1
|
Hjeij MS, Ménétrier F, Chauvel I, Poirier N, Fraichard S, Steyaert G, Bonnin Q, Laly M, Duchamp-Viret P, Neiers F, Coureaud G, Heydel JM. Molecular and Cellular Characterization of the Glutathione Transferases Involved in the Olfactory Metabolism of the Mammary Pheromone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24724-24735. [PMID: 39444352 DOI: 10.1021/acs.jafc.4c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Odorant metabolizing enzymes, considered as critical olfactory perireceptor actors, control the odor molecules reaching the olfactory epithelium by biotransforming them. As an odorant, the mammary pheromone, i.e., 2-methylbut-2-enal (2MB2), emitted in the milk of lactating female rabbits triggers typical nipple searching-grasping behavior through orocephalic movements in newborn rabbits but not in weaned rabbits. We previously showed that 2MB2 perception is significantly modified when its glutathione transferase-dependent olfactory metabolism is affected in newborns. Here, enzymatic assays of the recombinant enzymes GSTA1, M1, and P1 revealed the activity of these enzymes toward the mammary pheromone. Histological experiments revealed strong expression of the GSTA class restricted to the Bowman glands and of GSTP1 in the nuclei of sustentacular cells. Moreover, some modulations of GSTs have been demonstrated, including a significant increase in GSTP1 expression (2-fold in mRNA, p value < 0.001; protein, p value: 0.031) after 45 min of mammary pheromone exposure at 10-2 g/mL and an increase in GSTA expression in weaned rabbits compared with newborn rabbits (3-fold in mRNA, p value: 0.011; protein, p value: 0.001). Our results provide new insights into the activity, cellular expression, and modulation of the mammary pheromone GST-metabolizing enzymes and clues about their olfactory function.
Collapse
Affiliation(s)
- Marie-Sabelle Hjeij
- Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, CNRS, INRAE, Institut Agro, Dijon F-21000, France
- Centre de Recherche en Neurosciences de Lyon, UMR 5292, CNRS, INSERM, Université de Claude Bernard Lyon 1, Université Jean Monnet Saint-Etienne, Bron 69500, France
| | - Franck Ménétrier
- Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, CNRS, INRAE, Institut Agro, Dijon F-21000, France
| | - Isabelle Chauvel
- Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, CNRS, INRAE, Institut Agro, Dijon F-21000, France
| | - Nicolas Poirier
- Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, CNRS, INRAE, Institut Agro, Dijon F-21000, France
| | - Stéphane Fraichard
- Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, CNRS, INRAE, Institut Agro, Dijon F-21000, France
| | - Gwenaëlle Steyaert
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9, Avenue Alain Savary, Dijon 21000, France
| | - Quentin Bonnin
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9, Avenue Alain Savary, Dijon 21000, France
| | - Myriam Laly
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9, Avenue Alain Savary, Dijon 21000, France
| | - Patricia Duchamp-Viret
- Centre de Recherche en Neurosciences de Lyon, UMR 5292, CNRS, INSERM, Université de Claude Bernard Lyon 1, Université Jean Monnet Saint-Etienne, Bron 69500, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, CNRS, INRAE, Institut Agro, Dijon F-21000, France
| | - Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, UMR 5292, CNRS, INSERM, Université de Claude Bernard Lyon 1, Université Jean Monnet Saint-Etienne, Bron 69500, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, CNRS, INRAE, Institut Agro, Dijon F-21000, France
| |
Collapse
|
2
|
Mérignac-Lacombe J, Kornbausch N, Sivarajan R, Boichot V, Berg K, Oberwinkler H, Saliba AE, Loos HM, Ehret Kasemo T, Scherzad A, Bodem J, Buettner A, Neiers F, Erhard F, Hackenberg S, Heydel JM, Steinke M. Characterization of a Human Respiratory Mucosa Model to Study Odorant Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12696-12706. [PMID: 38775624 DOI: 10.1021/acs.jafc.4c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Nasal xenobiotic metabolizing enzymes (XMEs) are important for the sense of smell because they influence odorant availability and quality. Since the major part of the human nasal cavity is lined by a respiratory mucosa, we hypothesized that this tissue contributed to nasal odorant metabolism through XME activity. Thus, we built human respiratory tissue models and characterized the XME profiles using single-cell RNA sequencing. We focused on the XMEs dicarbonyl and l-xylulose reductase, aldehyde dehydrogenase (ALDH) 1A1, and ALDH3A1, which play a role in food odorant metabolism. We demonstrated protein abundance and localization in the tissue models and showed the metabolic activity of the corresponding enzyme families by exposing the models to the odorants 3,4-hexandione and benzaldehyde. Using gas chromatography coupled with mass spectrometry, we observed, for example, a significantly higher formation of the corresponding metabolites 4-hydroxy-3-hexanone (39.03 ± 1.5%, p = 0.0022), benzyl alcohol (10.05 ± 0.88%, p = 0.0008), and benzoic acid (8.49 ± 0.57%, p = 0.0004) in odorant-treated tissue models compared to untreated controls (0 ± 0, 0.12 ± 0.12, and 0.18 ± 0.18%, respectively). This is the first study that reveals the XME profile of tissue-engineered human respiratory mucosa models and demonstrates their suitability to study nasal odorant metabolism.
Collapse
Affiliation(s)
- Jeanne Mérignac-Lacombe
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Nicole Kornbausch
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Rinu Sivarajan
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Valentin Boichot
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
| | - Kevin Berg
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, 93053 Regensburg, Germany
| | - Heike Oberwinkler
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research (HZI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany
- FAU Research Center "New Bioactive Compounds", Schlossplatz 4, 91054 Erlangen, Germany
| | - Totta Ehret Kasemo
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany
- FAU Research Center "New Bioactive Compounds", Schlossplatz 4, 91054 Erlangen, Germany
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, 93053 Regensburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
| | - Maria Steinke
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Röntgenring 12, 97070 Würzburg, Germany
| |
Collapse
|
3
|
Poirier N, Ménétrier F, Moreno J, Boichot V, Heydel JM, Didierjean C, Canivenc-Lavier MC, Canon F, Neiers F, Schwartz M. Rattus norvegicus Glutathione Transferase Omega 1 Localization in Oral Tissues and Interactions with Food Phytochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5887-5897. [PMID: 38441878 DOI: 10.1021/acs.jafc.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glutathione transferases are xenobiotic-metabolizing enzymes with both glutathione-conjugation and ligandin roles. GSTs are present in chemosensory tissues and fluids of the nasal/oral cavities where they protect tissues from exogenous compounds, including food molecules. In the present study, we explored the presence of the omega-class glutathione transferase (GSTO1) in the rat oral cavity. Using immunohistochemistry, GSTO1 expression was found in taste bud cells of the tongue epithelium and buccal cells of the oral epithelium. Buccal and lingual extracts exhibited thiol-transferase activity (4.9 ± 0.1 and 1.8 ± 0.1 μM/s/mg, respectively). A slight reduction from 4.9 ± 0.1 to 4.2 ± 0.1 μM/s/mg (p < 0.05; Student's t test) was observed in the buccal extract with 100 μM GSTO1-IN-1, a specific inhibitor of GSTO1. RnGSTO1 exhibited the usual activities of omega GSTs, i.e., thiol-transferase (catalytic efficiency of 8.9 × 104 M-1·s-1), and phenacyl-glutathione reductase (catalytic efficiency of 8.9 × 105 M-1·s-1) activities, similar to human GSTO1. RnGSTO1 interacts with food phytochemicals, including bitter compounds such as luteolin (Ki = 3.3 ± 1.9 μM). Crystal structure analysis suggests that luteolin most probably binds to RnGSTO1 ligandin site. Our results suggest that GSTO1 could interact with food phytochemicals in the oral cavity.
Collapse
Affiliation(s)
- Nicolas Poirier
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Franck Ménétrier
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Jade Moreno
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Valentin Boichot
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Jean-Marie Heydel
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | | | | | - Francis Canon
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Fabrice Neiers
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Mathieu Schwartz
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| |
Collapse
|
4
|
Xi Y, Yu M, Li X, Zeng X, Li J. The coming future: The role of the oral-microbiota-brain axis in aroma release and perception. Compr Rev Food Sci Food Saf 2024; 23:e13303. [PMID: 38343293 DOI: 10.1111/1541-4337.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
The field of aroma release and perception during the oral process has been well studied. However, the traditional approaches have not fully explored the integration of oral biology, microbiology, and neurology to further understand aroma release and perception mechanisms. Herein, to address the existing challenges in this field, we introduce the oral-microbiota-brain axis (OMBA), an innovative framework that encapsulates the interactive relationships among saliva and the oral mucosa, the oral microbiota, and the brain in aroma release and perception. This review introduces the OMBA and highlights its role as a key interface facilitating the sensory experience of aroma. Based on a comprehensive literature survey, the specific roles of the oral mucosa, oral microbiota, saliva, and brain in the OMBA are discussed. This integrated approach reveals the importance of each component and the interconnected relationships within this axis in the overall process of aroma release and perception. Saliva and the oral mucosa play fundamental roles in aroma release and perception; the oral microbiota regulates aroma release and impacts olfactory perception; and the brain's intricate neural circuitry is central to the decoding and interpretation of aroma signals. The components of this axis are interdependent, and imbalances can disrupt aroma perception. The OMBA framework not only enhances our comprehension of aroma release and perception but also paves the way for innovative applications that could heighten sensory experiences.
Collapse
Affiliation(s)
- Yu Xi
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Meihong Yu
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xuejie Li
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiangquan Zeng
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jian Li
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
5
|
Mussalo L, Avesani S, Shahbaz MA, Závodná T, Saveleva L, Järvinen A, Lampinen R, Belaya I, Krejčík Z, Ivanova M, Hakkarainen H, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Giugno R, Aakko-Saksa P, Chew S, Rönkkö T, Jalava P, Kanninen KM. Emissions from modern engines induce distinct effects in human olfactory mucosa cells, depending on fuel and aftertreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167038. [PMID: 37709087 DOI: 10.1016/j.scitotenv.2023.167038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Ultrafine particles (UFP) with a diameter of ≤0.1 μm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being ≤0.1 μm by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study provides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Simone Avesani
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Liudmila Saveleva
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Anssi Järvinen
- VTT Technical Research Centre of Finland, VTT, 02044 Espoo, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Irina Belaya
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Zdeněk Krejčík
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Mariia Ivanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Henri Hakkarainen
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | | | - Sweelin Chew
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Tampere University, 33014 Tampere, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| |
Collapse
|
6
|
Schwartz M, Boichot V, Muradova M, Fournier P, Senet P, Nicolai A, Canon F, Lirussi F, Ladeira R, Maibeche M, Chertemps T, Aubert E, Didierjean C, Neiers F. Structure-activity analysis suggests an olfactory function for the unique antennal delta glutathione transferase of Apis mellifera. FEBS Lett 2023; 597:3038-3048. [PMID: 37933500 DOI: 10.1002/1873-3468.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Glutathione transferases (GST) are detoxification enzymes that conjugate glutathione to a wide array of molecules. In the honey bee Apis mellifera, AmGSTD1 is the sole member of the delta class of GSTs, with expression in antennae. Here, we structurally and biochemically characterized AmGSTD1 to elucidate its function. We showed that AmGSTD1 can efficiently catalyse the glutathione conjugation of classical GST substrates. Additionally, AmGSTD1 exhibits binding properties with a range of odorant compounds. AmGSTD1 has a peculiar interface with a structural motif we propose to call 'sulfur sandwich'. This motif consists of a cysteine disulfide bridge sandwiched between the sulfur atoms of two methionine residues and is stabilized by CH…S hydrogen bonds and S…S sigma-hole interactions. Thermal stability studies confirmed that this motif is important for AmGSTD1 stability and, thus, could facilitate its functions in olfaction.
Collapse
Affiliation(s)
- Mathieu Schwartz
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| | - Valentin Boichot
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| | - Mariam Muradova
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
- International Research Center "Biotechnologies of the Third Millennium", Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russia
| | | | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Francis Canon
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| | - Frederic Lirussi
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Bioinformatique & Big Data Au Service de La Santé 2B2S, UFR Santé, Université de Franche-Comté, INSERM U1231, Centre Hospitalier Universitaire, Besançon, France
| | - Ruben Ladeira
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Bioinformatique & Big Data Au Service de La Santé 2B2S, UFR Santé, Université de Franche-Comté, INSERM U1231, Centre Hospitalier Universitaire, Besançon, France
| | - Martine Maibeche
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | - Thomas Chertemps
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | | | | | - Fabrice Neiers
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| |
Collapse
|
7
|
Boichot V, Menetrier F, Saliou JM, Lirussi F, Canon F, Folia M, Heydel JM, Hummel T, Menzel S, Steinke M, Hackenberg S, Schwartz M, Neiers F. Characterization of human oxidoreductases involved in aldehyde odorant metabolism. Sci Rep 2023; 13:4876. [PMID: 36966166 PMCID: PMC10039900 DOI: 10.1038/s41598-023-31769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Oxidoreductases are major enzymes of xenobiotic metabolism. Consequently, they are essential in the chemoprotection of the human body. Many xenobiotic metabolism enzymes have been shown to be involved in chemosensory tissue protection. Among them, some were additionally shown to be involved in chemosensory perception, acting in signal termination as well as in the generation of metabolites that change the activation pattern of chemosensory receptors. Oxidoreductases, especially aldehyde dehydrogenases and aldo-keto reductases, are the first barrier against aldehyde compounds, which include numerous odorants. Using a mass spectrometry approach, we characterized the most highly expressed members of these families in the human nasal mucus sampled in the olfactory vicinity. Their expression was also demonstrated using immunohistochemistry in human epitheliums sampled in the olfactory vicinity. Recombinant enzymes corresponding to three highly expressed human oxidoreductases (ALDH1A1, ALDH3A1, AKR1B10) were used to demonstrate the high enzymatic activity of these enzymes toward aldehyde odorants. The structure‒function relationship set based on the enzymatic parameters characterization of a series of aldehyde odorant compounds was supported by the X-ray structure resolution of human ALDH3A1 in complex with octanal.
Collapse
Affiliation(s)
- Valentin Boichot
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Franck Menetrier
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Jean-Michel Saliou
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014-US Inserm 41-PLBS, University of Lille, Lille, France
| | - Frederic Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000, Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000, Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000, Besançon, France
| | - Francis Canon
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Mireille Folia
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000, Dijon, France
| | - Jean-Marie Heydel
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Susanne Menzel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Maria Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070, Wuerzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Roentgenring 11, 97070, Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology-Head and Neck Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mathieu Schwartz
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France.
| | - Fabrice Neiers
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
8
|
Schwartz M, Boichot V, Fraichard S, Muradova M, Senet P, Nicolai A, Lirussi F, Bas M, Canon F, Heydel JM, Neiers F. Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules 2023; 13:biom13020322. [PMID: 36830691 PMCID: PMC9953322 DOI: 10.3390/biom13020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glutathione transferases (GSTs) are ubiquitous key enzymes with different activities as transferases or isomerases. As key detoxifying enzymes, GSTs are expressed in the chemosensory organs. They fulfill an essential protective role because the chemosensory organs are located in the main entry paths of exogenous compounds within the body. In addition to this protective function, they modulate the perception process by metabolizing exogenous molecules, including tastants and odorants. Chemosensory detection involves the interaction of chemosensory molecules with receptors. GST contributes to signal termination by metabolizing these molecules. By reducing the concentration of chemosensory molecules before receptor binding, GST modulates receptor activation and, therefore, the perception of these molecules. The balance of chemoperception by GSTs has been shown in insects as well as in mammals, although their chemosensory systems are not evolutionarily connected. This review will provide knowledge supporting the involvement of GSTs in chemoperception, describing their localization in these systems as well as their enzymatic capacity toward odorants, sapid molecules, and pheromones in insects and mammals. Their different roles in chemosensory organs will be discussed in light of the evolutionary advantage of the coupling of the detoxification system and chemosensory system through GSTs.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Valentin Boichot
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphane Fraichard
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mariam Muradova
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Frederic Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Mathilde Bas
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Francis Canon
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Marie Heydel
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabrice Neiers
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
9
|
von Bartheld CS, Wang L. Prevalence of Olfactory Dysfunction with the Omicron Variant of SARS-CoV-2: A Systematic Review and Meta-Analysis. Cells 2023; 12:430. [PMID: 36766771 PMCID: PMC9913864 DOI: 10.3390/cells12030430] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The omicron variant is thought to cause less olfactory dysfunction than previous variants of SARS-CoV-2, but the reported prevalence differs greatly between populations and studies. Our systematic review and meta-analysis provide information regarding regional differences in prevalence as well as an estimate of the global prevalence of olfactory dysfunction based on 62 studies reporting information on 626,035 patients infected with the omicron variant. Our estimate of the omicron-induced prevalence of olfactory dysfunction in populations of European ancestry is 11.7%, while it is significantly lower in all other populations, ranging between 1.9% and 4.9%. When ethnic differences and population sizes are considered, the global prevalence of omicron-induced olfactory dysfunction in adults is estimated to be 3.7%. Omicron's effect on olfaction is twofold to tenfold lower than that of the alpha or delta variants according to previous meta-analyses and our analysis of studies that directly compared the prevalence of olfactory dysfunction between omicron and previous variants. The profile of the prevalence differences between ethnicities mirrors the results of a recent genome-wide association study that connected a gene locus encoding an odorant-metabolizing enzyme, UDP glycosyltransferase, to the extent of COVID-19-related loss of smell. Our analysis is consistent with the hypothesis that this enzyme contributes to the observed population differences.
Collapse
Affiliation(s)
- Christopher S. von Bartheld
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557-0352, USA
| | - Lingchen Wang
- School of Public Health, University of Nevada, Reno, NV 89557-0275, USA
| |
Collapse
|
10
|
von Bartheld CS, Wang L. Prevalence of Olfactory Dysfunction with the Omicron Variant of SARS-CoV-2: A Systematic Review and Meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2022.12.16.22283582. [PMID: 36561176 PMCID: PMC9774228 DOI: 10.1101/2022.12.16.22283582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The omicron variant is thought to cause less olfactory dysfunction than previous variants of SARS-CoV-2, but the reported prevalence differs greatly between populations and studies. Our systematic review and meta-analysis provide information about regional differences in prevalence as well as an estimate of the global prevalence of olfactory dysfunction based on 62 studies reporting on 626,035 patients infected with the omicron variant. Our estimate of the omicron-induced prevalence of olfactory dysfunction in populations of European ancestry is 11.7%, while it is significantly lower in all other populations, ranging between 1.9% and 4.9%. When ethnic differences and population sizes are taken into account, the global prevalence of omicron-induced olfactory dysfunction in adults is estimated at 3.7%. Omicron’s effect on olfaction is twofold to tenfold lower than that of the alpha or delta variant, according to previous meta-analyses and our analysis of studies that directly compared prevalence of olfactory dysfunction between omicron and previous variants. The profile of prevalence differences between ethnicities mirrors the results of a recent genome-wide association study that implicated a gene locus encoding an odorant-metabolizing enzyme, UDP glycosyltransferase, to be linked to the extent of COVID-related loss of smell. Our analysis is consistent with the hypothesis that this enzyme contributes to the observed population differences.
Collapse
Affiliation(s)
- Christopher S. von Bartheld
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557-0352, United States
| | - Lingchen Wang
- School of Public Health, University of Nevada, Reno, Reno, NV, 89557-0275, United States
| |
Collapse
|
11
|
Schwartz M, Brignot H, Feron G, Hummel T, Zhu Y, von Koskull D, Heydel JM, Lirussi F, Canon F, Neiers F. Role of human salivary enzymes in bitter taste perception. Food Chem 2022; 386:132798. [PMID: 35344726 DOI: 10.1016/j.foodchem.2022.132798] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
Abstract
The molecules that elicit taste sensation are perceived by interacting with the taste receptors located in the taste buds. Enzymes involved in the detoxification processes are found in saliva as well as in type II cells, where taste receptors, including bitter taste receptors, are located. These enzymes are known to interact with a large panel of molecules. To explore a possible link between these enzymes and bitter taste perception, we demonstrate that salivary glutathione transferases (GSTA1 and GSTP1) can metabolize bitter molecules. To support these abilities, we solve three X-ray structures of these enzymes in complexes with isothiocyanates. Salivary GSTA1 and GSTP1 are expressed in a large panel of subjects. Additionally, GSTA1 levels in the saliva of people suffering from taste disorders are significantly lower than those in the saliva of the control group.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Hélène Brignot
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Gilles Feron
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Yunmeng Zhu
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Dorothee von Koskull
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Jean-Marie Heydel
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Frédéric Lirussi
- PACE, Plateau d'Analyses Chromatographiques et Elémentaires, Department of Pharmacology-Toxicology & Metabolomics, University hospital of Besançon (CHU), 2 Boulevard Fleming, 25030, BESANCON, France; INSERM UMR1231, LipSTIC, University of Burgundy Franche-Comté, Dijon, France
| | - Francis Canon
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Fabrice Neiers
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France.
| |
Collapse
|
12
|
Neiers F, Gourrat K, Canon F, Schwartz M. Metabolism of Cysteine Conjugates and Production of Flavor Sulfur Compounds by a Carbon-Sulfur Lyase from the Oral Anaerobe Fusobacterium nucleatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9969-9979. [PMID: 35920882 DOI: 10.1021/acs.jafc.2c01727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavor perception is a key factor in the acceptance or rejection of food. Aroma precursors such as cysteine conjugates are present in various plant-based foods and are metabolized into odorant thiols in the oral cavity. To date, the involved enzymes are unknown, despite previous studies pointing out the likely involvement of carbon-sulfur lyases (C-S lyases) from the oral microbiota. In this study, we show that saliva metabolizes allyl-cysteine into odorant thiol metabolites, with evidence suggesting that microbial pyridoxal phosphate-dependent C-S lyases are involved in the enzymatic process. A phylogenetic analysis of PatB C-S lyase sequences in four oral subspecies of Fusobacterium nucleatum was carried out and led to the identification of several putative targets. FnaPatB1 from F. nucleatum subspecies animalis, a putative C-S lyase, was characterized and showed high activity with a range of cysteine conjugates. Enzymatic and X-ray crystallographic data showed that FnaPatB1 metabolizes cysteine derivatives within a unique active site environment that enables the formation of flavor sulfur compounds. Using an enzymatic screen with a library of pure compounds, we identified several inhibitors able to reduce the C-S lyase activity of FnaPatB1 in vitro, which paves the way for controlling the release of odorant sulfur compounds from their cysteine precursors in the oral cavity.
Collapse
Affiliation(s)
- Fabrice Neiers
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
| | - Karine Gourrat
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
- PROBE Research Infrastructure, Chemosens Facility, F-21000 Dijon, France
| | - Francis Canon
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
| | - Mathieu Schwartz
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
| |
Collapse
|
13
|
Robert-Hazotte A, Faure P, Ménétrier F, Folia M, Schwartz M, Le Quéré JL, Neiers F, Thomas-Danguin T, Heydel JM. Nasal Odorant Competitive Metabolism Is Involved in the Human Olfactory Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8385-8394. [PMID: 35776896 DOI: 10.1021/acs.jafc.2c02720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Within the peripheral olfactory process, odorant metabolizing enzymes are involved in the active biotransformation of odorants, thus influencing the intensity and quality of the signal, but little evidence exists in humans. Here, we characterized the fast nasal metabolism of the food aroma pentane-2,3-dione in vivo and identified two resulting metabolites in the nasal-exhaled air, supporting the metabolizing role of the dicarbonyl/l-xylulose reductase. We showed in vitro, using the recombinant enzyme, that pentane-2,3-dione metabolism was inhibited by a second odorant (e.g., butanoic acid) according to an odorant-odorant competitive metabolic mechanism. Hypothesizing that such mechanism exists in vivo, pentane-2,3-dione, presented with a competitive odorant, both at subthreshold concentrations, was actually significantly perceived, suggesting an increase in its nasal availability. Our results, suggesting that odorant metabolizing enzymes can balance the relative detection of odorants in a mixture, in turn influencing the intensity of the signal, should be considered to better manage flavor perception in food.
Collapse
Affiliation(s)
- Aline Robert-Hazotte
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Philippe Faure
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Franck Ménétrier
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Mireille Folia
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, F-21000 Dijon, France
| | - Mathieu Schwartz
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| |
Collapse
|
14
|
Expression Patterns of Drosophila Melanogaster Glutathione Transferases. INSECTS 2022; 13:insects13070612. [PMID: 35886788 PMCID: PMC9318439 DOI: 10.3390/insects13070612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Glutathione transferases (GSTs) are ubiquitous enzymes that catalyze the conjugation of glutathione to various molecules. Among the 42 GSTs identified in Drosophila melanogaster, Delta and Epsilon are the largest classes, with 25 members. The Delta and Epsilon classes are involved in different functions, such as insecticide resistance and ecdysone biosynthesis. The insect GST number variability is due mainly to these classes. Thus, they are generally considered supports during the evolution for the adaptability of the insect species. To explore the link between Delta and Epsilon GST and their evolution, we analyzed the sequences using bioinformatic tools. Subgroups appear within the Delta and Epsilon GSTs with different levels of diversification. The diversification also appears in the sequences showing differences in the active site. Additionally, amino acids essential for structural stability or dimerization appear conserved in all GSTs. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the transcripts corresponding to these two classes are heterogeneously expressed within D. melanogaster. Some GSTs, such as GSTD1, are highly expressed in all tissues, suggesting their general function in detoxification. Conversely, some others, such as GSTD11 or GSTE4, are specifically expressed at a high level specifically in antennae, suggesting a potential role in olfaction.
Collapse
|
15
|
Kornbausch N, Debong MW, Buettner A, Heydel JM, Loos H. Odorant Metabolism in Humans. Angew Chem Int Ed Engl 2022; 61:e202202866. [PMID: 35522818 PMCID: PMC9541901 DOI: 10.1002/anie.202202866] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/08/2022]
Abstract
Odorants are relatively small molecules which are easily taken up and distributed in the human body. Despite their relevance in everyday life, however, only a limited amount of evidence about their metabolism, pathways, and bioactivities in the human body exists. With this Review, we aim to encourage future interdisciplinary research on the function and mechanisms of the biotransformation of odorants, involving different disciplines such as nutrition, medicine, biochemistry, chemistry, and sensory sciences. Starting with a general overview of the different ways of odorant uptake and enzymes involved in the metabolism of odorants, a more precise description of biotransformation processes and their function in the oral cavity, the nose, the lower respiratory tract (LRT), and the gastrointestinal tract (GIT) is given together with an overview of the different routes of odorant excretion. Finally, perspectives for future research are discussed.
Collapse
Affiliation(s)
- Nicole Kornbausch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Marcel W Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation: Centre des Sciences du Gout et de l'Alimentation, Flavour perception: from molecule to behavior, FRANCE
| | - Helene Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, Henkestr. 9, 91054, Erlangen, GERMANY
| |
Collapse
|
16
|
Kornbausch N, Debong MW, Buettner A, Heydel JM, Loos H. Odorant Metabolism in Humans. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicole Kornbausch
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Marcel W. Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation: Centre des Sciences du Gout et de l'Alimentation Flavour perception: from molecule to behavior FRANCE
| | - Helene Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy Henkestr. 9 91054 Erlangen GERMANY
| |
Collapse
|
17
|
Schwartz M, Neiers F, Charles JP, Heydel JM, Muñoz-González C, Feron G, Canon F. Oral enzymatic detoxification system: Insights obtained from proteome analysis to understand its potential impact on aroma metabolization. Compr Rev Food Sci Food Saf 2021; 20:5516-5547. [PMID: 34653315 DOI: 10.1111/1541-4337.12857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
The oral cavity is an entry path into the body, enabling the intake of nutrients but also leading to the ingestion of harmful substances. Thus, saliva and oral tissues contain enzyme systems that enable the early neutralization of xenobiotics as soon as they enter the body. Based on recently published oral proteomic data from several research groups, this review identifies and compiles the primary detoxification enzymes (also known as xenobiotic-metabolizing enzymes) present in saliva and the oral epithelium. The functions and the metabolic activity of these enzymes are presented. Then, the activity of these enzymes in saliva, which is an extracellular fluid, is discussed with regard to the salivary parameters. The next part of the review presents research evidencing oral metabolization of aroma compounds and the putative involved enzymes. The last part discusses the potential role of these enzymatic reactions on the perception of aroma compounds in light of recent pieces of evidence of in vivo oral metabolization of aroma compounds affecting their release in mouth and their perception. Thus, this review highlights different enzymes appearing as relevant to explain aroma metabolism in the oral cavity. It also points out that further works are needed to unravel the effect of the oral enzymatic detoxification system on the perception of food flavor in the context of the consumption of complex food matrices, while considering the impact of food oral processing. Thus, it constitutes a basis to explore these biochemical mechanisms and their impact on flavor perception.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Philippe Charles
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Carolina Muñoz-González
- Instituto de investigación en Ciencias de la Alimentación (CIAL), (CSIC-UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - Gilles Feron
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| |
Collapse
|
18
|
Schwartz M, Canon F, Feron G, Neiers F, Gamero A. Impact of Oral Microbiota on Flavor Perception: From Food Processing to In-Mouth Metabolization. Foods 2021; 10:2006. [PMID: 34574116 PMCID: PMC8467474 DOI: 10.3390/foods10092006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Flavor perception during food intake is one of the main drivers of food acceptability and consumption. Recent studies have pointed to the oral microbiota as an important factor modulating flavor perception. This review introduces general characteristics of the oral microbiota, factors potentially influencing its composition, as well as known relationships between oral microbiota and chemosensory perception. We also review diverse evidenced mechanisms enabling the modulation of chemosensory perception by the microbiota. They include modulation of the chemosensory receptors activation by microbial metabolites but also modification of receptors expression. Specific enzymatic reactions catalyzed by oral microorganisms generate fragrant molecules from aroma precursors in the mouth. Interestingly, these reactions also occur during the processing of fermented beverages, such as wine and beer. In this context, two groups of aroma precursors are presented and discussed, namely, glycoside conjugates and cysteine conjugates, which can generate aroma compounds both in fermented beverages and in the mouth. The two entailed families of enzymes, i.e., glycosidases and carbon-sulfur lyases, appear to be promising targets to understand the complexity of flavor perception in the mouth as well as potential biotechnological tools for flavor enhancement or production of specific flavor compounds.
Collapse
Affiliation(s)
- Mathieu Schwartz
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Francis Canon
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Gilles Feron
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Fabrice Neiers
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Amparo Gamero
- Department Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
19
|
Bryche B, Baly C, Meunier N. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res 2021; 384:589-605. [PMID: 33961125 PMCID: PMC8102665 DOI: 10.1007/s00441-021-03467-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Detection and discrimination of odorants by the olfactory system plays a pivotal role in animal survival. Olfactory-based behaviors must be adapted to an ever-changing environment. Part of these adaptations includes changes of odorant detection by olfactory sensory neurons localized in the olfactory epithelium. It is now well established that internal signals such as hormones, neurotransmitters, or paracrine signals directly affect the electric activity of olfactory neurons. Furthermore, recent data have shown that activity-dependent survival of olfactory neurons is important in the olfactory epithelium. Finally, as olfactory neurons are directly exposed to environmental toxicants and pathogens, the olfactory epithelium also interacts closely with the immune system leading to neuroimmune modulations. Here, we review how detection of odorants can be modulated in the vertebrate olfactory epithelium. We choose to focus on three cellular types of the olfactory epithelium (the olfactory sensory neuron, the sustentacular and microvillar cells) to present the diversity of modulation of the detection of odorant in the olfactory epithelium. We also present some of the growing literature on the importance of immune cells in the functioning of the olfactory epithelium, although their impact on odorant detection is only just beginning to be unravelled.
Collapse
Affiliation(s)
- Bertrand Bryche
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France
| | - Christine Baly
- Université Paris Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Nicolas Meunier
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France.
| |
Collapse
|
20
|
Neiers F, Jarriault D, Menetrier F, Faure P, Briand L, Heydel JM. The odorant metabolizing enzyme UGT2A1: Immunolocalization and impact of the modulation of its activity on the olfactory response. PLoS One 2021; 16:e0249029. [PMID: 33765098 PMCID: PMC7993815 DOI: 10.1371/journal.pone.0249029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Odorant metabolizing enzymes (OMEs) are expressed in the olfactory epithelium (OE) where they play a significant role in the peripheral olfactory process by catalyzing the fast biotransformation of odorants leading either to their elimination or to the synthesis of new odorant stimuli. The large family of OMEs gathers different classes which interact with a myriad of odorants alike and complementary to olfactory receptors. Thus, it is necessary to increase our knowledge on OMEs to better understand their function in the physiological process of olfaction. This study focused on a major olfactory UDP-glucuronosyltransferase (UGT): UGT2A1. Immunohistochemistry and immunogold electronic microscopy allowed to localize its expression in the apical part of the sustentacular cells and originally at the plasma membrane of the olfactory cilia of the olfactory sensory neurons, both locations in close vicinity with olfactory receptors. Moreover, using electroolfactogram, we showed that a treatment of the OE with beta-glucuronidase, an enzyme which counterbalance the UGTs activity, increased the response to eugenol which is a strong odorant UGT substrate. Altogether, the results supported the function of the olfactory UGTs in the vertebrate olfactory perireceptor process.
Collapse
Affiliation(s)
- Fabrice Neiers
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - David Jarriault
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Franck Menetrier
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Philippe Faure
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
21
|
Schwartz M, Neiers F, Feron G, Canon F. The Relationship Between Salivary Redox, Diet, and Food Flavor Perception. Front Nutr 2021; 7:612735. [PMID: 33585536 PMCID: PMC7876224 DOI: 10.3389/fnut.2020.612735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
The mouth is the gateway for entrance of food and microorganisms into the organism. The oral cavity is bathed by saliva, which is thus the first fluid that food and microorganisms will face after their entrance. As a result, saliva plays different functions, including lubrication, predigestion, protection, detoxification, and even transport of taste compounds to chemoreceptors located in the taste buds. To ensure its function of protection, saliva contains reactive harmful compounds such as reactive oxygen species that are controlled and neutralized by the antioxidant activity of saliva. Several antioxidant molecules control the production of molecules such as reactive oxygen compounds, neutralize them and/or repair the damage they have caused. Therefore, a balance between reactive oxidant species and antioxidant compounds exists. At the same time, food can also contain antioxidant compounds, which can participate in the equilibrium of this balance. Numerous studies have investigated the effects of different food components on the antioxidant capacity of saliva that correspond to the ability of saliva to neutralize reactive oxygen species. Contradictory results have sometimes been obtained. Moreover, some antioxidant compounds are also cofactors of enzymatic reactions that affect flavor compounds. Recent studies have considered the salivary antioxidant capacity to explain the release of flavor compounds ex vivo or in vivo. This article aims to review the effect of food on the antioxidant capacity of saliva and the impact of salivary antioxidant capacity on flavor perception after a brief presentation of the different molecules involved.
Collapse
Affiliation(s)
| | | | | | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Dijon, France
| |
Collapse
|
22
|
Meunier N, Briand L, Jacquin-Piques A, Brondel L, Pénicaud L. COVID 19-Induced Smell and Taste Impairments: Putative Impact on Physiology. Front Physiol 2021; 11:625110. [PMID: 33574768 PMCID: PMC7870487 DOI: 10.3389/fphys.2020.625110] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022] Open
Abstract
Smell and taste impairments are recognized as common symptoms in COVID 19 patients even in an asymptomatic phase. Indeed, depending on the country, in up to 85-90% of cases anosmia and dysgeusia are reported. We will review briefly the main mechanisms involved in the physiology of olfaction and taste focusing on receptors and transduction as well as the main neuroanatomical pathways. Then we will examine the current evidences, even if still fragmented and unsystematic, explaining the disturbances and mode of action of the virus at the level of the nasal and oral cavities. We will focus on its impact on the peripheral and central nervous system. Finally, considering the role of smell and taste in numerous physiological functions, especially in ingestive behavior, we will discuss the consequences on the physiology of the patients as well as management regarding food intake.
Collapse
Affiliation(s)
- Nicolas Meunier
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS UMR6265, INRAE UMR 1324, Université de Bourgogne Franche Comté, Dijon, France
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS UMR6265, INRAE UMR 1324, Université de Bourgogne Franche Comté, Dijon, France
- Department of Clinical Neurophysiology, University Hospital, Dijon, France
| | - Laurent Brondel
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS UMR6265, INRAE UMR 1324, Université de Bourgogne Franche Comté, Dijon, France
| | - Luc Pénicaud
- STROMALab, Université de Toulouse, CNRS ERL 5311, Inserm U1031, Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
23
|
Abstract
Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, NY, USA
| |
Collapse
|