1
|
Arif Y, Song RW, Springer SD, John JA, Embury CM, Killanin AD, Son JJ, Okelberry HJ, McDonald KM, Picci G, Wilson TW. High-definition transcranial direct current stimulation of the parietal cortices modulates the neural dynamics underlying verbal working memory. Hum Brain Mapp 2024; 45:e70001. [PMID: 39169661 PMCID: PMC11339318 DOI: 10.1002/hbm.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
Verbal working memory (vWM) is an essential limited-capacity cognitive system that spans the fronto-parietal network and utilizes the subprocesses of encoding, maintenance, and retrieval. With the recent widespread use of noninvasive brain stimulation techniques, multiple recent studies have examined whether such stimulation may enhance cognitive abilities such as vWM, but the findings to date remain unclear in terms of both behavior and critical brain regions. In the current study, we applied high-definition direct current stimulation to the left and right parietal cortices of 39 healthy adults in three separate sessions (left anodal, right anodal, and sham). Following stimulation, participants completed a vWM task during high-density magnetoencephalography (MEG). Significant neural responses at the sensor-level were imaged using a beamformer and whole-brain ANOVAs were used to identify the specific neuromodulatory effects of the stimulation conditions on neural responses serving distinct phases of vWM. We found that right stimulation had a faciliatory effect relative to left stimulation and sham on theta oscillations during encoding in the right inferior frontal, while the opposite pattern was observed for left supramarginal regions. Stimulation also had a faciliatory effect on theta in occipital regions and alpha in temporal regions regardless of the laterality of stimulation. In summary, our data suggest that parietal HD-tDCS both facilitates and interferes with neural responses underlying both the encoding and maintenance phases of vWM. Future studies are warranted to determine whether specific tDCS parameters can be tuned to accentuate the facilitation responses and attenuate the interfering aspects.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Richard W. Song
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Vanderbilt UniversityNashvilleTennesseeUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Christine M. Embury
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jake J. Son
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Kellen M. McDonald
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Giorgia Picci
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
2
|
Arif Y, Killanin AD, Zhu J, Willett MP, Okelberry HJ, Johnson HJ, Wilson TW. Hypertension Impacts the Oscillatory Dynamics Serving the Encoding Phase of Verbal Working Memory. Hypertension 2024; 81:1609-1618. [PMID: 38690668 PMCID: PMC11168866 DOI: 10.1161/hypertensionaha.124.22698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Chronic hypertension is known to be a major contributor to cognitive decline, with executive function and working memory being among the domains most commonly affected. Despite the growing literature on such dysfunction in patients with hypertension, the underlying neural processes are poorly understood. METHODS In this cross-sectional study, we examine these neural processes by having participants with controlled hypertension, uncontrolled hypertension, and healthy controls perform a verbal working memory task during magnetoencephalography. Neural oscillations associated with the encoding and maintenance components of the working memory task were imaged and statistically evaluated among the 3 groups. RESULTS Differences related to hypertension emerged during the encoding phase, where the hypertension groups exhibited weaker α-β oscillatory responses compared with controls in the left parietal cortices, whereas such oscillatory activity differed between the 2 hypertension groups in the right prefrontal regions. Importantly, these neural responses in the prefrontal and parietal cortices during encoding were also significantly associated with behavioral performance across all participants. CONCLUSIONS Overall, our data suggest that hypertension is associated with neurophysiological abnormalities during working memory encoding, whereas the neural processes serving maintenance seem to be preserved. The right hemispheric neural responses likely reflected compensatory processing, which patients with controlled hypertension may use to achieve verbal working memory function at the level of controls, as opposed to the uncontrolled hypertension group where diminished resources may have limited such additional recruitment.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Abraham D. Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Jingqi Zhu
- University of Michigan, Ann Arbor, MI, USA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
3
|
Springer SD, Okelberry HJ, Willett MP, Johnson HJ, Meehan CE, Schantell M, Embury CM, Rempe MP, Wilson TW. Age-related alterations in the oscillatory dynamics serving verbal working memory processing. Aging (Albany NY) 2023; 15:14574-14590. [PMID: 38154102 PMCID: PMC10781444 DOI: 10.18632/aging.205403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023]
Abstract
Working memory (WM) is a foundational cognitive function involving the temporary storage of information. Unfortunately, WM is also one of the most sensitive cognitive functions to the detrimental effects of aging. Expanding the field's understanding of age-related WM changes is critical to advancing the development of strategies to mitigate age-related WM declines. In the current study, we investigated the neural mechanisms serving WM function in seventy-eight healthy aging adults (range: 20.2-65.2 years) using magnetoencephalography (MEG) and a Sternberg WM task with letter stimuli. Neural activity during the different phases of the WM task (i.e., encoding, maintenance, and retrieval) were imaged using a time-frequency resolved beamformer and whole-brain statistics were performed. We found stronger increases in theta activity and stronger decreases in alpha and beta activity (i.e., more negative relative to baseline) as a function of healthy aging. Specifically, age-related increases in theta activity were detected during the encoding period in the primary visual and left prefrontal cortices. Additionally, alpha and beta oscillations were stronger (i.e., more negative) during both encoding and maintenance in the left prefrontal cortex in older individuals. Finally, alpha and beta oscillations during the retrieval phase were stronger (i.e., more negative) in older participants within the prefrontal, parietal, and temporal cortices. Together, these results indicate that healthy aging strongly modulates the neural oscillatory dynamics serving WM function.
Collapse
Affiliation(s)
- Seth D. Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chloe E. Meehan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christine M. Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Maggie P. Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68131, USA
| |
Collapse
|
4
|
Liu Z, Lu K, Hao N, Wang Y. Cognitive Reappraisal and Expressive Suppression Evoke Distinct Neural Connections during Interpersonal Emotion Regulation. J Neurosci 2023; 43:8456-8471. [PMID: 37852791 PMCID: PMC10711701 DOI: 10.1523/jneurosci.0954-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Interpersonal emotion regulation is the dynamic process where the regulator aims to change the target's emotional state, which is presumed to engage three neural systems: cognitive control (i.e., dorsal and ventral lateral PFC, etc.), empathy/social cognition (i.e., dorsal premotor regions, temporal-parietal junction, etc.), and affective response (i.e., insula, amygdala, etc.). This study aimed to identify the underlying neural correlate (especially the interpersonal one), of interpersonal emotion regulation based on two typical strategies (cognitive appraisal, expressive suppression). Thirty-four female dyads (friends) were randomly assigned into two strategy groups, with one assigned as the target and the other as the regulator to downregulate the target's negative emotions using two strategies. A functional near-infrared spectroscopy system was used to simultaneously measure participants' neural activity. Results showed that these two strategies could successfully downregulate the targets' negative emotions. Both strategies evoked intrapersonal and interpersonal neural couplings between the cognitive control, social cognition, and mirror neuron systems (e.g., PFC, temporal-parietal junction, premotor cortex, etc.), whereas cognitive reappraisal (vs expressive suppression) evoked a broader pattern. Further, cognitive reappraisal involved increased interpersonal brain synchronization between the prefrontal and temporal areas at the sharing stage, whereas expressive suppression evoked increased interpersonal brain synchronization associated with the PFC at the regulation stage. These findings indicate that intrapersonal and interpersonal neural couplings associated with regions within the abovementioned systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing, underlie interpersonal emotion regulation based on cognitive reappraisal or expressive suppression.SIGNIFICANCE STATEMENT As significant as intrapersonal emotion regulation, interpersonal emotion regulation subserves parent-child, couple, and leader-follower relationships. Despite enormous growth in research on intrapersonal emotion regulation, the field lacks insight into the neural correlates underpinning interpersonal emotion regulation. This study aimed to probe the underlying neural correlates of interpersonal emotion regulation using a multibrain neuroimaging (i.e., hyperscanning) based on functional near-infrared spectroscopy. Results showed that both cognitive reappraisal and expressive suppression strategies successfully downregulated the target's negative emotions. More importantly, they evoked intrapersonal and interpersonal neural couplings associated with regions within the cognitive control, social cognition, and mirror neuron systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing. These findings deepen our understanding of the neural correlates underpinning interpersonal emotion regulation.
Collapse
Affiliation(s)
- Zixin Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Yanmei Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Shanghai, 200335, China
| |
Collapse
|
5
|
The effects of concurrent bilateral anodal tDCS of primary motor cortex and cerebellum on corticospinal excitability: a randomized, double-blind sham-controlled study. Brain Struct Funct 2022; 227:2395-2408. [PMID: 35984496 PMCID: PMC9418272 DOI: 10.1007/s00429-022-02533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Transcranial direct current stimulation (tDCS) applied to the primary motor cortex (M1), and cerebellum (CB) can change the level of M1 corticospinal excitability (CSE). A randomized double-blinded crossover, the sham-controlled study design was used to investigate the effects of concurrent bilateral anodal tDCS of M1 and CB (concurrent bilateral a-tDCSM1+CB) on the CSE. Twenty-one healthy participants were recruited in this study. Each participant received anodal-tDCS (a-tDCS) of 2 mA, 20 min in four pseudo-randomized, counterbalanced sessions, separated by at least 7 days (7.11 days ± 0.65). These sessions were bilateral M1 stimulation (bilateral a-tDCSM1), bilateral cerebellar stimulation (bilateral a-tDCSCB), concurrent bilateral a-tDCSM1+CB, and sham stimulation (bilateral a-tDCSSham). Transcranial magnetic stimulation (TMS) was delivered over the left M1, and motor evoked potentials (MEPs) of a contralateral hand muscle were recorded before and immediately after the intervention to measure CSE changes. Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long interval intracortical inhibition (LICI) were assessed with paired-pulse TMS protocols. Anodal-tDCS significantly increased CSE after concurrent bilateral a-tDCSM1+CB and bilateral a-tDCSCB. Interestingly, CSE was decreased after bilateral a-tDCSM1. Respective alterations in SICI, LICI, and ICF were seen, including increased SICI and decreased ICF, which indicate the involvement of glutamatergic and GABAergic systems in these effects. These results confirm that the concurrent bilateral a-tDCSM1+CB have a facilitatory effect on CSE, whereas bilateral a-tDCSM1 exert some inhibitory effects. Moreover, the effects of the 2 mA, 20 min a-tDCS on the CB were consistent with its effects on the M1.
Collapse
|
6
|
Killanin AD, Embury CM, Picci G, Heinrichs-Graham E, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Trauma moderates the development of the oscillatory dynamics serving working memory in a sex-specific manner. Cereb Cortex 2022; 32:5206-5215. [PMID: 35106552 PMCID: PMC9667155 DOI: 10.1093/cercor/bhac008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Abstract
Working memory, the ability to hold items in memory stores for further manipulation, is a higher order cognitive process that supports many aspects of daily life. Childhood trauma has been associated with altered cognitive development including particular deficits in verbal working memory (VWM), but the neural underpinnings remain poorly understood. Magnetoencephalography (MEG) studies of VWM have reliably shown decreased alpha activity in left-lateralized language regions during encoding, and increased alpha activity in parieto-occipital cortices during the maintenance phase. In this study, we examined whether childhood trauma affects behavioral performance and the oscillatory dynamics serving VWM using MEG in a cohort of 9- to 15-year-old youth. All participants completed a modified version of the UCLA Trauma History Profile and then performed a VWM task during MEG. Our findings indicated a sex-by-age-by-trauma three-way interaction, whereby younger females experiencing higher levels of trauma had the lowest d' accuracy scores and the strongest positive correlations with age (i.e. older performed better). Likewise, females with higher levels of childhood trauma exhibited altered age-related alpha changes during the maintenance phase within the right temporal and parietal cortices. These findings suggest that trauma exposure may alter the developmental trajectory of neural oscillations serving VWM processing in a sex-specific way.
Collapse
Affiliation(s)
- Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA,Department of Psychology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | | | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, USA
| | | | - Tony W Wilson
- Corresponding author: Tony W. Wilson, Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.
| |
Collapse
|
7
|
Sun JB, Cheng C, Tian QQ, Yuan H, Yang XJ, Deng H, Guo XY, Cui YP, Zhang MK, Yin ZX, Wang C, Qin W. Transcutaneous Auricular Vagus Nerve Stimulation Improves Spatial Working Memory in Healthy Young Adults. Front Neurosci 2022; 15:790793. [PMID: 35002607 PMCID: PMC8733384 DOI: 10.3389/fnins.2021.790793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/18/2021] [Indexed: 01/08/2023] Open
Abstract
Working memory (WM) is one of the core components of higher cognitive functions. There exists debate regarding the extent to which current techniques can enhance human WM capacity. Here, we examined the WM modulation effects of a previously less studied technique, transcutaneous auricular vagus nerve stimulation (taVNS). In experiment 1, a within-subject study, we aimed to investigate whether and which stimulation protocols of taVNS can modulate spatial WM performance in healthy adults. Forty-eight participants performed baseline spatial n-back tasks (1, 3-back) and then received online taVNS, offline taVNS, or sham stimulation before or during (online group) the posttest of spatial n-back tasks in random order. Results showed that offline taVNS could significantly increase hits in spatial 3-back task, whereas no effect was found in online taVNS or sham group. No significant taVNS effects were found on correct rejections or reaction time of accurate trials (aRT) in both online and offline protocols. To replicate the results found in experiment 1 and further investigate the generalization effect of offline taVNS, we carried out experiment 2. Sixty participants were recruited and received offline taVNS or offline earlobe stimulation in random order between baseline and posttests of behavioral tests (spatial/digit 3-back tasks). Results replicated the findings; offline taVNS could improve hits but not correct rejections or aRT in spatial WM performance, which were found in experiment 1. However, there were no significant stimulation effects on digit 3-back task. Overall, the findings suggest that offline taVNS has potential on modulating WM performance.
Collapse
Affiliation(s)
- Jin-Bo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Chen Cheng
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Qian-Qian Tian
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hang Yuan
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Hui Deng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Xiao-Yu Guo
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Ya-Peng Cui
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Meng-Kai Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Zi-Xin Yin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Cong Wang
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| |
Collapse
|
8
|
Arif Y, Embury CM, Spooner RK, Okelberry HJ, Willett MP, Eastman JA, Wilson TW. High-definition transcranial direct current stimulation of the occipital cortices induces polarity dependent effects within the brain regions serving attentional reorientation. Hum Brain Mapp 2022; 43:1930-1940. [PMID: 34997673 PMCID: PMC8933319 DOI: 10.1002/hbm.25764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Numerous brain stimulation studies have targeted the posterior parietal cortex, a key hub of the attention network, to manipulate attentional reorientation. However, the impact of stimulating brain regions earlier in the pathway, including early visual regions, is poorly understood. In this study, 28 healthy adults underwent three high‐definition transcranial direct current stimulation (HD‐tDCS) visits (i.e., anodal, cathodal, and sham). During each visit, they completed 20 min of occipital HD‐tDCS and then a modified Posner task during magnetoencephalography (MEG). MEG data were transformed into the time‐frequency domain and significant oscillatory events were imaged using a beamformer. Oscillatory response amplitude values were extracted from peak voxels in the whole‐brain maps and were statistically compared. Behaviorally, we found that the participants responded slowly when attention reallocation was needed (i.e., the validity effect), irrespective of the stimulation condition. Our neural findings indicated that cathodal HD‐tDCS was associated with significantly reduced theta validity effects in the occipital cortices, as well as reduced alpha validity effects in the left occipital and parietal cortices relative to anodal HD‐tDCS. Additionally, anodal occipital stimulation significantly increased gamma amplitude in right occipital regions relative to cathodal and sham stimulation. Finally, we also found a negative correlation between the alpha validity effect and reaction time following anodal stimulation. Our findings suggest that HD‐tDCS of the occipital cortices has a polarity dependent impact on the multispectral neural oscillations serving attentional reorientation in healthy adults, and that such effects may reflect altered local GABA concentrations in the neural circuitry serving attentional reorientation.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,Department of Psychology, University of Nebraska, Omaha, Nebraska, USA
| | - Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Psychology, University of Nebraska, Omaha, Nebraska, USA
| |
Collapse
|
9
|
Arif Y, Spooner RK, Heinrichs-Graham E, Wilson TW. High-definition transcranial direct current stimulation modulates performance and alpha/beta parieto-frontal connectivity serving fluid intelligence. J Physiol 2021; 599:5451-5463. [PMID: 34783045 PMCID: PMC9250752 DOI: 10.1113/jp282387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Fluid intelligence (Gƒ) includes logical reasoning abilities and is an essential component of normative cognition. Despite the broad consensus that parieto-prefrontal connectivity is critical for Gƒ (e.g. the parieto-frontal integration theory of intelligence, P-FIT), the dynamics of such functional connectivity during logical reasoning remains poorly understood. Further, given the known importance of these brain regions for Gƒ, numerous studies have targeted one or both of these areas with non-invasive stimulation with the goal of improving Gƒ, but to date there remains little consensus on the overall stimulation-related effects. To examine this, we applied high-definition direct current anodal stimulation to the left and right dorsolateral prefrontal cortex (DLPFC) of 24 healthy adults for 20 min in three separate sessions (sham, left, and right active). Following stimulation, participants completed a logical reasoning task during magnetoencephalography (MEG). Significant neural responses at the sensor-level were imaged using a beamformer, and peak task-induced activity was subjected to dynamic functional connectivity analyses to evaluate the impact of distinct stimulation montages on network activity. We found that participants responded faster following right DLPFC stimulation vs. sham. Moreover, our neural findings followed a similar trajectory of effects such that left parieto-frontal connectivity decreased following right and left DLPFC stimulation compared to sham, with connectivity following right stimulation being significantly correlated with the faster reaction times. Importantly, our findings are consistent with P-FIT, as well as the neural efficiency hypothesis (NEH) of intelligence. In sum, this study provides evidence for beneficial effects of right DLPFC stimulation on logical reasoning. KEY POINTS: Logical reasoning is an indispensable component of fluid intelligence and involves multispectral oscillatory activity in parietal and frontal regions. Parieto-frontal integration is well characterized in logical reasoning; however, its direct neural quantification and neuromodulation by brain stimulation remain poorly understood. High-definition transcranial direct current stimulation of dorsolateral prefrontal cortex (DLPFC) had modulatory effects on task performance and neural interactions serving logical reasoning, with right stimulation showing beneficial effects. Right DLPFC stimulation led to a decrease in the response time (i.e. better task performance) and left parieto-frontal connectivity with a marginal positive association between behavioural and neural metrics. Other modes of targeted stimulation of DLPFC (e.g. frequency-specific) can be employed in future studies.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (Neuroscience), University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel K. Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (Neuroscience), University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| |
Collapse
|
10
|
Wischnewski M, Mantell KE, Opitz A. Identifying regions in prefrontal cortex related to working memory improvement: A novel meta-analytic method using electric field modeling. Neurosci Biobehav Rev 2021; 130:147-161. [PMID: 34418436 DOI: 10.1016/j.neubiorev.2021.08.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Altering cortical activity using transcranial direct current stimulation (tDCS) has been shown to improve working memory (WM) performance. Due to large inter-experimental variability in the tDCS montage configuration and strength of induced electric fields, results have been mixed. Here, we present a novel meta-analytic method relating behavioral effect sizes to electric field strength to identify brain regions underlying largest tDCS-induced WM improvement. Simulations on 69 studies targeting left prefrontal cortex showed that tDCS electric field strength in lower dorsolateral prefrontal cortex (Brodmann area 45/47) relates most strongly to improved WM performance. This region explained 7.8 % of variance, equaling a medium effect. A similar region was identified when correlating WM performance and electric field strength of right prefrontal tDCS studies (n = 18). Maximum electric field strength of five previously used tDCS configurations were outside of this location. We thus propose a new tDCS montage which maximizes the tDCS electric field strength in that brain region. Our findings can benefit future tDCS studies that aim to affect WM function.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States.
| | - Kathleen E Mantell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Chan MMY, Yau SSY, Han YMY. The neurobiology of prefrontal transcranial direct current stimulation (tDCS) in promoting brain plasticity: A systematic review and meta-analyses of human and rodent studies. Neurosci Biobehav Rev 2021; 125:392-416. [PMID: 33662444 DOI: 10.1016/j.neubiorev.2021.02.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The neurobiological mechanisms underlying prefrontal transcranial direct current stimulation (tDCS) remain elusive. Randomized, sham-controlled trials in humans and rodents applying in vivo prefrontal tDCS were included to explore whether prefrontal tDCS modulates resting-state and event-related functional connectivity, neural oscillation and synaptic plasticity. Fifty studies were included in the systematic review and 32 in the meta-analyses. Neuroimaging meta-analysis indicated anodal prefrontal tDCS significantly enhanced bilateral median cingulate activity [familywise error (FWE)-corrected p < .005]; meta-regression revealed a positive relationship between changes in median cingulate activity after tDCS and current density (FWE-corrected p < .005) as well as electric current strength (FWE-corrected p < .05). Meta-analyses of electroencephalography and magnetoencephalography data revealed nonsignificant changes (ps > .1) in both resting-state and event-related oscillatory power across all frequency bands. Applying anodal tDCS over the rodent hippocampus/prefrontal cortex enhanced long-term potentiation and brain-derived neurotrophic factor expression in the stimulated brain regions (ps <.005). Evidence supporting prefrontal tDCS administration is preliminary; more methodologically consistent studies evaluating its effects on cognitive function that include brain activity measurements are needed.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sonata S Y Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
12
|
Wei Y, Wu L, Wang Y, Liu J, Miao P, Wang K, Wang C, Cheng J. Disrupted Regional Cerebral Blood Flow and Functional Connectivity in Pontine Infarction: A Longitudinal MRI Study. Front Aging Neurosci 2020; 12:577899. [PMID: 33328960 PMCID: PMC7710811 DOI: 10.3389/fnagi.2020.577899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022] Open
Abstract
Abnormal cerebral blood flow (CBF) and resting-state functional connectivity (rs-FC) are sensitive biomarkers of disease progression and prognosis. This study investigated neural underpinnings of motor and cognitive recovery by longitudinally studying the changes of CBF and FC in pontine infarction (PI). Twenty patients underwent three-dimensional pseudo-continuous arterial spin labeling (3D-pcASL), resting-state functional magnetic resonance imaging (rs-fMRI) scans, and behavioral assessments at 1 week, 1, 3, and 6 months after stroke. Twenty normal control (NC) subjects underwent the same examination once. First, we investigated CBF changes in the acute stage, and longitudinal changes from 1 week to 6 months after PI. Brain regions with longitudinal CBF changes were then used as seeds to investigate longitudinal FC alterations during the follow-up period. Compared with NC, patients in the left PI (LPI) and right PI (RPI) groups showed significant CBF alterations in the bilateral cerebellum and some supratentorial brain regions at the baseline stage. Longitudinal analysis revealed that altered CBF values in the right supramarginal (SMG_R) for the LPI group, while the RPI group showed significantly dynamic changes of CBF in the left calcarine sulcus (CAL_L), middle occipital gyrus (MOG_L), and right supplementary motor area (SMA_R). Using the SMG_R as the seed in the LPI group, FC changes were found in the MOG_L, middle temporal gyrus (MTG_L), and prefrontal lobe (IFG_L). Correlation analysis showed that longitudinal CBF changes in the SMG_R and FC values between the SMG_R and MOG_L were associated with motor and memory scores in the LPI group, and longitudinal CBF changes in the CAL_L and SMA_R were related to memory and motor recovery in the RPI group. These longitudinal CBF and accompany FC alterations may provide insights into the neural mechanism underlying functional recovery after PI, including that of motor and cognitive functions.
Collapse
Affiliation(s)
- Ying Wei
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luobing Wu
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Peifang Miao
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- GE Healthcare MR Research, Beijing, China
| | - Caihong Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|