | - Xuanyi Lin
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Center for Sleep & Circadian Biology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Xiaoqing Hu
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
3
|
Camchong J, Roediger D, Fiecas M, Gilmore CS, Kushner M, Kummerfeld E, Mueller BA, Lim KO. Frontal tDCS reduces alcohol relapse rates by increasing connections from left dorsolateral prefrontal cortex to addiction networks. Brain Stimul 2023; 16:1032-1040. [PMID: 37348702 PMCID: PMC10530485 DOI: 10.1016/j.brs.2023.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/27/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Brain-based interventions are needed to address persistent relapse in alcohol use disorder (AUD). Neuroimaging evidence suggests higher frontal connectivity as well as higher within-network connectivity of theoretically defined addiction networks are associated with reduced relapse rates and extended abstinence during follow-up periods. OBJECTIVE /Hypothesis: A longitudinal randomized double-blind sham-controlled clinical trial investigated whether a non-invasive neuromodulation intervention delivered during early abstinence can (i) modulate connectivity of addiction networks supporting abstinence and (ii) improve relapse rates. HYPOTHESES Active transcranial direct current stimulation (tDCS) will (i) increase connectivity of addiction networks known to support abstinence and (ii) reduce relapse rates. METHODS Short-term abstinent AUD participants (n = 60) were assigned to 5 days of either active tDCS or sham during cognitive training. Causal discovery analysis (CDA) examined the directional influence from left dorsolateral prefrontal cortex (LDLPFC, stimulation site) to addiction networks that support abstinence. RESULTS Active tDCS had an effect on the average strength of CDA-determined connectivity from LDLPFC to the incentive salience and negative emotionality addiction networks - increasing in the active tDCS group only. Active tDCS had an effect on relapse rates following the intervention, with lower probability of relapse in the active tDCS vs. sham. Active tDCS showed an unexpected sex-dependent effect on relapse rates. CONCLUSION Our results suggest that LDLPFC stimulation delivered during early abstinence has an effect on addiction networks supporting abstinence and on relapse rates. The unexpected sex-dependent neuromodulation effects need to be further examined in larger clinical trials.
Collapse
Affiliation(s)
- Jazmin Camchong
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA.
| | - Donovan Roediger
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA
| | - Mark Fiecas
- University of Minnesota School of Public Health, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Casey S Gilmore
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA; Minneapolis VA Health Care System, Geriatrics Research Education and Clinical Center (GRECC), 1 Veterans Dr., Minneapolis, MN, 55417, USA
| | - Matt Kushner
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA
| | - Erich Kummerfeld
- University of Minnesota Institute for Health Informatics, 8-100 Phillips-Wangensteen Building, 516 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Bryon A Mueller
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA
| | - Kelvin O Lim
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA; Minneapolis VA Health Care System, Geriatrics Research Education and Clinical Center (GRECC), 1 Veterans Dr., Minneapolis, MN, 55417, USA
| |
Collapse
|
4
|
Wu Q, Xia H, Shields GS, Nie H, Li J, Chen H, Yang Y. Neural correlates underlying preference changes induced by food Go/No-Go training. Appetite 2023; 186:106578. [PMID: 37150052 DOI: 10.1016/j.appet.2023.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Consistently not responding to appetitive foods during food go/no-go training could change individuals' food choices and sometimes even body weight, however, fewer studies have explored the neural pathways underlying the effects of food go/no-go training. In this study, we scanned eighty-six female participants using functional magnetic resonance imaging and investigated the neural bases of preference changes in a binary food choice task following action (e.g., go) or inaction (e.g., no-go) toward distinct foods within a food go/no-go training paradigm. In line with prior behavioral work, we found that participants' food preferences changed as a function of food go/no-go training, with participants choosing more "go" over "no-go" foods for consumption following training. At a neural level, preference changes were inversely associated with frontoparietal and salience network activity when choosing go (vs. no-go) foods. Additionally, task-related functional connectivities from the inferior parietal lobule to the pre-supplementary motor cortex, dorsolateral prefrontal cortex, and dorsal anterior cingulate cortex were related to these preference changes. Together, current work supports that food go/no-go training reliably changes people's preferences. More importantly, our findings suggest that a neural pathway centered on areas traditionally associated with selective attention may interface with prefrontal regions to guide preference changes induced by food go/no-go training, though future studies using other tasks (e.g., passive viewing tasks) are still needed to test this potential neural mechanism.
Collapse
Affiliation(s)
- Qian Wu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Grant S Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Haoyu Nie
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jiwen Li
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, 400715, China; Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, 400715, China.
| | - Yingkai Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Zahedi A, Artigas SO, Swaboda N, Wiers CE, Görgen K, Park SQ. Neural correlates of changing food choices while bypassing values. Neuroimage 2023; 274:120134. [PMID: 37100103 DOI: 10.1016/j.neuroimage.2023.120134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Current theories suggest that altering choices requires value modification. To investigate this, normal-weight female participants' food choices and values were tested before and after an approach-avoidance training (AAT), while neural activity was recorded during the choice task using functional magnetic resonance imaging (fMRI). During AAT, participants consistently approached low- while avoiding high-calorie food cues. AAT facilitated low-calorie food choices, leaving food values unchanged. Instead, we observed a shift in indifference points, indicating the decreased contribution of food values in food choices. Training-induced choice shifts were associated with increased activity in the posterior cingulate cortex (PCC). In contrast, the medial PFC activity was not changed. Additionally, PCC grey matter density predicted individual differences in training-induced functional changes, suggesting anatomic predispositions to training impact. Our findings demonstrate neural mechanisms underlying choice modulation independent of valuation-related processes, with substantial theoretical significance for decision-making frameworks and translational implications for health-related decisions resilient to value shifts.
Collapse
Affiliation(s)
- Anoushiravan Zahedi
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition (DIfE), Nuthetal, Germany;; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany;; German Center for Diabetes Research (DZD), Neuherberg, Germany;; Department of Psychology, University of Muenster (Westfaelische Wilhelms-Universitaet Muenster).
| | | | - Nora Swaboda
- Max-Planck-Institute for Human Development, Berlin, Germany
| | - Corinde E Wiers
- Department of Psychiatry and Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai Görgen
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Germany;; Department of Psychiatry and Psychotherapy, Bernstein Center for Computational Neuroscience, Berlin, Germany;; Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Soyoung Q Park
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition (DIfE), Nuthetal, Germany;; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany;; Department of Psychology, University of Lübeck, Lübeck, Germany;; German Center for Diabetes Research (DZD), Neuherberg, Germany;.
| |
Collapse
|
6
|
Chen Z, Veling H. Toward a better understanding of durable behavior change by food Go/NoGo training. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
How go/no-go training changes behavior: A value-based decision-making perspective. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Itzkovitch A, Bar Or M, Schonberg T. Cue-approach training for food behavior. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Zhang Q, Luo C, Ngetich R, Zhang J, Jin Z, Li L. Visual Selective Attention P300 Source in Frontal-Parietal Lobe: ERP and fMRI Study. Brain Topogr 2022; 35:636-650. [PMID: 36178537 DOI: 10.1007/s10548-022-00916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 09/03/2022] [Indexed: 11/28/2022]
Abstract
Visual selective attention can be achieved into bottom-up and top-down attention. Different selective attention tasks involve different attention control ways. The pop-out task requires more bottom-up attention, whereas the search task involves more top-down attention. P300, which is the positive potential generated by the brain in the latency of 300 ~ 600 ms after stimulus, reflects the processing of attention. There is no consensus on the P300 source. The aim of present study is to study the source of P300 elicited by different visual selective attention. We collected thirteen participants' P300 elicited by pop-out and search tasks with event-related potentials (ERP). We collected twenty-six participants' activation brain regions in pop-out and search tasks with functional magnetic resonance imaging (fMRI). And we analyzed the sources of P300 using the ERP and fMRI integration with high temporal resolution and high spatial resolution. ERP results indicated that the pop-out task induced larger P300 than the search task. P300 induced by the two tasks distributed at frontal and parietal lobes, with P300 induced by the pop-out task mainly at the parietal lobe and that induced by the search task mainly at the frontal lobe. Further ERP and fMRI integration analysis showed that neural difference sources of P300 were the right precentral gyrus, left superior frontal gyrus (medial orbital), left middle temporal gyrus, left rolandic operculum, right postcentral gyrus, and left angular gyrus. Our study suggests that the frontal and parietal lobes contribute to the P300 component of visual selective attention.
Collapse
Affiliation(s)
- Qiuzhu Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cimei Luo
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ronald Ngetich
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
10
|
Botvinik-Nezer R, Bakkour A, Salomon T, Shohamy D, Schonberg T. Memory for individual items is related to nonreinforced preference change. ACTA ACUST UNITED AC 2021; 28:348-360. [PMID: 34526380 DOI: 10.1101/lm.053411.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023]
Abstract
It is commonly assumed that memories contribute to value-based decisions. Nevertheless, most theories of value-based decision-making do not account for memory influences on choice. Recently, new interest has emerged in the interactions between these two fundamental processes, mainly using reinforcement-based paradigms. Here, we aimed to study the role memory processes play in preference change following the nonreinforced cue-approach training (CAT) paradigm. In CAT, the mere association of cued items with a speeded motor response influences choices. Previous studies with this paradigm showed that a single training session induces a long-lasting effect of enhanced preferences for high-value trained stimuli, that is maintained for several months. We hypothesized that CAT increases memory of trained items, leading to enhanced accessibility of their positive associative memories and in turn to preference changes. In two preregistered experiments, we found evidence that memory is enhanced for trained items and that better memory is correlated with enhanced preferences at the individual item level, both immediately and 1 mo following CAT. Our findings suggest that memory plays a central role in value-based decision-making following CAT, even in the absence of external reinforcements. These findings contribute to new theories relating memory and value-based decision-making and set the groundwork for the implementation of novel nonreinforced behavioral interventions that lead to long-lasting behavioral change.
Collapse
Affiliation(s)
- Rotem Botvinik-Nezer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Akram Bakkour
- Department of Psychology, Columbia University, New York, New York 10027, USA.,Department of Psychology, the University of Chicago, Chicago, Illinois 60637, USA
| | - Tom Salomon
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daphna Shohamy
- Department of Psychology, Columbia University, New York, New York 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027, USA.,the Kavli Institute for Brain Science, Columbia University, New York, New York 10027, USA
| | - Tom Schonberg
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Salomon T, Cohen A, Barazany D, Ben-Zvi G, Botvinik-Nezer R, Gera R, Oren S, Roll D, Rozic G, Saliy A, Tik N, Tsarfati G, Tavor I, Schonberg T, Assaf Y. Brain volumetric changes in the general population following the COVID-19 outbreak and lockdown. Neuroimage 2021; 239:118311. [PMID: 34182098 DOI: 10.1016/j.neuroimage.2021.118311] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/30/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) outbreak introduced unprecedented health-risks, as well as pressure on the economy, society, and psychological well-being due to the response to the outbreak. In a preregistered study, we hypothesized that the intense experience of the outbreak potentially induced stress-related brain modifications in the healthy population, not infected with the virus. We examined volumetric changes in 50 participants who underwent MRI scans before and after the COVID-19 outbreak and lockdown in Israel. Their scans were compared with those of 50 control participants who were scanned twice prior to the pandemic. Following COVID-19 outbreak and lockdown, the test group participants uniquely showed volumetric increases in bilateral amygdalae, putamen, and the anterior temporal cortices. Changes in the amygdalae diminished as time elapsed from lockdown relief, suggesting that the intense experience associated with the pandemic induced transient volumetric changes in brain regions commonly associated with stress and anxiety. The current work utilizes a rare opportunity for real-life natural experiment, showing evidence for brain plasticity following the COVID-19 global pandemic. These findings have broad implications, relevant both for the scientific community as well as the general public.
Collapse
Affiliation(s)
- Tom Salomon
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Adi Cohen
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Barazany
- The Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Gal Ben-Zvi
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Botvinik-Nezer
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Rani Gera
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shiran Oren
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dana Roll
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Gal Rozic
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Anastasia Saliy
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Niv Tik
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tsarfati
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Tavor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; The Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel; Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tom Schonberg
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; The Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; The Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Pelletier G, Aridan N, Fellows LK, Schonberg T. A Preferential Role for Ventromedial Prefrontal Cortex in Assessing "the Value of the Whole" in Multiattribute Object Evaluation. J Neurosci 2021; 41:5056-5068. [PMID: 33906899 PMCID: PMC8197643 DOI: 10.1523/jneurosci.0241-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Accepted: 04/18/2021] [Indexed: 11/21/2022] Open
Abstract
Everyday decision-making commonly involves assigning values to complex objects with multiple value-relevant attributes. Drawing on object recognition theories, we hypothesized two routes to multiattribute evaluation: assessing the value of the whole object based on holistic attribute configuration or summing individual attribute values. In two samples of healthy human male and female participants undergoing eye tracking and functional magnetic resonance imaging (fMRI) while evaluating novel pseudo objects, we found evidence for both forms of evaluation. Fixations to and transitions between attributes differed systematically when the value of pseudo objects was associated with individual attributes or attribute configurations. Ventromedial prefrontal cortex (vmPFC) and perirhinal cortex were engaged when configural processing was required. These results converge with our recent findings that individuals with vmPFC lesions were impaired in decisions requiring configural evaluation but not when evaluating the sum of the parts. This suggests that multiattribute decision-making engages distinct evaluation mechanisms relying on partially dissociable neural substrates, depending on the relationship between attributes and value.SIGNIFICANCE STATEMENT Decision neuroscience has only recently begun to address how multiple choice-relevant attributes are brought together during evaluation and choice among complex options. Object recognition research makes a crucial distinction between individual attribute and holistic/configural object processing, but how the brain evaluates attributes and whole objects remains unclear. Using fMRI and eye tracking, we found that the vmPFC and the perirhinal cortex contribute to value estimation specifically when value was related to whole objects, that is, predicted by the unique configuration of attributes and not when value was predicted by the sum of individual attribute values. This perspective on the interactions between subjective value and object processing mechanisms provides a novel bridge between the study of object recognition and reward-guided decision-making.
Collapse
Affiliation(s)
- Gabriel Pelletier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Nadav Aridan
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lesley K Fellows
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Tom Schonberg
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
Werner A, Risius A. Motives, mentalities and dietary change: An exploration of the factors that drive and sustain alternative dietary lifestyles. Appetite 2021; 165:105425. [PMID: 34051276 DOI: 10.1016/j.appet.2021.105425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022]
Abstract
Any transition to a sustainable food system will require long-term changes in consumer behaviour, including a major reduction in the proportion of animal-based foods in people's diets. Such long-term dietary changes have widely been found difficult to achieve, however, since eating behaviors are interlinked with habits and lifestyles. In order to attain a better understanding of the driving forces that guide and support changes in eating patterns, this study identifies some of the key factors that lead people not only to adopt alternative dietary lifestyles but also to sustain these lifestyles over the long term. A generic qualitative methodology was used to gather and analyse qualitative data on the food-related motivations and identities of 17 long-term 'alternative dieters'. Our content analysis of this data revealed the following three factors to be particularly relevant in motivations for dietary change: (1) the experience of a 'key moment'; (2) the accumulation of knowledge; and (3) health concerns. While our findings show that the experience of key moments tends to catalyse immediate behavioral responses, changes due to knowledge and health concerns appear to lead to more gradual and organized processes of change. Regarding the mentalities that seem to reinforce and help sustain the transition to long-lasting alternative diets, our study identified three further characteristics: (1) self-reflectiveness; (2) responsibility; and (3) interconnectedness. Overall, our findings provide valuable insights into the key drivers that initiate processes of long-lasting dietary change as well as the mentalities that serve to underpin and sustain such changes. Follow-up research with a largersample of participants is recommended to confirm and further explore these characteristics as a means of informing policies aiming at achieving a transition to more sustainable food systems.
Collapse
Affiliation(s)
- Aspasia Werner
- University of Göttingen, Platz der Göttinger Sieben 5, 37073, Göttingen, Germany; Thünen Institute of Biodiversity, Bundesallee 65, 38116, Braunschweig, Germany.
| | - Antje Risius
- University of Göttingen, Platz der Göttinger Sieben 5, 37073, Göttingen, Germany
| |
Collapse
|
14
|
Schonberg T, Katz LN. A Neural Pathway for Nonreinforced Preference Change. Trends Cogn Sci 2020; 24:504-514. [DOI: 10.1016/j.tics.2020.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/12/2023]
|
15
|
Salomon T, Botvinik-Nezer R, Oren S, Schonberg T. Enhanced striatal and prefrontal activity is associated with individual differences in nonreinforced preference change for faces. Hum Brain Mapp 2019; 41:1043-1060. [PMID: 31729115 PMCID: PMC7268020 DOI: 10.1002/hbm.24859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 11/29/2022] Open
Abstract
Developing effective preference modification paradigms is crucial to improve the quality of life in a wide range of behaviors. The cue‐approach training (CAT) paradigm has been introduced as an effective tool to modify preferences lasting months, without external reinforcements, using the mere association of images with a cue and a speeded button response. In the current work for the first time, we used fMRI with faces as stimuli in the CAT paradigm, focusing on face‐selective brain regions. We found a behavioral change effect of CAT with faces immediately and 1‐month after training, however face‐selective regions were not indicative of behavioral change and thus preference change is less likely to rely on face processing brain regions. Nevertheless, we found that during training, fMRI activations in the ventral striatum were correlated with individual preference change. We also found a correlation between preference change and activations in the ventromedial prefrontal cortex during the binary choice phase. Functional connectivity among striatum, prefrontal regions, and high‐level visual regions was also related to individual preference change. Our work sheds new light on the involvement of neural mechanisms in the process of valuation. This could lead to development of novel real‐world interventions.
Collapse
Affiliation(s)
- Tom Salomon
- Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Botvinik-Nezer
- Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shiran Oren
- Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tom Schonberg
- Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|