1
|
Di G, Li Z, Ma W, Jiang D, Wang G, Yan S. Functional Characterization of Peripheral Neurons and a Receptor Recognizing Sex Pheromones in Hyphantria cunea (Erebidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18353-18364. [PMID: 39165161 DOI: 10.1021/acs.jafc.4c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Hyphantria cunea (Lepidoptera: Erebidae) is difficult and costly to control as a quarantine pest found globally. Sex pheromone trapping is an effective measure for its population monitoring and control; however, the peripheral neural mechanism of sex pheromone recognition in H. cunea remains unclear. An electrophysiological analysis showed that both male and female moths of H. cunea responded to four components of sex pheromones and the responses of male moths were stronger than those of the female moths. We identified three types of trichoid sensilla (ST) responsive to sex pheromones using the single sensillum recording technique. Each type was involved in recognizing 9R, 10S-epoxy-1, Z3, Z6-heneicosatriene (1, Z3, Z6-9S, 10R-epoxy-21Hy). Four peripheral neurons involved in the olfactory encoding of sex pheromones were identified. Four candidate pheromone receptor (PR) genes, HcunPR1a, HcunPR1b, HcunPR3, and HcunPR4, were screened by transcriptome sequencing. All of them were highly expressed in the antennae of males, except for HcunPR4, which was highly expressed in the antennae of females. Functional identification showed that HcunPR1a responded to sex pheromone. Other HcunPRs were not functionally identified. In summary, neurons involved in sex pheromone recognition of H. cunea were located in the ST, and HcunPR1a recognized secondary pheromone components 1, Z3, Z6-9S, 10R-epoxy-21Hy. Interestingly, PRs that recognize the main components of the sex pheromone may be located in an unknown branch of the olfactory receptor and merit further study. Our findings provide a better understanding of the peripheral neural coding mechanism of type II sex pheromones, and HcunPR1a may provide a target for the subsequent development of highly effective and specific biopesticides for H. cunea.
Collapse
Affiliation(s)
- Guiqiu Di
- School of Forestry, Northeast Forestry University, Harbin 150040, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zicong Li
- School of Forestry, Northeast Forestry University, Harbin 150040, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Weichao Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| |
Collapse
|
2
|
Wang C, Cao S, Shi C, Guo M, Sun D, Liu Z, Xiu P, Wang Y, Wang G, Liu Y. The novel function of an orphan pheromone receptor reveals the sensory specializations of two potential distinct types of sex pheromones in noctuid moth. Cell Mol Life Sci 2024; 81:259. [PMID: 38878072 PMCID: PMC11335300 DOI: 10.1007/s00018-024-05303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 08/22/2024]
Abstract
Sex pheromones play crucial role in mating behavior of moths, involving intricate recognition mechanisms. While insect chemical biology has extensively studied type I pheromones, type II pheromones remain largely unexplored. This study focused on Helicoverpa armigera, a representative species of noctuid moth, aiming to reassess its sex pheromone composition. Our research unveiled two previously unidentified candidate type II sex pheromones-3Z,6Z,9Z-21:H and 3Z,6Z,9Z-23:H-in H. armigera. Furthermore, we identified HarmOR11 as an orphan pheromone receptor of 3Z,6Z,9Z-21:H. Through AlphaFold2 structural prediction, molecular docking, and molecular dynamics simulations, we elucidated the structural basis and key residues governing the sensory nuances of both type I and type II pheromone receptors, particularly HarmOR11 and HarmOR13. This study not only reveals the presence and recognition of candidate type II pheromones in a noctuid moth, but also establishes a comprehensive structural framework for PRs, contributing to the understanding of connections between evolutionary adaptations and the emergence of new pheromone types.
Collapse
Affiliation(s)
- Chenrui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Chen Shi
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Department of Plant Protection, Advanced College of Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Dongdong Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zheyi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314499, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Zhang Y, Liu W, Luo Z, Yuan J, Wuyun Q, Zhang P, Wang Q, Yang M, Liu C, Yan S, Wang G. Odorant Receptor BdorOR49b Mediates Oviposition and Attraction Behavior of Bactrocera dorsalis to Benzothiazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7784-7793. [PMID: 38561632 DOI: 10.1021/acs.jafc.3c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The ability to recognize a host plant is crucial for insects to meet their nutritional needs and locate suitable sites for laying eggs. Bactrocera dorsalis is a highly destructive pest in fruit crops. Benzothiazole has been found to induce oviposition behavior in the gravid B. dorsalis. However, the ecological roles and the olfactory receptor responsible for benzothiazole are not yet fully understood. In this study, we found that adults were attracted to benzothiazole, which was an effective oviposition stimulant. In vitro experiments showed that BdorOR49b was narrowly tuned to benzothiazole. The electroantennogram results showed that knocking out BdorOR49b significantly reduced the antennal electrophysiological response to benzothiazole. Compared with wild-type flies, the attractiveness of benzothiazole to BdorOR49b knockout adult was significantly attenuated, and mutant females exhibited a severe decrease in oviposition behavior. Altogether, our work provides valuable insights into chemical communications and potential strategies for the control of this pest.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhicai Luo
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jinxi Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - QiQige Wuyun
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Panpan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Wang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chenhao Liu
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
4
|
Zhang S, Jacquin-Joly E, Montagné N, Liu F, Liu Y, Wang G. Identification of an odorant receptor responding to sex pheromones in Spodoptera frugiperda extends the novel type-I PR lineage in moths. INSECT SCIENCE 2024; 31:489-502. [PMID: 37573259 DOI: 10.1111/1744-7917.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/14/2023] [Accepted: 06/09/2023] [Indexed: 08/14/2023]
Abstract
In moths, pheromone receptors (PRs) are crucial for intraspecific sexual communication between males and females. Moth PRs are considered as an ideal model for studying the evolution of insect PRs, and a large number of PRs have been identified and functionally characterized in different moth species. Moth PRs were initially thought to fall into a single monophyletic clade in the odorant receptor (OR) family, but recent studies have shown that ORs in another lineage also bind type-I sex pheromones, which indicates that type-I PRs have multiple independent origins in the Lepidoptera. In this study, we investigated whether ORs of the pest moth Spodoptera frugiperda belonging to clades closely related to this novel PR lineage may also have the capacity to bind type-I pheromones and serve as male PRs. Among the 7 ORs tested, only 1 (SfruOR23) exhibited a male-biased expression pattern. Importantly, in vitro functional characterization showed that SfruOR23 could bind several type-I sex pheromone compounds with Z-9-tetradecenal (Z9-14:Ald), a minor component found in female sex pheromone glands, as the optimal ligand. In addition, SfruOR23 also showed weak responses to plant volatile organic compounds. Altogether, we characterized an S. frugiperda PR positioned in a lineage closely related to the novel PR clade, indicating that the type-I PR lineage can be extended in moths.
Collapse
Affiliation(s)
- Sai Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
5
|
Zhang YY, Bai TF, Guo JM, Wei ZQ, Liu SR, He Y, Ye JJ, Yan Q, Zhang J, Dong SL. Molecular mechanism of sex pheromone perception in male Mythimna loreyi revealed by in vitro system. PEST MANAGEMENT SCIENCE 2024; 80:744-755. [PMID: 37779104 DOI: 10.1002/ps.7806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Mythimna loreyi is an important agricultural pest with a sensitive sex pheromone communication system. To clarify the pheromone binding proteins (PBPs) and pheromone receptors (PRs) involved in sex pheromone perception is important for both understanding the molecular olfactory mechanism and developing a new pest control strategy in M. loreyi. RESULTS First, the electroantennogram (EAG) assay showed that male M. loreyi displayed the highest response to the major sex pheromone component Z9-14:Ac, and higher responses to two minor components, Z7-12:Ac and Z11-16:Ac. Second, the fluorescence competition binding assay showed that PBP1 bound all three pheromones and other tested compounds with high or moderate affinity, while PBP2 and PBP3 each bound only one pheromone component and few other compounds. Third, functional study using the Xenopus oocyte system demonstrated that, of the six candidate PRs, PR2 was weakly sensitive to the major pheromone Z9-14:Ac, but was strongly sensitive to pheromone analog Z9-14:OH; PR3 was strongly and specifically sensitive to a minor component Z7-12:Ac; PR4 and OR33 were both weakly sensitive to another minor component, Z11-16:Ac. Finally, phylogenetic relationship and ligand profiles of PRs were compared among six species from two closely related genera Mythimna and Spodoptera, suggesting functional shifts of M. loreyi PRs toward Spodoptera PRs. CONCLUSION Functional differentiations were revealed among three PBPs and six PRs in sex pheromone perception, laying an important basis for understanding the molecular mechanism of sex pheromone perception and for developing new control strategies in M. loreyi. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun-Ying Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Teng-Fei Bai
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Si-Ruo Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu He
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing-Jing Ye
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Wei ZQ, Wang JX, Guo JM, Liu XL, Yan Q, Zhang J, Dong SL. An odorant receptor tuned to an attractive plant volatile vanillin in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105619. [PMID: 37945255 DOI: 10.1016/j.pestbp.2023.105619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
The insect olfaction plays crucial roles in many important behaviors, in which ORs are key determinants for signal transduction and the olfactory specificity. Spodoptera litura is a typical polyphagous pest, possessing a large repertoire of ORs tuning to broad range of plant odorants. However, the specific functions of those ORs remain mostly unknown. In this study, we functionally characterized one S. litura OR (OR51) that was highly expressed in the adult antennae. First, by using Xenopus oocyte expression and two-electrode voltage clamp recording system (XOE-TEVC), OR51 was found to be strongly and specifically responsive to vanillin (a volatile of S. litura host plants) among 77 tested odorants. Second, electroantennogram (EAG) and Y-tube behavioral experiment showed that vanillin elicited significant EAG response and attraction behavior especially of female adults. This female attraction was further confirmed by the oviposition experiment, in which the soybean plants treated with vanillin were significantly preferred by females for egg-laying. Third, 3D structural modelling and molecular docking were conducted to explore the interaction between OR51 and vanillin, which showed a high affinity (-4.46 kcal/mol) and three residues (Gln163, Phe164 and Ala305) forming hydrogen bonds with vanillin, supporting the specific binding of OR51 to vanillin. In addition, OR51 and its homologs from other seven noctuid species shared high amino acid identities (78-97%) and the same three hydrogen bond forming residues, suggesting a conserved function of the OR in these insects. Taken together, our study provides some new insights into the olfactory mechanisms of host plant finding and suggests potential applications of vanillin in S. litura control.
Collapse
Affiliation(s)
- Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji-Xiang Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Wang JX, Wei ZQ, Chen MD, Yan Q, Zhang J, Dong SL. Conserved Odorant Receptors Involved in Nonanal-Induced Female Attractive Behavior in Two Spodoptera Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13795-13804. [PMID: 37694971 DOI: 10.1021/acs.jafc.3c03265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Moths rely on plant volatiles to locate appropriate plants for feeding and laying eggs. While extensive research has been conducted on the global agricultural pests, Spodoptera frugiperda and Spodoptera litura, their molecular mechanisms for detecting plant volatiles remain mostly unknown. Here, we have demonstrated that nonanal, a common plant volatile, is attractive for both virgin and gravid females of the two species. Second, we have identified a conserved odorant receptor clade (SfruOR47 clade) that is primarily tuned to nonanal. Finally, by three-dimensional (3D) structure prediction, molecular docking, and site-directed mutagenesis, we have revealed that the His57 and Glu61 residues, also shared by other six orthologous ORs, are essential for nonanal binding in SfruOR47 and SlituOR9, indicating the conserved structure and function of ORs in the SfruOR47 clade. These findings offer novel insights into the molecular mechanisms and evolutionary aspects of moth behavior in response to plant volatiles.
Collapse
Affiliation(s)
- Ji-Xiang Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Meng-Dan Chen
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, 210095 Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control of Ministry of Agriculture and Rural Affairs, 210095 Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
8
|
Zhang Y, Han HB, Li YY, Xu LB, Hao LF, Wang H, Wang WH, Gao SJ, Lin KJ. Functional Characterization of Pheromone Receptors in the Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). INSECTS 2023; 14:584. [PMID: 37504590 PMCID: PMC10380584 DOI: 10.3390/insects14070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
Lepidopteran insects mainly rely on sex pheromones to complete sexual communications. Pheromone receptors (PRs) are expressed on the olfactory receptor neurons (ORNs) of the sensilla trichodea and play an essential role in sexual communication. Despite extensive investigations into the mechanisms of peripheral recognition of sex pheromones in Lepidoptera, knowledge about these mechanisms in L. sticticalis remains limited. In this study, five candidate LstiPRs were analyzed in a phylogenetic tree with those of other Lepidopteran insects. Electroantennography (EAG) assays showed that the major sex pheromone component E11-14:OAc elicited a stronger antennal response than other compounds in male moths. Moreover, two types of neurons in sensilla trichodea were classified by single sensillum recordings, of which the "a" neuron specifically responded to E11-14:OAc. Five candidate PRs were functionally assayed by the heterologous expression system of Xenopus oocytes, and LstiPR2 responded to the major sex pheromone E11-14:OAc. Our findings suggest that LstiPR2 is a PR sensitive to L. sticticalis's major sex pheromone compound, E11-14:OAc. Furthermore, this study offers valuable insights into the sexual communication behavior of L. sticticalis, forming a foundation for further analysis of the species' central nervous system.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Hai-Bin Han
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Yan-Yan Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Lin-Bo Xu
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Li-Fen Hao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Hui Wang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Wen-He Wang
- Forest Farm of Baichengzi of Alukeerqin Banner, Chifeng 024000, China
| | - Shu-Jing Gao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Ke-Jian Lin
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| |
Collapse
|
9
|
Zhang S, Liu F, Yang B, Liu Y, Wang GR. Functional characterization of sex pheromone receptors in Spodoptera frugiperda, S. exigua, and S. litura moths. INSECT SCIENCE 2023; 30:305-320. [PMID: 35932282 DOI: 10.1111/1744-7917.13098] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Moths possess an extremely sensitive and diverse sex pheromone processing system, in which pheromone receptors (PRs) are essential to ensure communication between mating partners. Functional properties of some PRs are conserved among species, which is important for reproduction. However, functional differentiation has occurred in some homologous PR genes, which may drive species divergence. Here, using genome analysis, 17 PR genes were identified from Spodoptera frugiperda, S. exigua, and S. litura, which belong to 6 homologous groups (odorant receptor [OR]6, 11, 13, 16, 56, and 62); of which 6 PR genes (OR6, OR11, OR13, OR16, OR56, and OR62) were identified in S. frugiperda and S. exigua, and 5 PR genes were identified in S. litura, excluding OR62. Using heterologous expression in Xenopus oocytes, we characterized the functions of PR orthologs including OR6, OR56, and OR62, which have not been clarified in previous studies. OR6 orthologs were specifically tuned to (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:OAc), and OR62 orthologs were robustly tuned to Z7-12:OAc in S. frugiperda and S. exigua. The optimal ligand for OR56 was Z7-12:OAc in S. frugiperda, but responses were minimal in S. exigua and S. litura. In addition, SfruOR6 was male antennae-specific, whereas SfruOR56 and SfruOR62 were male antennae-biased. Our study further clarified the functional properties of PRs in 3 Spodoptera moth species, providing a comprehensive understanding of the mechanisms of intraspecific communication and interspecific isolation in Spodoptera.
Collapse
Affiliation(s)
- Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
10
|
Genome-Wide Identification of the Odorant Receptor Gene Family and Revealing Key Genes Involved in Sexual Communication in Anoplophora glabripennis. Int J Mol Sci 2023; 24:ijms24021625. [PMID: 36675132 PMCID: PMC9861320 DOI: 10.3390/ijms24021625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Insects use a powerful and complex olfactory recognition system to sense odor molecules in the external environment to guide behavior. A large family of odorant receptors (ORs) mediates the detection of pheromone compounds. Anoplophora glabripennis is a destructive pest that harms broad-leaved tree species. Although olfactory sensation is an important factor affecting the information exchange of A. glabripennis, little is known about the key ORs involved. Here, we identified ninety-eight AglaORs in the Agla2.0 genome and found that the AglaOR gene family had expanded with structural and functional diversity. RT-qPCR was used to analyze the expression of AglaORs in sex tissues and in adults at different developmental stages. Twenty-three AglaORs with antennal-biased expression were identified. Among these, eleven were male-biased and two were female-biased and were more significantly expressed in the sexual maturation stage than in the post-mating stage, suggesting that these genes play a role in sexual communication. Relatively, two female-biased AglaORs were overexpressed in females seeking spawning grounds after mating, indicating that these genes might be involved in the recognition of host plant volatiles that may regulate the selection of spawning grounds. Our study provides a theoretical basis for further studies into the molecular mechanism of A. glabripennis olfaction.
Collapse
|
11
|
Hu J, Wang XY, Tan LS, Lu W, Zheng XL. Identification of Chemosensory Genes, Including Candidate Pheromone Receptors, in Phauda flammans (Walker) (Lepidoptera: Phaudidae) Through Transcriptomic Analyses. Front Physiol 2022; 13:907694. [PMID: 35846004 PMCID: PMC9283972 DOI: 10.3389/fphys.2022.907694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory and gustatory systems play an irreplaceable role in all cycles of growth of insects, such as host location, mating, and oviposition. Many chemosensory genes in many nocturnal moths have been identified via omics technology, but knowledge of these genes in diurnal moths is lacking. In our recent studies, we reported two sex pheromone compounds and three host plant volatiles that play a vital role in attracting the diurnal moth, Phauda flammans. The antennal full-length transcriptome sequence of P. flammans was obtained using the Pacbio sequencing to further explore the process of sex pheromone and host plant volatile recognition in P. flammans. Transcriptome analysis identified 166 candidate olfactory and gustatory genes, including 58 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 59 olfactory receptors (ORs), 16 ionotropic receptors (IRs), 14 gustatory receptors (GRs), and 2 sensory neuron membrane proteins (SNMPs). Subsequently, a phylogenetic tree was established using P. flammans and other lepidopteran species to investigate orthologs. Among the 17 candidate pheromone receptor (PR) genes, the expression levels of PflaOR21, PflaOR25, PflaOR35, PflaOR40, PflaOR41, PflaOR42, PflaOR44, PflaOR49, PflaOR51, PflaOR61, and PflaOR63 in the antennae were significantly higher than those in other non-antennae tissues. Among these PR genes, PflaOR21, PflaOR27, PflaOR29, PflaOR35, PflaOR37, PflaOR40, PflaOR42, PflaOR44, PflaOR60, and PflaOR62 showed male-biased expression, whereas PflaOR49, PflaOR61, and PflaOR63 revealed female-biased expression. The functions of related OR genes were also discussed. This research filled the gap of the chemosensory genes of P. flammans and provided basic data for future functional molecular mechanisms studies on P. flammans olfaction.
Collapse
|
12
|
Guo H, Gong XL, Li GC, Mo BT, Jiang NJ, Huang LQ, Wang CZ. Functional analysis of pheromone receptor repertoire in the fall armyworm, Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2022; 78:2052-2064. [PMID: 35124874 DOI: 10.1002/ps.6831] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/26/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a polyphagous moth species that is spreading all around the globe. It uses (Z)-9-tetradecenyl acetate (Z9-14:Ac) and (Z)-7-dodecenyl acetate (Z7-12:Ac) (100:3.9) as essential sex pheromone components. However, our understanding of the molecular basis of pheromone detection of S. frugiperda is still incomplete. RESULTS Herein, we identified six PRs, i.e. SfruOR6, 11, 13, 16, 56, and 62, by transcriptome sequencing. Subsequently, we heterologously expressed them in Drosophila OR67d neurons and determined their response spectra with a large panel of sex pheromones and analogs. Among them, SfruOR13-expressing neurons strongly respond to the major sex pheromone component Z9-14:Ac, but also comparably to (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:Ac) and weakly to (Z)-9-dodecenyl acetate (Z9-12:Ac). Both SfruOR56 and SfruOR62 are specifically tuned to the minor sex pheromone component Z7-12:Ac with varying intensities and sensitivities. In addition, SfruOR6 is activated only by Z9,E12-14:Ac, and SfruOR16 by both (Z)-9-tetradecenol (Z9-14:OH) and (Z)-9-tetradecenal (Z9-14:Ald). However, the OR67d neurons expressing SfruOR11 remain silent to all compounds tested, a phenomenon commonly found in the OR11 clade of Noctuidae species. Next, using single sensillum recording, we characterized four sensilla types on the antennae of males, namely A, B, C and D types that are tuned to the ligands of PRs, thereby confirming that S. frugiperda uses both SfruOR56 and SfruOR62 to detect Z7-12:Ac. Finally, using wind tunnel assay, we demonstrate that both Z9,E12-14:Ac and Z9-14:OH act as antagonists to the sex pheromone. CONCLUSION We have deorphanized five PRs and characterized four types of sensilla responsible for the detection of pheromone compounds, providing insights into the peripheral encoding of sex pheromones in S. frugiperda.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Lin Gong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Nan-Ji Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Zhang S, Wang X, Wang G, Liu F, Liu Y. An odorant receptor of the green mirid bug, Apolygus lucorum, tuned to linalool. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103764. [PMID: 35367588 DOI: 10.1016/j.ibmb.2022.103764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
A highly sensitive olfactory system is required for various insect behaviors, including oviposition site selection, host location, and mate recognition. Odorant receptors (ORs) play a critical role in odorant detection. In this study, we cloned four OR genes referred to as AlucORs (AlucOR4, AlucOR39, AlucOR43, and AlucOR47) from the green mirid bug, Apolygus lucorum, and used Real-time quantitative PCR to show that expression of all four ORs was considerably biased to antennae. Functional analysis, performed using a Xenopus oocyte expression system, revealed that AlucOR47 was robustly and sensitively tuned to the important plant volatile, linalool, and its analogs, linalyl acetate and linalool tetrahydride. Electroantennogram recordings showed that all three ligands elicited obvious responses in male and female mirid bug antennae, with the response to linalool being the strongest. In behavioral assays, male and female mirid bugs displayed significant aversions to linalool. Additionally, the repellent behavior effect of A. lucorum in response to linalool disappeared after knocking down AlucOR47 by RNA interference (RNAi). Taken together, these results indicate that AlucOR47 is necessary for linalool perception in A. lucorum. Our results suggest that AlucOR47 may play a role in plant-insect interactions and provide insight into potential means of biological control against mirid bugs.
Collapse
Affiliation(s)
- Sai Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
14
|
Yang C, Cheng J, Lin J, Zheng Y, Yu X, Sun J. Corrigendum: Sex Pheromone Receptors of Lepidopteran Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.900818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Yang C, Cheng J, Lin J, Zheng Y, Yu X, Sun J. Sex Pheromone Receptors of Lepidopteran Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.797287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The sex pheromone receptors (SPRs) of Lepidopteran insects play important roles in chemical communication. In the sex pheromone detection processes, sex pheromone molecule (SPM), SPR, co-receptor (Orco), pheromone binding protein (PBP), sensory neuron membrane protein (SNMP), and pheromone degradation enzyme (PDE) play individual and cooperative roles. Commonly known as butterfly and moth, the Lepidopteran insects are widely distributed throughout the world, most of which are pests. Comprehensive knowledge of the SPRs of Lepidopteran insects would help the development of sex lure technology and the sex communication pathway research. In this review, we summarized SPR/Orco information from 10 families of Lepidopteran insects from corresponding studies. According to the research progress in the literature, we speculated the evolution of SPRs/Orcos and phylogenetically analyzed the Lepidopteran SPRs and Orcos with the neighbor-joining tree and further concluded the relationship between the cluster of SPRs and their ligands; we analyzed the predicted structural features of SPRs and gave our prediction results of SPRs and Orcos with Consensus Constrained TOPology Prediction (CCTOP) and SwissModel; we summarized the functional characterization of Lepidopteran SPRs and SPR-ligand interaction and then described the progress in the sex pheromone signaling pathways and metabotropic ion channel. Further studies are needed to work out the cryo-electron microscopy (EM) structure of SPR and the SPR-ligand docking pattern in a biophysical perspective, which will directly facilitate the understanding of sex pheromone signal transduction pathways and provide guidance in the sex lure technology in field pest control.
Collapse
|
16
|
Yuvaraj JK, Jordan MD, Zhang DD, Andersson MN, Löfstedt C, Newcomb RD, Corcoran JA. Sex pheromone receptors of the light brown apple moth, Epiphyas postvittana, support a second major pheromone receptor clade within the Lepidoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103708. [PMID: 34973420 DOI: 10.1016/j.ibmb.2021.103708] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 05/14/2023]
Abstract
Sex pheromones facilitate species-specific sex communication within the Lepidoptera. They are detected by specialised pheromone receptors (PRs), most of which to date fall into a single monophyletic receptor lineage (frequently referred to as "the PR clade") within the odorant receptor (OR) family. Here we investigated PRs of the invasive horticultural pest, Epiphyas postvittana, commonly known as the light brown apple moth. Ten candidate PRs were selected, based on their male-biased expression in antennae or their relationship to the PR clade, for functional assessment in both HEK293 cells and Xenopus oocytes. Of these, six ORs responded to compounds that include components of the E. postvittana ('Epos') sex pheromone blend or compounds that antagonise sex pheromone attraction. In phylogenies, four of the characterised receptors (EposOR1, 6, 7 and 45) fall within the PR clade and two other male-biased receptors (EposOR30 and 34) group together well outside the PR clade. This new clade of pheromone receptors includes the receptor for (E)-11-tetradecenyl acetate (EposOR30), which is the main component of the sex pheromone blend for this species. Interestingly, receptors of the two clades do not segregate by preference for compounds associated with behavioural response (agonist or antagonist), isomer type (E or Z) or functional group (alcohol or acetate), with examples of each scattered across both clades. Phylogenetic comparison with PRs from other species supports the existence of a second major clade of lepidopteran ORs including, EposOR30 and 34, that has been co-opted into sex pheromone detection in the Lepidoptera. This second clade of sex pheromone receptors has an origin that likely predates the split between the major lepidopteran families.
Collapse
Affiliation(s)
| | - Melissa D Jordan
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand.
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden.
| | | | | | - Richard D Newcomb
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand.
| | - Jacob A Corcoran
- Department of Biology, Lund University, Lund, Sweden; The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand.
| |
Collapse
|
17
|
Guo H, Huang LQ, Gong XL, Wang CZ. Comparison of functions of pheromone receptor repertoires in Helicoverpa armigera and Helicoverpa assulta using a Drosophila expression system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103702. [PMID: 34942332 DOI: 10.1016/j.ibmb.2021.103702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Helicoverpa armigera and H. assulta are sympatric closely related species sharing two sex pheromone components, (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) but in opposite ratios, 97:3 and 3:97 respectively. This feature makes them a feasible model for studying the evolution of pheromone coding mechanisms of lepidopteran insects. Despite a decade-long study to deorphanize the pheromone receptor (PR) repertoires of the two species, the comparison of the function of all PR orthologs between the two species is incomplete. Moreover, the ligands of OR14 and OR15 have so far not been found, likely due to the missing of the active ligand(s) in the compound panel and/or incompatibility of heterologous expression systems used. In the present study, we expressed the PR repertoires of both Helicoverpa species in Drosophila T1 neurons to comparatively study the function of PRs. Among those PRs, OR13, OR6, and OR14 of both species are functionally conserved and narrowly tuned, and the T1 neurons expressing each of them respond to Z11-16:Ald, (Z)-9-hexadecenol (Z9-16:OH), and (Z)-11-hexadecenyl acetate (Z11-16:Ac), respectively. While HarmOR16-expressing neurons respond strongly to (Z)-9-tetradecenal (Z9-14:Ald) and (Z)-11-hexadecenol (Z11-16:OH), the neurons expressing HassOR16 mainly respond to Z9-14:Ald and also weakly respond to (Z)-9-tetradecenol (Z9-14:OH). Moreover, HarmOR14b-expressing neurons are activated by Z9-14:Ald, whereas HassOR14b-expressing neurons are sensitive to Z9-16:Ald, Z9-14:Ald, and (Z)-9-hexadecenol (Z9-16:OH). In addition, HarmOR15-expressing neurons are selectively responsive to Z9-14:Ald. However, the Drosophila T1 neurons expressing either HarmOR11 or HassOR11 are silent to all of the compounds tested. In summary, except for OR11, we have deorphanized all the PRs of these two Helicoverpa species using a Drosophila expression system and a large panel of pheromone compounds, thereby providing a valuable reference for parsing the code of peripheral coding of pheromones.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin-Lin Gong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
18
|
Xu JW, Li LL, Wang M, Yang HH, Yao WC, Dewer Y, Zhu XY, Zhang YN. Identification and dynamic expression profiling of circadian clock genes in Spodoptera litura provide new insights into the regulation of sex pheromone communication. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:78-90. [PMID: 35225175 DOI: 10.1017/s0007485321000559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spodoptera litura is an important pest that causes significant economic damage to numerous crops worldwide. Sex pheromones (SPs) mediate sexual communication in S. litura and show a characteristic degree of rhythmic activity, occurring mainly during the scotophase; however, the specific regulatory mechanisms remain unclear. Here, we employed a genome-wide analysis to identify eight candidate circadian clock genes in S. litura. Sequence characteristics and expression patterns were analyzed. Our results demonstrated that some circadian clock genes might regulate the biosynthesis and perception of SPs by regulating the rhythmic expression of SP biosynthesis-related genes and SP perception-related genes. Interestingly, all potential genes exhibited peak expression in the scotophase, consistent with the SP could mediate courtship and mating behavior in S. litura. Our findings are helpful in elucidating the molecular mechanism by which circadian clock genes regulate sexual communication in S. litura.
Collapse
Affiliation(s)
- Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Meng Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| |
Collapse
|
19
|
Li LL, Xu JW, Yao WC, Yang HH, Dewer Y, Zhang F, Zhu XY, Zhang YN. Chemosensory genes in the head of Spodoptera litura larvae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:454-463. [PMID: 33632348 DOI: 10.1017/s0007485321000109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The tobacco cutworm Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest with a highly selective and sensitive chemosensory system involved in complex physiological behaviors such as searching for food sources, feeding, courtship, and oviposition. However, effective management strategies for controlling the insect pest populations under threshold levels are lacking. Therefore, there is an urgent need to formulate eco-friendly pest control strategies based on the disruption of the insect chemosensory system. In this study, we identified 158 putative chemosensory genes based on transcriptomic and genomic data for S. litura, including 45 odorant-binding proteins (OBPs, nine were new), 23 chemosensory proteins (CSPs), 60 odorant receptors (ORs, three were new), and 30 gustatory receptors (GRs, three were new), a number higher than those reported by previous transcriptome studies. Subsequently, we constructed phylogenetic trees based on these genes in moths and analyzed the dynamic expression of various genes in head capsules across larval instars using quantitative real-time polymerase chain reaction. Nine genes-SlitOBP8, SlitOBP9, SlitOBP25, SlitCSP1, SlitCSP7, SlitCSP18, SlitOR34, SlitGR240, and SlitGR242-were highly expressed in the heads of 3- to 5-day-old S. litura larvae. The genes differentially expressed in olfactory organs during larval development might play crucial roles in the chemosensory system of S. litura larvae. Our findings substantially expand the gene inventory for S. litura and present potential target genes for further studies on larval feeding in S. litura.
Collapse
Affiliation(s)
- Lu-Lu Li
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Wei-Chen Yao
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Hui-Hui Yang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618Giza, Egypt
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan250014, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| |
Collapse
|
20
|
Xing Y, Thanasirungkul W, Adeel MM, Yu J, Aslam A, Chi DF. Identification and analysis of olfactory genes in Dioryctria abietella based on the antennal transcriptome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100814. [PMID: 33706113 DOI: 10.1016/j.cbd.2021.100814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The coneworm Dioryctria abietella (Lepidoptera: Pyralidae) is an economy devastating pest that infests many valuable conifer species in the Holarctic regions, such as Pinus koraiensis Siebold and Zucc. The chemosensory system plays a crucial role in the mating, foraging, and ovipositing of this pest, and therefore it is desirable to identify chemosensory molecules for pest control. However, little is known at molecular level about the olfactory mechanisms in D. abietella. In the present study, we first established antennal transcriptomes of D. abietella and identified 132 putative chemosensory genes, including 15 odorant-binding proteins, 18 chemosensory proteins, 65 odorant receptors, 5 sensory neuron membrane proteins, 24 ionotropic receptors, and 5 gustatory receptors. In addition, phylogenetic trees were constructed for chemosensory genes to investigate the orthologs between D. abietella and other species of insects. Furthermore, we also compared the patterns of motifs between OBPs and CSPs using MEME. Additionally, we observed that most of DabiOBPs and DabiCSPs had the antenna-biased expression by quantitative real-time PCR (RT-qPCR), and there was a higher expression of DabiPBP1 and DabiPBP2 in male antennae than in female antennae. The binding sites of DabiPBPs (DabiPBP1, DabiPBP2) and DabiPRs (DabiOR19, DabiOR31) to the sex pheromone were predicted well by three-dimensional docking structure modelling and molecular docking. Our finding supplied a foundation for further research on the binding process of OBPs or CSPs and sensing process of ORs, SNMPs, IRs or GRs in D. abietella.
Collapse
Affiliation(s)
- Ya Xing
- Key Laboratory for Sustainable Forest Ecosysttem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Wariya Thanasirungkul
- Key Laboratory for Sustainable Forest Ecosysttem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Muhammad Muzammal Adeel
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Jia Yu
- Key Laboratory for Sustainable Forest Ecosysttem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Asad Aslam
- Key Laboratory for Sustainable Forest Ecosysttem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - De-Fu Chi
- Key Laboratory for Sustainable Forest Ecosysttem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
21
|
He X, Cai Y, Zhu J, Zhang M, Zhang Y, Ge Y, Zhu Z, Zhou W, Wang G, Gao Y. Identification and Functional Characterization of Two Putative Pheromone Receptors in the Potato Tuber Moth, Phthorimaea operculella. Front Physiol 2021; 11:618983. [PMID: 33569012 PMCID: PMC7868389 DOI: 10.3389/fphys.2020.618983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Pheromones are a kind of signal produced by an animal that evoke innate responses in conspecifics. In moth, pheromone components can be detected by specialized olfactory receptor neurons (OSNs) housed in long sensilla trichoids on the male antennae. The pheromone receptors (PRs) located in the dendrite membrane of OSNs are responsible for pheromone sensing in most Lepidopteran insects. The potato tuber moth Phthorimaea operculella is a destructive pest of Solanaceae crops. Although sex attractant is widely used in fields to monitor the population of P. operculella, no study has been reported on the mechanism the male moth of P. operculella uses to recognize sex pheromone components. In the present study, we cloned two pheromone receptor genes PopeOR1 and PopeOR3 in P. operculella. The transcripts of them were highly accumulated in the antennae of male adults. Functional analysis using the heterologous expression system of Xenopus oocyte demonstrated that these two PR proteins both responded to (E, Z)-4,7–13: OAc and (E, Z, Z)-4,7,10–13: OAc, the key sex pheromone components of P. operculella, whilst they responded differentially to these two ligands. Our findings for the first time characterized the function of pheromone receptors in gelechiid moth and could promote the olfactory based pest management of P. operculella in the field.
Collapse
Affiliation(s)
- Xiaoli He
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Yajie Cai
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Jinglei Zhu
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China.,State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengdi Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yadong Zhang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Yang Ge
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Zengrong Zhu
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Wenwu Zhou
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Shen S, Cao S, Zhang Z, Kong X, Liu F, Wang G, Zhang S. Evolution of sex pheromone receptors in Dendrolimus punctatus Walker (lepidoptera: Lasiocampidae) is divergent from other moth species. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103375. [PMID: 32305486 DOI: 10.1016/j.ibmb.2020.103375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/09/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Dendrolimus punctatus Walker (Lepidoptera: Lasiocampidae) is a pine caterpillar moth distributed in most areas of southern China and is an economically important pest of pine, due to its defoliation activity. Understanding fundamental sex pheromone perception mechanisms in D. punctatus may provide effective and sustainable options for novel control strategies. However, the identification and function of pheromone receptors, key genes that receipt the pheromone of this pest, are both unclear now. Previous researches suggested several candidate pheromone receptors whose expression levels were male antennae bias in D. punctatus. In this study, we cloned six candidate pheromone receptors (DpunOR 20/45/46/51/54/58) and Orco from D. punctatus. Phylogenetic tree analysis showed that lepidopteran PRs tend to be conserved and clustered together; however, D. punctatus candidate PRs were located in a distinct clade. Motif analysis of PRs showed clear sequences differences between Dendrolimus spp. and other tested moth species. To illustrate the ligand response properties of the candidate PRs of D. punctatus, each of the six genes was expressed with an Orco gene in Xenopus oocytes and using two-electrode voltage-clamp recordings. Finally, we successfully identified two sex pheromone receptors (PR45 and PR46). Our study, which identified a novel lineage of PRs tuned to Type I pheromones in Lepidoptera, provides evidence for the new evolution origin of sex pheromone communication in moths, and lays a foundation for the development of novel control strategies of D. punctatus.
Collapse
Affiliation(s)
- Sifan Shen
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| | - Sufang Zhang
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China.
| |
Collapse
|
23
|
Functional Characterization of Sex Pheromone Receptors in the Fall Armyworm ( Spodoptera frugiperda). INSECTS 2020; 11:insects11030193. [PMID: 32197457 PMCID: PMC7143582 DOI: 10.3390/insects11030193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/31/2023]
Abstract
Pheromone receptors (PRs) found in the antennae of male moths play a vital role in the recognition of sex pheromones released by females. The fall armyworm (FAW), Spodoptera frugiperda, is a notorious invasive pest, but its PRs have not been reported. In this report, six candidate PRs (SfruOR6, 11, 13, 16, 56 and 62) suggested by phylogenetic analysis were cloned, and their tissue-sex expression profiles were determined by quantitative real-time PCR (qPCR). All six genes except for SfruOR6 were highly and specifically expressed in the antennae, with SfruOR6, 13 and 62 being male-specific, while the other three (SfruOR11, 16 and 56) were male biased, suggesting their roles in sex pheromone perception. A functional analysis by the Xenopus oocyte system further demonstrated that SfruOR13 was highly sensitive to the major sex pheromone component Z9-14:OAc and the pheromone analog Z9,E12-14:OAc, but less sensitive to the minor pheromone component Z9-12:OAc; SfruOR16 responded weakly to pheromone component Z9-14:OAc, but strongly to pheromone analog Z9-14:OH; the other four candidate PRs did not respond to any of the four pheromone components and four pheromone analogs. This study contributes to clarifying the pheromone perception in the FAW, and provides potential gene targets for developing OR-based pest control techniques.
Collapse
|
24
|
Identification of candidate chemosensory genes of Ophraella communa LeSage (Coleoptera: Chrysomelidae) based on antennal transcriptome analysis. Sci Rep 2019; 9:15551. [PMID: 31664149 PMCID: PMC6820725 DOI: 10.1038/s41598-019-52149-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/04/2019] [Indexed: 11/30/2022] Open
Abstract
Antennal olfaction plays a key role in insect survival, which mediates important behaviors like host search, mate choice, and oviposition site selection. As an oligophagous insect, olfaction is extremely important for Ophraella communa to locate host plants. However, information on the olfactory genes has been lacking in O. communa. Using next generation sequencing, we assembled the antennal transcriptome of O. communa and first reported the major chemosensory genes necessary for olfaction in this species. In this study, a total 105 candidate chemosensory genes were identified in O. communa antennae, including 25 odorant-binding proteins (OBPs), 11 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), 30 odorant receptors (ORs), 18 ionotropic receptors (IRs), and 17 gustatory receptors (GRs). We also identified full-length sequences of the highly conserved ORco and IR8a/25a family in O. communa. In addition, the expression profile of 15 ORs and four OBPs were validated by quantitative real-time polymerase chain reaction (qPCR). We found that OcomOR2/4/19 and OcomOBP19/20 had a biased expression in male antennae, and OcomOR8 had a biased expression in the female antennae. This large number of chemosensory genes handled by homology analysis and qPCR results will provide the first insights into molecular basis for the olfactory systems of O. communa as well as advance our understanding of olfactory mechanisms in Coleoptera.
Collapse
|
25
|
Yan Q, Liu XL, Wang YL, Tang XQ, Shen ZJ, Dong SL, Deng JY. Two Sympatric Spodoptera Species Could Mutually Recognize Sex Pheromone Components for Behavioral Isolation. Front Physiol 2019; 10:1256. [PMID: 31611820 PMCID: PMC6777146 DOI: 10.3389/fphys.2019.01256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022] Open
Abstract
Spodoptera exigua and S. litura are two sympatric species in China and many other countries. Both moths employ a multiple component sex pheromone blend, including a common component Z9,E12-14:OAc, and two specific components Z9-14:OH and Z11-16:OAc for S. exigua, and one specific component Z9,E11-14:OAc for S. litura. For the two species, it has been well documented that males are able to recognize and behaviorally attracted by their species-specific sex pheromone, which functions as a means of reproductive isolation, but whether males could mutually recognize pheromone components of its sympatric species is unknown. In the present study, the electroantennogram (EAG) and field evaluation were conducted to address this topic. The EAG recordings revealed that males of each species could significantly respond to specific components of its sympatric species, although the response values were lower than that to its own major component. In field tests, the specific components Z9-14:OH and Z11-16:OAc of S. exigua strongly inhibited the male catches of S. litura to its conspecific sex pheromone, while specific component Z9,E11-14:OAc of S. litura significantly reduced the male catches of S. exigua to its sex pheromone. Furthermore, the combined lure of the two species completely inhibited male catches of S. litura, and significantly decreased the male catches of S. exigua, compared to the species-specific lure alone. The results demonstrated that males of the two sibling species could perceive the specific components of its counterpart, suggesting that mutual recognition of pheromone components may function to strengthen the behavioral isolation between the two species. Our study has added new knowledge to the reproductive isolation via sex pheromone communication system in sympatric moth species, and provided a base for designing of mating disruption tactics targeting multispecies by using insect sex pheromones.
Collapse
Affiliation(s)
- Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yu-Lei Wang
- Department of Plant Protection, Zhejiang A& F University, Hangzhou, China
| | - Xiao-Qin Tang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Entomology, Nanjing Agricultural University, Nanjing, China.,College of Plant Sciences, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Zhi-Jie Shen
- Department of Plant Protection, Zhejiang A& F University, Hangzhou, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jian-Yu Deng
- Department of Plant Protection, Zhejiang A& F University, Hangzhou, China
| |
Collapse
|
26
|
Liu XL, Sun SJ, Khuhro SA, Elzaki MEA, Yan Q, Dong SL. Functional characterization of pheromone receptors in the moth Athetis dissimilis (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:69-76. [PMID: 31378363 DOI: 10.1016/j.pestbp.2019.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 06/10/2023]
Abstract
Sex pheromones are crucial for communication between females and males in moths, and pheromone receptors (PRs) play a key role in peripheral coding of sex pheromones. During the last decade, many PR candidates have been identified based on transcriptome sequencing and bioinformatic analysis, but their detailed functions remain mostly unknown. Here, focusing on four PR candidates of Athetis dissimilis (AdisOR1, AdisOR6, AdisOR11 and AdisOR14) identified in a previous study, we first cloned the full-length cDNAs and determined the tissue expression profiles by quantitative real-time PCR (qPCR). The results revealed that expression of three of these genes were male antennae-specific, while AdisOR11 was similar in expression between male and female antennae. Furthermore, the expression level of AdisOR1 was much higher than those of the other three genes. Then, functional analysis was conducted using Xenopus oocyte system. AdisOR1 responded strongly to the sex pheromone component Z9-14:OH and the potential pheromone component Z9,E12-14:OH, suggesting its important role in the sex pheromone perception; AdisOR14 showed specificity for Z9,E12-14:OH; while AdisOR6 and AdisOR11 did not respond to any of the pheromone components and analogs tested. Taken together, this study contributes to elucidate the molecular mechanism of sex pheromone reception and provides potential targets for development of OR based pest control techniques in A. dissimilis.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Si-Jie Sun
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Sajjad Ali Khuhro
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Qi Yan
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Zhang K, Feng Y, Du L, Gao S, Yan H, Li K, Liu N, Wu J, Wang G. Functional Analysis of MsepOR13 in the Oriental Armyworm Mythimna separata (Walker). Front Physiol 2019; 10:367. [PMID: 31024335 PMCID: PMC6465334 DOI: 10.3389/fphys.2019.00367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Olfaction in insects has a critical role in recognizing the host, finding food, and choosing mating partners, as well as avoiding predators. Odorant receptors (ORs), which are housed in the dendritic membrane of sensory neurons and extended into the lymph of sensilla on insect antennae, are participating in the detection of volatile compounds in insects. In the present study, we identified an OR gene, named MsepOR13, in the oriental armyworm Mythimna separata (Walker). Quantitative real-time polymerase chain reaction revealed that MsepOR13 was expressed mainly in the antennae of male and female moths. In in vitro heterologous expression experiments, MsepOR13 was widely tuned to 32 of the 67 different compounds tested. Furthermore, MsepOR13 responded to eugenol at a low concentration of 10-9 M, with an EC50 value of 3.91 × 10-6 M. The high sensitivity suggests an important role for the OR13 gene in the moth olfactory system.
Collapse
Affiliation(s)
- Kunpeng Zhang
- State Key Laboratory of Crop Stress, Northwest A&F University, Yangling, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yilu Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Hang Yan
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Kun Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Nana Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Junxiang Wu
- State Key Laboratory of Crop Stress, Northwest A&F University, Yangling, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Zhang YN, Du LX, Xu JW, Wang B, Zhang XQ, Yan Q, Wang G. Functional characterization of four sex pheromone receptors in the newly discovered maize pest Athetis lepigone. JOURNAL OF INSECT PHYSIOLOGY 2019; 113:59-66. [PMID: 30193842 DOI: 10.1016/j.jinsphys.2018.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Chemoreception systems play a crucial role in regulating key behavioral activities of insects, such as mating, oviposition, and foraging. Odorant receptors (ORs) trigger the transduction of chemical signals into electric signals, and are involved in the corresponding responses associated with odorant guidance behaviors. Pheromone receptors (PRs) of male adult insects are generally thought to function in the recognition of female sex pheromones, and are also important molecular targets for the development of behavioral inhibitors and insecticides. In this study, we successfully expressed and functionally analyzed four AlepPRs of Athetis lepigone in Xenopus oocytes using the two-electrode voltage-clamp method. The results demonstrated that AlepOR3 responded exclusively to the sex pheromone compound of A. lepigone, (Z)-7-dodecenyl acetate (Z7-12:Ac) (EC50 = 8.830 × 10-6 M), while AlepOR4 responded to all five compounds [(Z7-12:Ac, (Z)-8-dodecenyl acetate (Z8-12:Ac), (Z)-9-tetradecenyl acetate (Z9-14:Ac), (Z,E)-9,11-tetradecadienyl acetate (Z9,E11-14:Ac), and (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:Ac)] and had a higher response to Z9-14:Ac (EC50 = 2.243 × 10-5 M) than to Z7-12:Ac. However, AlepOR6 displayed a significantly higher response to a non-pheromone of A. lepigone, Z9,E12-14:Ac (EC50 = 7.145 × 10-6 M), than to the other four compounds. AlepOR5 displayed no responses to any of the pheromone compounds of A. lepigone, but responded exclusively to (Z)-11-hexadecenyl acetate (Z11-16:Ac) (EC50 = 7.870 × 10-6 M), a sex pheromone compound of other Noctuidae species. These findings can help explore the molecular mechanisms of sex pheromone recognition in A. lepigone and other moths, and develop broad-spectrum behavioral inhibitors and insecticides against different maize moths in future.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China.
| | - Li-Xiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Qing Zhang
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Fleischer J, Krieger J. Insect Pheromone Receptors - Key Elements in Sensing Intraspecific Chemical Signals. Front Cell Neurosci 2018; 12:425. [PMID: 30515079 PMCID: PMC6255830 DOI: 10.3389/fncel.2018.00425] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pheromones are chemicals that serve intraspecific communication. In animals, the ability to detect and discriminate pheromones in a complex chemical environment substantially contributes to the survival of the species. Insects widely use pheromones to attract mating partners, to alarm conspecifics or to mark paths to rich food sources. The various functional roles of pheromones for insects are reflected by the chemical diversity of pheromonal compounds. The precise detection of the relevant intraspecific signals is accomplished by specialized chemosensory neurons housed in hair-like sensilla located on the surface of body appendages. Current data indicate that the extraordinary sensitivity and selectivity of the pheromone-responsive neurons (PRNs) is largely based on specific pheromone receptors (PRs) residing in their ciliary membrane. Besides these key elements, proper ligand-induced responses of PR-expressing neurons appear to generally require a putative co-receptor, the so-called "sensory neuron membrane protein 1" (SNMP1). Regarding the PR-mediated chemo-electrical signal transduction processes in insect PRNs, ionotropic as well as metabotropic mechanisms may be involved. In this review, we summarize and discuss current knowledge on the peripheral detection of pheromones in the olfactory system of insects with a focus on PRs and their specific role in the recognition and transduction of volatile intraspecific chemical signals.
Collapse
Affiliation(s)
- Jörg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
30
|
Köblös G, François MC, Monsempes C, Montagné N, Fónagy A, Jacquin-Joly E. Molecular Characterization of MbraOR16, a Candidate Sex Pheromone Receptor in Mamestra brassicae (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5106220. [PMID: 30247742 PMCID: PMC6151874 DOI: 10.1093/jisesa/iey090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Sex pheromone communication in Lepidoptera has long been a valuable model system for studying fundamental aspects of olfaction and its study has led to the establishment of environmental-friendly pest control strategies. The cabbage moth, Mamestra brassicae (Linnaeus) (Lepidoptera: Noctuidae), is a major pest of Cruciferous vegetables in Europe and Asia. Its sex pheromone has been characterized and is currently used as a lure to trap males; however, nothing is known about the molecular mechanisms of sex pheromone reception in male antennae. Using homology cloning and rapid amplification of cDNA ends-PCR strategies, we identified the first candidate pheromone receptor in this species. The transcript was specifically expressed in the antennae with a strong male bias. In situ hybridization experiments within the antennae revealed that the receptor-expressing cells were closely associated with the olfactory structures, especially the long trichoid sensilla known to be pheromone-sensitive. The deduced protein is predicted to adopt a seven-transmembrane structure, a hallmark of insect odorant receptors, and phylogenetically clustered in a clade that grouped a majority of the Lepidoptera pheromone receptors characterized to date. Taken together, our data support identification of a candidate pheromone receptor and provides a basis for better understanding how this species detects a signal critical for reproduction.
Collapse
Affiliation(s)
- Gabriella Köblös
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Marie-Christine François
- Inra, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Christelle Monsempes
- Inra, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Nicolas Montagné
- Inra, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Adrien Fónagy
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Emmanuelle Jacquin-Joly
- Inra, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| |
Collapse
|
31
|
Wang B, Liu Y, Wang GR. Proceeding From in vivo Functions of Pheromone Receptors: Peripheral-Coding Perception of Pheromones From Three Closely Related Species, Helicoverpa armigera, H. assulta, and Heliothis virescens. Front Physiol 2018; 9:1188. [PMID: 30214413 PMCID: PMC6125646 DOI: 10.3389/fphys.2018.01188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/07/2018] [Indexed: 01/07/2023] Open
Abstract
Three closely related species, Helicoverpa armigera, H. assulta, and Heliothis virescens from Lepidoptera Noctuidae, are used as a model system for exploring sexual communication and species isolation. Pheromone receptors (PRs) previously discovered in model moth species include seven in H. armigera, six in H. assulta, and six in H. virescens. PRs named OR6, OR13, and OR16 among these species were found to be functional, characterized by an in vitro Xenopus oocytes system. Using an in vivo transgenic fly system, functional assays of OR6, OR13, and OR16 clades from three closely related Noctuidae species showed that OR13 function was highly conserved, whereas OR6 and OR16 exhibited functional divergence. Similar results were produced from assays in the Xenopus oocytes system. Combined with earlier behavioral results and electrophysiological recordings, we found corresponding relationships among pheromones, PRs, and neurons at the periphery sensory system of each species. Our results provide vital information at the neuronal and molecular level, shedding insight into the sexual communication of closely related species in Lepidoptera.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Liu Y, Liu Y, Jiang X, Wang G. Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:14-22. [PMID: 29438663 DOI: 10.1016/j.jinsphys.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
The highly specialized olfactory receptor neurons (ORNs) on the antennae of male moths can recognize blends of several pheromone components. In previous studies, a total of six candidate pheromone receptor (PR) genes were cloned and functionally characterized in the diamondback moth, Plutella xylostella. In the present work, we report on three novel candidate pheromone receptor genes: PxylOR8, PxylOR41, and PxylOR45 in the same species. Gene expression analysis revealed that PxylOR8 is specifically expressed in female adult antennae, while PxylOR41 and PxylOR45 are expressed in antennae in both sexes, but with a male bias. In situ hybridization revealed that PxylOR8, PxylOR41 and PxylOR45 are localized in long trichoid sensilla. Functional analyses on the three pheromone receptor genes were then performed using the heterologous expression system of Xenopus oocytes. PxylOR41 was tuned to two minor pheromone components Z9-14:Ac, Z9-14:OH, and their analog Z9-14:Ald. PxylOR8 and PxylOR45 did not respond to any tested pheromone components and analogs. These results may contribute to clarifying how pheromone detection works in P. xylostella.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingchuan Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
33
|
Zhang YN, Qian JL, Xu JW, Zhu XY, Li MY, Xu XX, Liu CX, Xue T, Sun L. Identification of Chemosensory Genes Based on the Transcriptomic Analysis of Six Different Chemosensory Organs in Spodoptera exigua. Front Physiol 2018; 9:432. [PMID: 29740343 PMCID: PMC5928209 DOI: 10.3389/fphys.2018.00432] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/06/2018] [Indexed: 12/25/2022] Open
Abstract
Insects have a complex chemosensory system that accurately perceives external chemicals and plays a pivotal role in many insect life activities. Thus, the study of the chemosensory mechanism has become an important research topic in entomology. Spodoptera exigua Hübner (Lepidoptera: Noctuidae) is a major agricultural polyphagous pest that causes significant agricultural economic losses worldwide. However, except for a few genes that have been discovered, its olfactory and gustatory mechanisms remain uncertain. In the present study, we acquired 144,479 unigenes of S. exigua by assembling 65.81 giga base reads from 6 chemosensory organs (female and male antennae, female and male proboscises, and female and male labial palps), and identified many differentially expressed genes in the gustatory and olfactory organs. Analysis of the transcriptome data obtained 159 putative chemosensory genes, including 24 odorant binding proteins (OBPs; 3 were new), 19 chemosensory proteins (4 were new), 64 odorant receptors (57 were new), 22 ionotropic receptors (16 were new), and 30 new gustatory receptors. Phylogenetic analyses of all genes and SexiGRs expression patterns using quantitative real-time polymerase chain reactions were investigated. Our results found that several of these genes had differential expression features in the olfactory organs compared to the gustatory organs that might play crucial roles in the chemosensory system of S. exigua, and could be utilized as targets for future functional studies to assist in the interpretation of the molecular mechanism of the system. They could also be used for developing novel behavioral disturbance agents to control the population of the moths in the future.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jia-Li Qian
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiu-Yun Zhu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Meng-Ya Li
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiao-Xue Xu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Chun-Xiang Liu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Tao Xue
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
34
|
He P, Engsontia P, Chen GL, Yin Q, Wang J, Lu X, Zhang YN, Li ZQ, He M. Molecular characterization and evolution of a chemosensory receptor gene family in three notorious rice planthoppers, Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus, based on genome and transcriptome analyses. PEST MANAGEMENT SCIENCE 2018; 74:2156-2167. [PMID: 29542232 DOI: 10.1002/ps.4912] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 02/28/2024]
Abstract
BACKGROUND The white-backed planthopper (WBPH) Sogatella furcifera, the brown planthopper (BPH) Nilaparvata lugens, and the small brown planthopper (SBPH) Laodelphax striatellus (Hemiptera: Delphacidae) are rice pests that damage rice plants by sap-sucking and by transmitting viruses. Host-seeking behavior involves chemosensory receptor genes that include odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). RESULTS We used genome and transcriptome data to identify 141 ORs, 28 GRs and 25 IRs in BPH; 135 ORs, 18 GRs and 16 IRs in WBPH; and 37 ORs, 14 GRs and 6 IRs in SBPH. A phylogenetic analysis identified several specific OR clades of rice planthoppers, the results indicating that these OR members might be used to respond to specific host volatiles. OR co-receptor (Orco) is the most conserved and essential OR gene among these species and RNA interference (RNAi) can decrease their mRNA expression level to <50%. RNAi knockdown rice planthoppers were anosmia and were unable to seek or locate rice plants in behavioral tests. CONCLUSION The results demonstrate the importance of the planthopper Orco genes in locating rice plants. This information may aid in the development of RNAi-based transgenic rice and other pest management technologies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Patamarerk Engsontia
- Molecular Ecology and Evolution Research Unit, Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Guang-Lei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Qian Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu Province, People's Republic of China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Xu Lu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, People's Republic of China
| | - Zhao-Qun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, People's Republic of China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| |
Collapse
|
35
|
Fleischer J, Pregitzer P, Breer H, Krieger J. Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cell Mol Life Sci 2018; 75:485-508. [PMID: 28828501 PMCID: PMC11105692 DOI: 10.1007/s00018-017-2627-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022]
Abstract
The sense of smell enables insects to recognize and discriminate a broad range of volatile chemicals in their environment originating from prey, host plants and conspecifics. These olfactory cues are received by olfactory sensory neurons (OSNs) that relay information about food sources, oviposition sites and mates to the brain and thus elicit distinct odor-evoked behaviors. Research over the last decades has greatly advanced our knowledge concerning the molecular basis underlying the reception of odorous compounds and the mechanisms of signal transduction in OSNs. The emerging picture clearly indicates that OSNs of insects recognize odorants and pheromones by means of ligand-binding membrane proteins encoded by large and diverse families of receptor genes. In contrast, the mechanisms of the chemo-electrical transduction process are not fully understood; the present status suggests a contribution of ionotropic as well as metabotropic mechanisms. In this review, we will summarize current knowledge on the peripheral mechanisms of odor sensing in insects focusing on olfactory receptors and their specific role in the recognition and transduction of odorant and pheromone signals by OSNs.
Collapse
Affiliation(s)
- Joerg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Pablo Pregitzer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
36
|
Yang K, Huang LQ, Ning C, Wang CZ. Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species. eLife 2017; 6:29100. [PMID: 29063835 PMCID: PMC5673308 DOI: 10.7554/elife.29100] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/22/2017] [Indexed: 11/13/2022] Open
Abstract
Male moths possess highly sensitive and selective olfactory systems that detect sex pheromones produced by their females. Pheromone receptors (PRs) play a key role in this process. The PR HassOr14b is found to be tuned to (Z)-9-hexadecenal, the major sex-pheromone component, in Helicoverpa assulta. HassOr14b is co-localized with HassOr6 or HassOr16 in two olfactory sensory neurons within the same sensilla. As HarmOr14b, the ortholog of HassOr14b in the closely related species Helicoverpa armigera, is tuned to another chemical (Z)-9-tetradecenal, we study the amino acid residues that determine their ligand selectivity. Two amino acids located in the transmembrane domains F232I and T355I together determine the functional difference between the two orthologs. We conclude that species-specific changes in the tuning specificity of the PRs in the two Helicoverpa moth species could be achieved with just a few amino acid substitutions, which provides new insights into the evolution of closely related moth species.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Feng B, Zheng K, Li C, Guo Q, Du Y. A cytochrome P450 gene plays a role in the recognition of sex pheromones in the tobacco cutworm, Spodoptera litura. INSECT MOLECULAR BIOLOGY 2017; 26:369-382. [PMID: 28390075 DOI: 10.1111/imb.12307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cytochrome P450 (P450 or CYP) genes are involved in fundamental physiological functions, and might be also associated with the olfactory recognition of sex pheromones in beetles and moths. A P450 gene, Spodoptera litura CYP4L4 (SlituCYP4L4), was cloned for the first time from the antennae of S. litura. SlituCYP4L4 was almost exclusively expressed in the adult stage and predominantly expressed in the adult antennae. In situ hybridization showed that SlituCYP4L4 localized mainly at the base of the long sensilla trichoidea, which responds to sex pheromone components. Pretreatment with an S. litura sex pheromone significantly reduced the expression levels of SlituCYP4L4, consistent with other genes involved in sex pheromone recognition. The expression level of SlituCYP4L4 was different in moths collected with different ratios of sex pheromone lures and collected in different geographical locations. After gene knockdown of SlituCYP4L4 in the antennae, the electroantennogram (EAG) responses of male and female moths to (9Z,11E)-tetradecadienyl acetate or (9Z,12E)-tetradecadienyl acetate were significantly decreased. In contrast, EAG responses to plant volatiles and sex pheromones of other moth species were not significantly influenced in these moths. SlituCYP4L4 was also expressed in the gustatory tissues and sensilla, which suggests that SlituCYP4L4 may have other functions in the chemosensory system. Our results have shown for the first time the function of a CYP gene with appendage-specific expression in insect sex pheromone recognition, especially in adult moths.
Collapse
Affiliation(s)
- B Feng
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Town, Wenzhou, China
| | - K Zheng
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Town, Wenzhou, China
| | - C Li
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Town, Wenzhou, China
| | - Q Guo
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Town, Wenzhou, China
| | - Y Du
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Zhang QH, Wu ZN, Zhou JJ, Du YJ. Molecular and functional characterization of a candidate sex pheromone receptor OR1 in Spodoptera litura. INSECT SCIENCE 2017; 24:543-558. [PMID: 26573759 DOI: 10.1111/1744-7917.12294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Olfaction is primarily mediated by highly specified olfactory receptors (ORs). Here, we cloned and identified an olfactory receptor, named SlituOR1 (Genbank no. JN835269), from Spodoptera litura and found evidence that it is a candidate pheromone receptor. It exhibited male-biased expression in the antennae, where it was localized at the base of sensilla trichoidea, the antennal sensilla mainly responsive to pheromones in moths. Conserved orthologues of this receptor, found among known pheromone receptors within the Lepidoptera, and SlituOR1 were placed among a clade of candidate pheromone receptors in a phylogeny tree of insect OR gene sequences. SlituOR1 showed differential expression in S. litura populations attracted to traps baited with different ratios of the two sex pheromone components (9Z,11E)-tetradecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-tetradecadienyl acetate (Z9E12-14:OAc). Knocking down of SlituOR1 by RNA interference reduced the electroantennogram (EAG) response to Z9E11-14:OAc, and this result is consistent with the field trapping experiment. We infer that variation in transcription levels of olfactory receptors may modulate sex pheromone perception in male moths and could provide some of the flexibility required to maintain the functionality of communication with females when a population is adapting to a new niche and reproductive isolation becomes an advantage.
Collapse
Affiliation(s)
- Qin-Hui Zhang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhong-Nan Wu
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, BBSRC, Harpenden, Herts. AL5 2JQ, UK
| | - Yong-Jun Du
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
39
|
Wan X, Bai J, Lu R, Zhang D, Lin H. RETRACTED: Pre-exposures to taro (Colocasia esculenta) leaf volatiles enhance the reproductive behaviors in Spodoptera litura. JOURNAL OF INSECT PHYSIOLOGY 2017; 99:39-46. [PMID: 28336369 DOI: 10.1016/j.jinsphys.2017.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors of the paper. Some of the data of the work published was work of a different researcher (the principal investigator), and published without their permission. Furthermore, it has been realised that the analysis and calculation methods used for the gene expressions and some other results in this paper need to be tested further before publication.
Collapse
Affiliation(s)
- Xinlong Wan
- Institute of Health and Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Jiaxiu Bai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Lu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Daogen Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiyue Lin
- Institute of Health and Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
40
|
An XK, Sun L, Liu HW, Liu DF, Ding YX, Li LM, Zhang YJ, Guo YY. Identification and expression analysis of an olfactory receptor gene family in green plant bug Apolygus lucorum (Meyer-Dür). Sci Rep 2016; 6:37870. [PMID: 27892490 PMCID: PMC5124970 DOI: 10.1038/srep37870] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/28/2016] [Indexed: 11/29/2022] Open
Abstract
Olfactory receptors are believed to play a central role in insects host-seeking, mating, and ovipositing. On the basis of male and female antennal transcriptome of adult Apolygus lucorum, a total of 110 candidate A. lucorum odorant receptors (AlucOR) were identified in this study including five previously annotated AlucORs. All the sequences were validated by cloning and sequencing. Tissue expression profiles analysis by RT-PCR indicated most AlucORs were antennal highly expressed genes. The qPCR measurements further revealed 40 AlucORs were significantly higher in the antennae. One AlucOR was primarily expressed in the female antennae, while nine AlucORs exhibited male-biased expression patterns. Additionally, both the RPKM value and RT-qPCR analysis showed AlucOR83 and AlucOR21 were much higher abundant in male antennae than in female antennae, suggesting their different roles in chemoreception of gender. Phylogenetic analysis of ORs from several Hemipteran species demonstrated that most AlucORs had orthologous genes, and five AlucOR-specific clades were defined. In addition, a sub-clade of potential male-based sex pheromone receptors were also identified in the phylogenetic tree of AlucORs. Our results will facilitate the functional studies of AlucORs, and thereby provide a foundation for novel pest management approaches based on these genes.
Collapse
Affiliation(s)
- Xing-Kui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, 100193, China
| | - Liang Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, 100193, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Hang-Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, 100193, China
| | - Dan-Feng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, 100193, China
| | - Yu-Xiao Ding
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, 100193, China.,College of Agronomy, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Le-Mei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, 100193, China
| | - Yu-Yuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, 100193, China
| |
Collapse
|
41
|
Wang B, Liu Y, He K, Wang G. Comparison of research methods for functional characterization of insect olfactory receptors. Sci Rep 2016; 6:32806. [PMID: 27633402 PMCID: PMC5025650 DOI: 10.1038/srep32806] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Insect olfactory receptors (ORs) in the peripheral olfactory system play an important role detecting elements of information from the environment. At present, various approaches are used for deorphanizing of ORs in insect. In this study, we compared methods for functional analysis of ORs in vitro and in vivo taking the candidate pheromone receptor OR13 of Helicoverpa assulta (HassOR13) as the object of our experiments. We found that the natural system was more sensitive than those utilizing transgenic Drosophila. The two-electrode voltage-clamp recording is more suitable for functional screening of large numbers of ORs, while the in vivo transgenic Drosophila system could prove more accurate to further validate the function of a specific OR. We also found that, among the different solvents used to dissolve pheromones and odorants, hexane offered good reproducibility and high sensitivity. Finally, the function of ORs was indirectly confirmed in transgenic Drosophila, showing that odor-activation of ORs-expressing olfactory receptor neurons (ORNs) can mediate behavioral choices. In summary, our results compare advantages and drawbacks of different approaches, thus helping in the choice of the method most suitable, in each specific situation, for deorphanizing insect ORs.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
42
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
43
|
Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri. PLoS One 2016; 11:e0155323. [PMID: 27171401 PMCID: PMC4865182 DOI: 10.1371/journal.pone.0155323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/27/2016] [Indexed: 12/02/2022] Open
Abstract
Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri.
Collapse
|
44
|
Li XM, Zhu XY, Wang ZQ, Wang Y, He P, Chen G, Sun L, Deng DG, Zhang YN. Candidate chemosensory genes identified in Colaphellus bowringi by antennal transcriptome analysis. BMC Genomics 2015; 16:1028. [PMID: 26626891 PMCID: PMC4667470 DOI: 10.1186/s12864-015-2236-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/23/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Since chemosensory genes play key roles in insect behaviour, they can potentially be used as new targets for pest control. The cabbage beetle, Colaphellus bowringi, is a serious insect pest of cruciferous vegetables in China and other Asian countries. However, a systematic identification of the chemosensory genes expressed in the antennae has not been reported. RESULTS We assembled the antennal transcriptome of C. bowringi by using Illumina sequencing technology and identified 104 candidate chemosensory genes by analyzing transcriptomic data, which included transcripts encoding 26 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), 43 odorant receptors (ORs), nine ionotropic receptors (IRs), and ten gustatory receptors (GRs). The data obtained are similar to those found in other coleopteran species, suggesting that our approach successfully identified the chemosensory genes of C. bowringi. The expression patterns of 43 OR genes, some of which were predominately found in the antenna or associated with sex-biased expression, were analyzed using quantitative real time RT-PCR (qPCR). CONCLUSIONS Our study revealed that a large number of chemosensory genes are expressed in C. bowringi. These candidate chemosensory genes and their expression profiles in various tissues provide further information on understanding their function in C. bowringi as well as other insects, and identifying potential targets to disrupt the odorant system in C. bowringi so that new methods for pest management can be developed.
Collapse
Affiliation(s)
- Xiao-Ming Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Zhi-Qiang Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Yi Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Geng Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Liang Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Dao-Gui Deng
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
45
|
Gonzalez F, Bengtsson JM, Walker WB, Sousa MFR, Cattaneo AM, Montagné N, de Fouchier A, Anfora G, Jacquin-Joly E, Witzgall P, Ignell R, Bengtsson M. A Conserved Odorant Receptor Detects the Same 1-Indanone Analogs in a Tortricid and a Noctuid Moth. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Zhang YN, Zhu XY, Fang LP, He P, Wang ZQ, Chen G, Sun L, Ye ZF, Deng DG, Li JB. Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura. PLoS One 2015; 10:e0140019. [PMID: 26445454 PMCID: PMC4596838 DOI: 10.1371/journal.pone.0140019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022] Open
Abstract
Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Li-Ping Fang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhi-Qiang Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Geng Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Liang Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zhan-Feng Ye
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Dao-Gui Deng
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jin-Bu Li
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
47
|
Zhang DD, Löfstedt C. Moth pheromone receptors: gene sequences, function, and evolution. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00105] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
48
|
de Fouchier A, Sun X, Monsempes C, Mirabeau O, Jacquin-Joly E, Montagné N. Evolution of two receptors detecting the same pheromone compound in crop pest moths of the genus Spodoptera. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00095] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Lin X, Zhang Q, Wu Z, Du Y. Identification and Differential Expression of a Candidate Sex Pheromone Receptor in Natural Populations of Spodoptera litura. PLoS One 2015; 10:e0131407. [PMID: 26126192 PMCID: PMC4488349 DOI: 10.1371/journal.pone.0131407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/01/2015] [Indexed: 11/18/2022] Open
Abstract
Olfaction is primarily mediated by highly specific olfactory receptors (ORs), a subfamily of which are the pheromone receptors that play a key role in sexual communication and can contribute to reproductive isolation. Here we cloned and identified an olfactory receptor, SlituOR3 (Genbank NO. JN835270), from Spodoptera litura, to be the candidate pheromone receptor. It exhibited male-biased expression in the antennae, where they were localized at the base of sensilla trichoidea. Conserved orthologues of these receptors were found amongst known pheromone receptors within the Lepidoptera, and SlituOR3 were placed amongst a clade of candidate pheromone receptors in a phylogeny tree of insect ORs. SlituOR3 is required for the EAG responses to both Z9E11-14:OAc and Z9E12-14:OAc SlituOR3 showed differential expression in S. litura populations attracted to traps baited with a series of sex pheromone blends composed of different ratios of (9Z,11E)-tetradecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-tetradecadienyl acetate (Z9E12-14:OAc). The changes in the expression level of SlitOR3 and antennal responses after SlitOR3 silencing suggested that SlitOR3 is required for the sex pheromone signaling. We infer that variation in transcription levels of olfactory receptors may modulate sex pheromone perception in male moths and could affect both of pest control and monitoring efficiency by pheromone application after long time mass trapping with one particular ratio of blend in the field.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Arthropod Antennae/physiology
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- Female
- Gene Silencing
- Genes, Insect
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/physiology
- Male
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Tertiary
- Receptors, Odorant/chemistry
- Receptors, Odorant/genetics
- Receptors, Odorant/physiology
- Receptors, Pheromone/chemistry
- Receptors, Pheromone/genetics
- Receptors, Pheromone/physiology
- Sequence Homology, Amino Acid
- Sex Attractants/physiology
- Spodoptera/genetics
- Spodoptera/physiology
Collapse
Affiliation(s)
- Xinda Lin
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Qinhui Zhang
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongnan Wu
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongjun Du
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|