1
|
de León Reyes NS, Bortolozzo-Gleich MH, Nomura Y, Fregola CG, Nieto M, Gogos JA, Leroy F. Interhemispheric CA1 projections support spatial cognition and are affected in a mouse model of the 22q11.2 deletion syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611389. [PMID: 39282348 PMCID: PMC11398471 DOI: 10.1101/2024.09.05.611389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Untangling the hippocampus connectivity is critical for understanding the mechanisms supporting learning and memory. However, the function of interhemispheric connections between hippocampal formations is still poorly understood. So far, two major hippocampal commissural projections have been characterized in rodents. Mossy cells from the hilus of the dentate gyrus project to the inner molecular layer of the contralateral dentate gyrus and CA3 and CA2 pyramidal neuron axonal collaterals to contralateral CA3, CA2 and CA1. In contrary, little is known about commissural projection from the CA1 region. Here, we show that CA1 pyramidal neurons from the dorsal hippocampus project to contralateral dorsal CA1 as well as dorsal subiculum. We further demonstrate that the interhemispheric projection from CA1 to dorsal subiculum supports spatial memory and spatial working memory in WT mice, two cognitive functions impaired in male mice from the Df16(A) +/- model of 22q11.2 deletion syndrome (22q11.2DS) associated with schizophrenia. Investigation of the CA1 interhemispheric projections in Df16(A) +/- mice revealed that these projections are disrupted with male mutants showing stronger anatomical defects compared to females. Overall, our results characterize a novel interhemispheric projection from dCA1 to dorsal subiculum and suggest that dysregulation of this projection may contribute to the cognitive deficits associated with the 22q11.2DS.
Collapse
Affiliation(s)
- Noelia S. de León Reyes
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | | | - Yuki Nomura
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| | - Cristina García Fregola
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| | - Marta Nieto
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Joseph A. Gogos
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Physiology, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia University, New York, NY, United States
| | - Félix Leroy
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| |
Collapse
|
2
|
Deuter D, Hense K, Kunkel K, Vollmayr J, Schachinger S, Wendl C, Schicho A, Fellner C, Salzberger B, Hitzenbichler F, Zeller J, Vielsmeier V, Dodoo-Schittko F, Schmidt NO, Rosengarth K. SARS-CoV2 evokes structural brain changes resulting in declined executive function. PLoS One 2024; 19:e0298837. [PMID: 38470899 DOI: 10.1371/journal.pone.0298837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Several research has underlined the multi-system character of COVID-19. Though effects on the Central Nervous System are mainly discussed as disease-specific affections due to the virus' neurotropism, no comprehensive disease model of COVID-19 exists on a neurofunctional base by now. We aimed to investigate neuroplastic grey- and white matter changes related to COVID-19 and to link these changes to neurocognitive testings leading towards a multi-dimensional disease model. METHODS Groups of acutely ill COVID-19 patients (n = 16), recovered COVID-19 patients (n = 21) and healthy controls (n = 13) were prospectively included into this study. MR-imaging included T1-weighted sequences for analysis of grey matter using voxel-based morphometry and diffusion-weighted sequences to investigate white matter tracts using probabilistic tractography. Comprehensive neurocognitive testing for verbal and non-verbal domains was performed. RESULTS Alterations strongly focused on grey matter of the frontal-basal ganglia-thalamus network and temporal areas, as well as fiber tracts connecting these areas. In acute COVID-19 patients, a decline of grey matter volume was found with an accompanying diminution of white matter tracts. A decline in executive function and especially verbal fluency was found in acute patients, partially persisting in recovered. CONCLUSION Changes in gray matter volume and white matter tracts included mainly areas involved in networks of executive control and language. Deeper understanding of these alterations is necessary especially with respect to long-term impairments, often referred to as 'Post-COVID'.
Collapse
Affiliation(s)
- Daniel Deuter
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Katharina Hense
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Kevin Kunkel
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Vollmayr
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Schachinger
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Christina Wendl
- Institut für Röntgendiagnostik, University Hospital Regensburg, Regensburg, Germany
- Institut für Neuroradiologie, Medbo Bezirksklinikum Regensburg, Regensburg, Germany
| | - Andreas Schicho
- Institut für Röntgendiagnostik, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Fellner
- Institut für Röntgendiagnostik, University Hospital Regensburg, Regensburg, Germany
| | - Bernd Salzberger
- Abteilung für Krankenhaushygiene und Infektiologie, University Hospital Regensburg, Regensburg, Germany
| | - Florian Hitzenbichler
- Abteilung für Krankenhaushygiene und Infektiologie, University Hospital Regensburg, Regensburg, Germany
| | - Judith Zeller
- Klinik und Poliklinik für Innere Medizin II, University Hospital Regensburg, Regensburg, Germany
| | - Veronika Vielsmeier
- Klinik und Poliklinik für Hals-Nasen-Ohren-Heilkunde, University Hospital Regensburg, Regensburg, Germany
| | - Frank Dodoo-Schittko
- Institut für Sozialmedizin und Gesundheitsforschung, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Nils Ole Schmidt
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Katharina Rosengarth
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Williamson J, James SA, Mukli P, Yabluchanskiy A, Wu DH, Sonntag W, Yang Y. Sex difference in brain functional connectivity of hippocampus in Alzheimer's disease. GeroScience 2024; 46:563-572. [PMID: 37743414 PMCID: PMC10828268 DOI: 10.1007/s11357-023-00943-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Alzheimer's disease (AD), affecting nearly 6.5 million people, is the fifth leading cause of death in individuals 65 years or older in the USA. Prior research has shown that AD disproportionality affects females; females have a greater incidence rate, perform worse on a variety of neuropsychological tasks, and have greater total brain atrophy. Recent research has linked these sex differences to neuroimaging markers of brain pathology, such as hippocampal volumes. Specifically, research from our lab found that functional connectivity from the hippocampus to the precuneus cortex and brain stem was significantly stronger in males than in females with mild cognitive impairment. The aim of this study was to extend our understanding to individuals with AD and to determine if these potential sex-specific functional connectivity biomarkers extend through different disease stages. The resting state fMRI and T2 MRI of cognitively normal individuals (n = 32, female = 16) and individuals with AD (n = 32, female = 16) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed using the Functional Connectivity Toolbox (CONN). Our results demonstrate that males had a significantly stronger interhemispheric functional connectivity between the left and right hippocampus compared to females. These results improve our current understanding of the role of the hippocampus in sex differences in AD. Understanding the contribution of impaired functional connectivity sex differences may aid in the development of sex-specific precision medicine for improved AD treatment.
Collapse
Affiliation(s)
- Jordan Williamson
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shirley A James
- Department of Public Health, Health Science Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, Health Sciences Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, Health Sciences Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Dee H Wu
- Department of Radiological Science and Medical Physics, Health Science Center, University of Oklahoma, Oklahoma City, OK, USA
- Data Institute for Societal Challenges, University of Oklahoma, Norman, OK, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - William Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, Health Sciences Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Yuan Yang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Rehabilitation Sciences, Health Science Center, University of Oklahoma, Oklahoma City, OK, USA.
- Data Institute for Societal Challenges, University of Oklahoma, Norman, OK, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- SFCRI Clinical Imaging Research Center, Carle Foundation Hospital, Urbana, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Tucciarelli R, Ejaz N, Wesselink DB, Kolli V, Hodgetts CJ, Diedrichsen J, Makin TR. Does Ipsilateral Remapping Following Hand Loss Impact Motor Control of the Intact Hand? J Neurosci 2024; 44:e0948232023. [PMID: 38050100 PMCID: PMC10860625 DOI: 10.1523/jneurosci.0948-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.
Collapse
Affiliation(s)
- Raffaele Tucciarelli
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Naveed Ejaz
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
| | - Daan B Wesselink
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Vijay Kolli
- Queen Mary's Hospital, London SW15 5PN, United Kingdom
| | - Carl J Hodgetts
- CUBRIC, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
| | - Jörn Diedrichsen
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
- Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
| | - Tamar R Makin
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
5
|
Murdy TJ, Dunn AR, Singh S, Telpoukhovskaia MA, Zhang S, White JK, Kahn I, Febo M, Kaczorowski CC. Leveraging genetic diversity in mice to inform individual differences in brain microstructure and memory. Front Behav Neurosci 2023; 16:1033975. [PMID: 36703722 PMCID: PMC9871587 DOI: 10.3389/fnbeh.2022.1033975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
In human Alzheimer's disease (AD) patients and AD mouse models, both differential pre-disease brain features and differential disease-associated memory decline are observed, suggesting that certain neurological features may protect against AD-related cognitive decline. The combination of these features is known as brain reserve, and understanding the genetic underpinnings of brain reserve may advance AD treatment in genetically diverse human populations. One potential source of brain reserve is brain microstructure, which is genetically influenced and can be measured with diffusion MRI (dMRI). To investigate variation of dMRI metrics in pre-disease-onset, genetically diverse AD mouse models, we utilized a population of genetically distinct AD mice produced by crossing the 5XFAD transgenic mouse model of AD to 3 inbred strains (C57BL/6J, DBA/2J, FVB/NJ) and two wild-derived strains (CAST/EiJ, WSB/EiJ). At 3 months of age, these mice underwent diffusion magnetic resonance imaging (dMRI) to probe neural microanatomy in 83 regions of interest (ROIs). At 5 months of age, these mice underwent contextual fear conditioning (CFC). Strain had a significant effect on dMRI measures in most ROIs tested, while far fewer effects of sex, sex*strain interactions, or strain*sex*5XFAD genotype interactions were observed. A main effect of 5XFAD genotype was observed in only 1 ROI, suggesting that the 5XFAD transgene does not strongly disrupt neural development or microstructure of mice in early adulthood. Strain also explained the most variance in mouse baseline motor activity and long-term fear memory. Additionally, significant effects of sex and strain*sex interaction were observed on baseline motor activity, and significant strain*sex and sex*5XFAD genotype interactions were observed on long-term memory. We are the first to study the genetic influences of brain microanatomy in genetically diverse AD mice. Thus, we demonstrated that strain is the primary factor influencing brain microstructure in young adult AD mice and that neural development and early adult microstructure are not strongly altered by the 5XFAD transgene. We also demonstrated that strain, sex, and 5XFAD genotype interact to influence memory in genetically diverse adult mice. Our results support the usefulness of the 5XFAD mouse model and convey strong relationships between natural genetic variation, brain microstructure, and memory.
Collapse
Affiliation(s)
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Surjeet Singh
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | | | | | - Itamar Kahn
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Marcelo Febo
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Catherine C. Kaczorowski
- The Jackson Laboratory, Bar Harbor, ME, United States,*Correspondence: Catherine C. Kaczorowski,
| |
Collapse
|
6
|
Akeret K, Forkel SJ, Buzzi RM, Vasella F, Amrein I, Colacicco G, Serra C, Krayenbühl N. Multimodal anatomy of the human forniceal commissure. Commun Biol 2022; 5:742. [PMID: 35879431 PMCID: PMC9314404 DOI: 10.1038/s42003-022-03692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Ambiguity surrounds the existence and morphology of the human forniceal commissure. We combine advanced in-vivo tractography, multidirectional ex-vivo fiber dissection, and multiplanar histological analysis to characterize this structure’s anatomy. Across all 178 subjects, in-vivo fiber dissection based on the Human Connectome Project 7 T MRI data identifies no interhemispheric connections between the crura fornicis. Multidirectional ex-vivo fiber dissection under the operating microscope demonstrates the psalterium as a thin soft-tissue membrane spanning between the right and left crus fornicis, but exposes no commissural fibers. Multiplanar histological analysis with myelin and Bielchowsky silver staining, however, visualizes delicate cruciform fibers extending between the crura fornicis, enclosed by connective tissue, the psalterium. The human forniceal commissure is therefore much more delicate than previously described and presented in anatomical textbooks. This finding is consistent with the observed phylogenetic trend of a reduction of the forniceal commissure in non-human primates compared to non-primate eutherian mammals. Anatomical dissection and tractography elucidate the delicate nature of the human forniceal commissure, an interhemispheric white matter circuit.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.,Donders Centre for Cognition, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, the Netherlands.,Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Departments of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany
| | - Raphael M Buzzi
- Division of Internal Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Irmgard Amrein
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | | | - Carlo Serra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Niklaus Krayenbühl
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland. .,Division of Pediatric Neurosurgery, University Children's Hospital, Zurich, Switzerland.
| |
Collapse
|
7
|
Lee J, Ju G, Park H, Chung S, Son JW, Shin CJ, Lee SI, Kim S. Hippocampal Subfields and White Matter Connectivity in Patients with Subclinical Geriatric Depression. Brain Sci 2022; 12:brainsci12030329. [PMID: 35326285 PMCID: PMC8946804 DOI: 10.3390/brainsci12030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Despite an abundance of research related to the functional and structural changes of the brain in patients with geriatric depression, knowledge related to early alterations such as decreased white matter connectivity and their association with cognitive decline remains lacking. We aimed to investigate early alterations in hippocampal microstructure and identify their associations with memory function in geriatric patients with subclinical depression. Nineteen participants with subclinical geriatric depression and 19 healthy controls aged ≥65 years exhibiting general cognitive function within the normal range were included in the study and underwent assessments of verbal memory. Hippocampal subfield volumes were determined based on T1-weighted magnetization-prepared rapid gradient echo (T1-MPRAGE) images, while group tractography and connectometry analyses were conducted using diffusion tensor images. Our findings indicated that the volumes of whole bilateral hippocampus, cornus ammonis (CA) 1, molecular layer, left subiculum, CA3, hippocampal tail, right CA4, and granule cell/molecular layers of the dentate gyrus (GC-ML-DG) were significantly smaller in the subclinical depression group than in the control group. In the subclinical depression group, verbal learning was positively correlated with the volumes of the CA1, GC-ML-DG, molecular layer, and whole hippocampus in the right hemisphere. The fractional anisotropy of the bilateral fornix was also significantly lower in the subclinical depression group and exhibited a positive correlation with verbal learning and recall in both groups. Our results suggest that hippocampal microstructure is disrupted and associated with memory in patients with subclinical depression.
Collapse
Affiliation(s)
- Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Gawon Ju
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hyemi Park
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Seungwon Chung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Jung-Woo Son
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Chul-Jin Shin
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Sang Ick Lee
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Siekyeong Kim
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: ; Tel.: +82-43-269-6364; Fax: +82-43-267-7951
| |
Collapse
|
8
|
Diffusion magnetic resonance tractography-based evaluation of commissural fiber abnormalities in a heparan sulfate endosulfatase-deficient mouse brain. Magn Reson Imaging 2022; 88:123-131. [DOI: 10.1016/j.mri.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/21/2022]
|
9
|
Im S, Lee J, Kim S. Preliminary Comparison of Subcortical Structures in Elderly Subclinical Depression: Structural Analysis with 3T MRI. Exp Neurobiol 2021; 30:183-202. [PMID: 33972469 PMCID: PMC8118753 DOI: 10.5607/en20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 01/23/2023] Open
Abstract
Depression in the elderly population has shown increased likelihood of neurological disorders due to structural changes in the subcortical area. However, further investigation into depression related subcortical changes is needed due to mismatches in structural analysis results between studies as well as scarcities in research regarding subcortical connectivity patterns of subclinical depression populations. This study aims to investigate structural differences in subcortical regions of aged participants with subclinical depression using 3Tesla MRI. In structural analysis, volumes of each subcortical region were measured to observe the volumetric difference and asymmetry between groups, but no significant difference was found. In addition, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) did not show any significant differences between groups. Structural analysis using probabilistic tractography indicated that the connection strength between left nucleus accumbens-right hippocampus, and right thalamus-right caudate was higher in the control group than the subclinical depression group. The differences in subcortical connection strength of subclinical depression groups, have shown to correlate with emotional and cognitive disorders, such as anxiety and memory impairment. We believe that the analysis of structural differences and cross-regional network measures in subcortical structures can help identify neurophysiological changes occurring in subclinical depression.
Collapse
Affiliation(s)
- SangJin Im
- Lee Gil Ya Cancer & Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Siekyeong Kim
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| |
Collapse
|
10
|
Plachti A, Kharabian S, Eickhoff SB, Maleki Balajoo S, Hoffstaedter F, Varikuti DP, Jockwitz C, Caspers S, Amunts K, Genon S. Hippocampus co-atrophy pattern in dementia deviates from covariance patterns across the lifespan. Brain 2021; 143:2788-2802. [PMID: 32851402 DOI: 10.1093/brain/awaa222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/29/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
The hippocampus is a plastic region and highly susceptible to ageing and dementia. Previous studies explicitly imposed a priori models of hippocampus when investigating ageing and dementia-specific atrophy but led to inconsistent results. Consequently, the basic question of whether macrostructural changes follow a cytoarchitectonic or functional organization across the adult lifespan and in age-related neurodegenerative disease remained open. The aim of this cross-sectional study was to identify the spatial pattern of hippocampus differentiation based on structural covariance with a data-driven approach across structural MRI data of large cohorts (n = 2594). We examined the pattern of structural covariance of hippocampus voxels in young, middle-aged, elderly, mild cognitive impairment and dementia disease samples by applying a clustering algorithm revealing differentiation in structural covariance within the hippocampus. In all the healthy and in the mild cognitive impaired participants, the hippocampus was robustly divided into anterior, lateral and medial subregions reminiscent of cytoarchitectonic division. In contrast, in dementia patients, the pattern of subdivision was closer to known functional differentiation into an anterior, body and tail subregions. These results not only contribute to a better understanding of co-plasticity and co-atrophy in the hippocampus across the lifespan and in dementia, but also provide robust data-driven spatial representations (i.e. maps) for structural studies.
Collapse
Affiliation(s)
- Anna Plachti
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Shahrzad Kharabian
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Somayeh Maleki Balajoo
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Deepthi P Varikuti
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany.,GIGA-CRC In vivo Imaging, University of Liege, Liege, Belgium
| |
Collapse
|
11
|
Horgos B, Mecea M, Boer A, Szabo B, Buruiana A, Stamatian F, Mihu CM, Florian IŞ, Susman S, Pascalau R. White Matter Dissection of the Fetal Brain. Front Neuroanat 2020; 14:584266. [PMID: 33071763 PMCID: PMC7544931 DOI: 10.3389/fnana.2020.584266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroplasticity is a complex process of structural and functional reorganization of brain tissue. In the fetal period, neuroplasticity plays an important role in the emergence and development of white matter tracts. Here, we aimed to study the architecture of normal fetal brains by way of Klingler’s dissection. Ten normal brains were collected from in utero deceased fetuses aged between 13 and 35 gestational weeks (GW). During this period, we observed modifications in volume, shape, and sulci configuration. Our findings indicate that the major white matter tracts follow four waves of development. The first wave (13 GW) involves the corpus callosum, the fornix, the anterior commissure, and the uncinate fasciculus. In the second one (14 GW), the superior and inferior longitudinal fasciculi and the cingulum could be identified. The third wave (17 GW) concerns the internal capsule and in the fourth wave (20 GW) all the major tracts, including the inferior-occipital fasciculus, were depicted. Our results suggest an earlier development of the white matter tracts than estimated by DTI tractography studies. Correlating anatomical dissection with tractography data is of great interest for further research in the field of fetal brain mapping.
Collapse
Affiliation(s)
- Bianca Horgos
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Miruna Mecea
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Armand Boer
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bianca Szabo
- Department of Morphological Sciences - Anatomy and Embryology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Buruiana
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Stamatian
- Department of Obstetrics and Gynecology, Imogen Research Center, Cluj-Napoca, Romania
| | - Carmen-Mihaela Mihu
- Department of Morphological Sciences - Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Ştefan Florian
- Department of Neurosurgery, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Neurosurgery, Emergency County Hospital, Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences - Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Pathology and Neuropathology, Imogen Research Center, Cluj-Napoca, Romania
| | - Raluca Pascalau
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Bertan F, Wischhof L, Sosulina L, Mittag M, Dalügge D, Fornarelli A, Gardoni F, Marcello E, Di Luca M, Fuhrmann M, Remy S, Bano D, Nicotera P. Loss of Ryanodine Receptor 2 impairs neuronal activity-dependent remodeling of dendritic spines and triggers compensatory neuronal hyperexcitability. Cell Death Differ 2020; 27:3354-3373. [PMID: 32641776 PMCID: PMC7853040 DOI: 10.1038/s41418-020-0584-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/15/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Dendritic spines are postsynaptic domains that shape structural and functional properties of neurons. Upon neuronal activity, Ca2+ transients trigger signaling cascades that determine the plastic remodeling of dendritic spines, which modulate learning and memory. Here, we study in mice the role of the intracellular Ca2+ channel Ryanodine Receptor 2 (RyR2) in synaptic plasticity and memory formation. We demonstrate that loss of RyR2 in pyramidal neurons of the hippocampus impairs maintenance and activity-evoked structural plasticity of dendritic spines during memory acquisition. Furthermore, post-developmental deletion of RyR2 causes loss of excitatory synapses, dendritic sparsification, overcompensatory excitability, network hyperactivity and disruption of spatially tuned place cells. Altogether, our data underpin RyR2 as a link between spine remodeling, circuitry dysfunction and memory acquisition, which closely resemble pathological mechanisms observed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Fabio Bertan
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Manuel Mittag
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dennis Dalügge
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Martin Fuhrmann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefan Remy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|