1
|
Shu H, Parada I, Delgado A, Prince DA, Gu F. Increased excitatory connectivity and epileptiform activity in thrombospondin1/2 knockout mice following cortical trauma. Neurobiol Dis 2024; 200:106634. [PMID: 39122122 DOI: 10.1016/j.nbd.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Thrombospondins (TSPs) are astrocyte-secreted extracellular matrix proteins that play key roles as regulators of synaptogenesis in the central nervous system. We previously showed that TSP1/2 are upregulated in the partial neocortical isolation model ("undercut" or "UC" below) of posttraumatic epileptogenesis and may contribute to abnormal axonal sprouting, aberrant synaptogenesis and epileptiform discharges in the UC cortex. These results led to the hypothesis that posttraumatic epileptogeneis would be reduced in TSP1/2 knockout (TSP1/2 KO) mice. To test the hypothesis, we made UC lesions at P21, and subsequent experiments were conducted 14d later at P35. Ex vivo extracellular single or multi-electrode field potential recordings were obtained from layer V in cortical slices at P35 and in vivo video-EEGs of spontaneous epileptiform bursts were recorded to examine the effect of TSP1/2 deletion on epileptogenesis following cortical injury. Immunohistochemical experiments were performed to assess the effect of TSP1/2 KO + UC on the number of putative excitatory synapses and the expression of TSP4 and HEVIN, other astrocytic proteins known to up-regulate excitatory synapse formation. Unexpectedly, our results showed that, compared with WT + UC mice, TSP1/2 KO + UC mice displayed increased epileptiform activity, as indicated by 1) increased incidence and more rapid propagation of evoked and spontaneous epileptiform discharges in UC neocortical slices; 2) increased occurrence of spontaneous epileptiform discharges in vivo. There was an associated increase in the density of VLUT1/PSD95-IR colocalizations (putative excitatory synapses) and significantly upregulated TSP4- and HEVIN-IR in TSP1/2 KO + UC versus WT + UC mice. Results suggest that TSP1/2 deletion plays a potential epileptogenic role following neocortical injury, associated with compensatory upregulation of TSP4 and HEVIN, which may contribute to the increase in the density of excitatory synapses and resulting neural network hyperexcitability.
Collapse
Affiliation(s)
- Haifeng Shu
- Department of Neurosurgery, General Hospital of Western Theatre Command, College of Medicine of Southwest Jiaotong University, China
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex Delgado
- Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Feng Gu
- Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA.
| |
Collapse
|
2
|
Wang CS, McCarthy CI, Guzikowski NJ, Kavalali ET, Monteggia LM. Brain-derived neurotrophic factor scales presynaptic calcium transients to modulate excitatory neurotransmission. Proc Natl Acad Sci U S A 2024; 121:e2303664121. [PMID: 38621124 PMCID: PMC11047077 DOI: 10.1073/pnas.2303664121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.
Collapse
Affiliation(s)
- Camille S. Wang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Clara I. McCarthy
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Natalie J. Guzikowski
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Lisa M. Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| |
Collapse
|
3
|
Guo W, Liu K, Wang Y, Ge X, Ma Y, Qin J, Zhang C, Zhao Y, Shi C. Neurotrophins and neural stem cells in posttraumatic brain injury repair. Animal Model Exp Med 2024; 7:12-23. [PMID: 38018458 PMCID: PMC10961886 DOI: 10.1002/ame2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
Traumatic brain injury (TBI) is the main cause of disability, mental health disorder, and even death, with its incidence and social costs rising steadily. Although different treatment strategies have been developed and tested to mitigate neurological decline, a definitive cure for these conditions remains elusive. Studies have revealed that various neurotrophins represented by the brain-derived neurotrophic factor are the key regulators of neuroinflammation, apoptosis, blood-brain barrier permeability, neurite regeneration, and memory function. These factors are instrumental in alleviating neuroinflammation and promoting neuroregeneration. In addition, neural stem cells (NSC) contribute to nerve repair through inherent neuroprotective and immunomodulatory properties, the release of neurotrophins, the activation of endogenous NSCs, and intercellular signaling. Notably, innovative research proposals are emerging to combine BDNF and NSCs, enabling them to synergistically complement and promote each other in facilitating injury repair and improving neuron differentiation after TBI. In this review, we summarize the mechanism of neurotrophins in promoting neurogenesis and restoring neural function after TBI, comprehensively explore the potential therapeutic effects of various neurotrophins in basic research on TBI, and investigate their interaction with NSCs. This endeavor aims to provide a valuable insight into the clinical treatment and transformation of neurotrophins in TBI, thereby promoting the progress of TBI therapeutics.
Collapse
Affiliation(s)
- Wenwen Guo
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Ke Liu
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Yinghua Wang
- Medical College of Yan'an UniversityYan'anP.R. China
| | - Xu Ge
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Yifan Ma
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Jing Qin
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Caiqin Zhang
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Ya Zhao
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Changhong Shi
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| |
Collapse
|
4
|
Chronic partial TrkB activation reduces seizures and mortality in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A 2022; 119:2022726119. [PMID: 35165147 PMCID: PMC8851461 DOI: 10.1073/pnas.2022726119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/03/2022] Open
Abstract
Dravet syndrome (DS) is a severe childhood epileptic encephalopathy characterized by intractable seizures and comorbidities, including a high rate of premature mortality. DS is mainly caused by loss-of-function mutations of the Scn1a gene encoding sodium channel Nav1.1 that is predominantly expressed in inhibitory parvalbumin-containing (PV) interneurons. Decreased Nav1.1 impairs PV cell function, causing DS phenotypes. Effective pharmacological therapy targeting defective PV interneurons is currently not available. This study demonstrated that early treatment with a partial TrkB receptor agonist, LM22A-4, increased Nav1.1 expression, improved PV interneuron function, and reduced seizure occurrence and mortality rate in DS mice, suggesting a potential therapy for DS. Dravet syndrome (DS) is one of the most severe childhood epilepsies, characterized by intractable seizures and comorbidities including cognitive and social dysfunction and high premature mortality. DS is mainly caused by loss-of-function mutations in the Scn1a gene encoding Nav1.1 that is predominantly expressed in inhibitory parvalbumin-containing (PV) interneurons. Decreased Nav1.1 impairs PV cell function, contributing to DS phenotypes. Effective pharmacological therapy that targets defective PV interneurons is not available. The known role of brain-derived neurotrophic factor (BDNF) in the development and maintenance of interneurons, together with our previous results showing improved PV interneuronal function and antiepileptogenic effects of a TrkB receptor agonist in a posttraumatic epilepsy model, led to the hypothesis that early treatment with a TrkB receptor agonist might prevent or reduce seizure activity in DS mice. To test this hypothesis, we treated DS mice with LM22A-4 (LM), a partial agonist at the BDNF TrkB receptor, for 7 d starting at postnatal day 13 (P13), before the onset of spontaneous seizures. Results from immunohistochemistry, Western blot, whole-cell patch-clamp recording, and in vivo seizure monitoring showed that LM treatment increased the number of perisomatic PV interneuronal synapses around cortical pyramidal cells in layer V, upregulated Nav1.1 in PV neurons, increased inhibitory synaptic transmission, and decreased seizures and the mortality rate in DS mice. The results suggest that early treatment with a partial TrkB receptor agonist may be a promising therapeutic approach to enhance PV interneuron function and reduce epileptogenesis and premature death in DS.
Collapse
|
5
|
Gonzalez S, McHugh TLM, Yang T, Syriani W, Massa SM, Longo FM, Simmons DA. Small molecule modulation of TrkB and TrkC neurotrophin receptors prevents cholinergic neuron atrophy in an Alzheimer's disease mouse model at an advanced pathological stage. Neurobiol Dis 2021; 162:105563. [PMID: 34838668 DOI: 10.1016/j.nbd.2021.105563] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Degeneration of basal forebrain cholinergic neurons (BFCNs) in the nucleus basalis of Meynert (NBM) and vertical diagonal band (VDB) along with their connections is a key pathological event leading to memory impairment in Alzheimer's disease (AD). Aberrant neurotrophin signaling via Trks and the p75 neurotrophin receptor (p75NTR) contributes importantly to BFCN dystrophy. While NGF/TrkA signaling has received the most attention in this regard, TrkB and TrkC signaling also provide trophic support to BFCNs and these receptors may be well located to preserve BFCN connectivity. We previously identified a small molecule TrkB/TrkC ligand, LM22B-10, that promotes cell survival and neurite outgrowth in vitro and activates TrkB/TrkC signaling in the hippocampus of aged mice when given intranasally, but shows poor oral bioavailability. An LM22B-10 derivative, PTX-BD10-2, with improved oral bioavailability has been developed and this study examined its effects on BFCN atrophy in the hAPPLond/Swe (APPL/S) AD mouse model. Oral delivery of PTX-BD10-2 was started after appreciable amyloid and cholinergic pathology was present to parallel the clinical context, as most AD patients start treatment at advanced pathological stages. PTX-BD10-2 restored cholinergic neurite integrity in the NBM and VDB, and reduced NBM neuronal atrophy in symptomatic APPL/S mice. Dystrophy of cholinergic neurites in BF target regions, including the cortex, hippocampus, and amygdala, was also reduced with treatment. Finally, PTX-BD10-2 reduced NBM tau pathology and improved the survival of cholinergic neurons derived from human induced pluripotent stem cells (iPSCs) after amyloid-β exposure. These data provide evidence that targeting TrkB and TrkC signaling with PTX-BD10-2 may be an effective disease-modifying strategy for combating cholinergic dysfunction in AD. The potential for clinical translation is further supported by the compound's reduction of AD-related degenerative processes that have progressed beyond early stages and its neuroprotective effects in human iPSC-derived cholinergic neurons.
Collapse
Affiliation(s)
- Selena Gonzalez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Tyne L M McHugh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Wassim Syriani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Stephen M Massa
- Department of Neurology, Laboratory for Computational Neurochemistry and Drug Discovery, Veterans Affairs Health Care System and Department of Neurology, University of California-San Francisco, San Francisco, CA 94121, United States of America
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America.
| |
Collapse
|
6
|
Fletcher JL, Dill LK, Wood RJ, Wang S, Robertson K, Murray SS, Zamani A, Semple BD. Acute treatment with TrkB agonist LM22A-4 confers neuroprotection and preserves myelin integrity in a mouse model of pediatric traumatic brain injury. Exp Neurol 2021; 339:113652. [PMID: 33609501 DOI: 10.1016/j.expneurol.2021.113652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Young children have a high risk of sustaining a traumatic brain injury (TBI), which can have debilitating life-long consequences. Importantly, the young brain shows particular vulnerability to injury, likely attributed to ongoing maturation of the myelinating nervous system at the time of insult. Here, we examined the effect of acute treatment with the partial tropomyosin receptor kinase B (TrkB) agonist, LM22A-4, on pathological and neurobehavioral outcomes after pediatric TBI, with the hypothesis that targeting TrkB would minimize tissue damage and support functional recovery. We focused on myelinated tracts-the corpus callosum and external capsules-based on recent evidence that TrkB activation potentiates oligodendrocyte remyelination. Male mice at postnatal day 21 received an experimental TBI or sham surgery. Acutely post-injury, extensive cell death, a robust glial response and disruption of compact myelin were evident in the injured brain. TBI or sham mice then received intranasal saline vehicle or LM22A-4 for 14 days. Behavior testing was performed from 4 weeks post-injury, and brains were collected at 5 weeks for histology. TBI mice showed hyperactivity, reduced anxiety-like behavior, and social memory impairments. LM22A-4 ameliorated the abnormal anxiolytic phenotype but had no effect on social memory deficits. Use of spectral confocal reflectance microscopy detected persistent myelin fragmentation in the external capsule of TBI mice at 5 weeks post-injury, which was accompanied by regionally distinct deficits in oligodendrocyte progenitor cells and post-mitotic oligodendrocytes, as well as chronic reactive gliosis and atrophy of the corpus callosum and injured external capsule. LM22A-4 treatment ameliorated myelin deficits in the perilesional external capsule, as well as tissue volume loss and the extent of reactive gliosis. However, there was no effect of this TrkB agonist on oligodendroglial populations detected at 5 weeks post-injury. Collectively, our results demonstrate that targeting TrkB immediately after TBI during early life confers neuroprotection and preserves myelin integrity, and this was associated with some improved neurobehavioral outcomes as the pediatric injured brain matures.
Collapse
Affiliation(s)
- Jessica L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhiannon J Wood
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Sharon Wang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kate Robertson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Simon S Murray
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|