1
|
Yu YL, Ge J, Dong WQ, Chomicki G, Yang SL, Geng Y, Chen G. Aristolochia mimics stink bugs to repel vertebrate herbivores via TRPA1 activation. THE NEW PHYTOLOGIST 2024; 242:278-288. [PMID: 37984873 DOI: 10.1111/nph.19407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Mimicry is the phenomenon in which one species (the mimic) closely resembles another (the model), enhancing its own fitness by deceiving a third party into interacting with it as if it were the model. In plants, mimicry is used primarily to gain fitness by withholding rewards from mutualists or deterring herbivores cost-effectively. While extensive work has been documented on putative defence mimicry, limited investigation has been conducted in the field of chemical mimicry. In this study, we used field experiments, chemical analyses, behavioural assays, and electrophysiology, to test the hypothesis that the birthwort Aristolochia delavayi employs chemical mimicry by releasing leaf scent that closely resembles stink bug defensive compounds and repels vertebrate herbivores. We show that A. delavayi leaf scent is chemically and functionally similar to the generalized defensive volatiles of stink bugs and that the scent effectively deters vertebrate herbivores, likely through the activation of TRPA1 channels via (E)-2-alkenal compounds. This study provides an unequivocal example of chemical mimicry in plants, revealing intricate dynamics between plants and vertebrate herbivores. Our study underscores the potency of chemical volatiles in countering vertebrate herbivory, urging further research to uncover their potentially underestimated importance.
Collapse
Affiliation(s)
- Yu-Long Yu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jia Ge
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Wen-Qi Dong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Guillaume Chomicki
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Shi-Long Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Yupeng Geng
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
| | - Gao Chen
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
2
|
The human TRPA1 intrinsic cold and heat sensitivity involves separate channel structures beyond the N-ARD domain. Nat Commun 2022; 13:6113. [PMID: 36253390 PMCID: PMC9576766 DOI: 10.1038/s41467-022-33876-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1. In patch-clamp bilayer recordings, ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1, also lacking the S1-S4 voltage sensing-like domain (VSLD), gained sensitivity to cold but lost its heat sensitivity. In hTRPA1 intrinsic tryptophan fluorescence studies, cold and heat evoked rearrangement of VSLD and the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD). In whole-cell electrophysiology experiments, replacement of the CTD located cysteines 1021 and 1025 with alanine modulated hTRPA1 cold responses. It is proposed that hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.
Collapse
|
3
|
Moser AY, Brown WY, Bizo LA, Andrew NR, Taylor MK. Biosecurity Dogs Detect Live Insects after Training with Odor-Proxy Training Aids: Scent Extract and Dead Specimens. Chem Senses 2021; 45:179-186. [PMID: 31919506 DOI: 10.1093/chemse/bjaa001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Detector dogs could be trained to find invasive insect pests at borders before they establish in new areas. However, without access to the live insects themselves, odor training aids are needed to condition dogs to their scent. This proof-of-concept study assessed 2 potential training aids for insect detection: a scent extract and dead specimens of the target species. Using Musgraveia sulciventris (Hemiptera: Tessaratomidae) as an experimental model, gas chromatography-mass spectrometry (GC-MS) analyses were carried out to compare the chemical headspaces that make up the odors of live specimens and these 2 training aids. This was then followed by canine scent-detection testing to investigate biosecurity detector dogs' (n = 4) responses to training in an ecologically valid context. Both the scent extract and the dead specimens shared the majority of their volatile organic compounds (VOCs) with live insects. Of the dogs trained with scent extract (n = 2), both were able to detect the live insects accurately, and of those trained with dead specimens (n = 2), one detected the live insects accurately. These findings lend support for these training aids as odor-proxies for live insects-particularly scent extract, which is a relatively novel product with the potential for broad application to facilitate and improve insect-detection training.
Collapse
Affiliation(s)
- Ariella Y Moser
- Canine and Equine Research Group, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Wendy Y Brown
- Canine and Equine Research Group, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Lewis A Bizo
- School of Psychology, University of New England, Armidale, NSW, Australia
| | - Nigel R Andrew
- Insect Ecology Lab, Zoology, University of New England, Armidale, NSW, Australia
| | - Michelle K Taylor
- Chemistry, School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
4
|
Electrophile-Induced Conformational Switch of the Human TRPA1 Ion Channel Detected by Mass Spectrometry. Int J Mol Sci 2020; 21:ijms21186667. [PMID: 32933054 PMCID: PMC7555621 DOI: 10.3390/ijms21186667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/26/2023] Open
Abstract
The human Transient Receptor Potential A1 (hTRPA1) ion channel, also known as the wasabi receptor, acts as a biosensor of various potentially harmful stimuli. It is activated by a wide range of chemicals, including the electrophilic compound N-methylmaleimide (NMM), but the mechanism of activation is not fully understood. Here, we used mass spectrometry to map and quantify the covalent labeling in hTRPA1 at three different concentrations of NMM. A functional truncated version of hTRPA1 (Δ1-688 hTRPA1), lacking the large N-terminal ankyrin repeat domain (ARD), was also assessed in the same way. In the full length hTRPA1, the labeling of different cysteines ranged from nil up to 95% already at the lowest concentration of NMM, suggesting large differences in reactivity of the thiols. Most important, the labeling of some cysteine residues increased while others decreased with the concentration of NMM, both in the full length and the truncated protein. These findings indicate a conformational switch of the proteins, possibly associated with activation or desensitization of the ion channel. In addition, several lysines in the transmembrane domain and the proximal N-terminal region were labeled by NMM, raising the possibility that lysines are also key targets for electrophilic activation of hTRPA1.
Collapse
|
5
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
6
|
Herrmann AK, Wüllner V, Moos S, Graf J, Chen J, Kieseier B, Kurschus FC, Albrecht P, Vangheluwe P, Methner A. Dimethyl fumarate alters intracellular Ca 2+ handling in immune cells by redox-mediated pleiotropic effects. Free Radic Biol Med 2019; 141:338-347. [PMID: 31279969 DOI: 10.1016/j.freeradbiomed.2019.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Dimethyl fumarate (DMF) is widely used to treat the human autoimmune diseases multiple sclerosis (MS) and psoriasis. DMF causes short-term oxidative stress and activates the antioxidant response via the transcription factor Nrf2 but its immunosuppressive effect is not well understood. Immune cell activation depends on calcium signaling which itself is influenced by the cellular redox state. We therefore measured calcium, reactive oxygen species levels and glutathione content in lymphocytes from immunized mice before onset of experimental autoimmune encephalomyelitis, in peripheral blood mononuclear cells from MS patients treated with DMF, and in mouse splenocytes treated ex vivo with DMF. This demonstrated altered redox states and increased lymphocytic calcium levels in all model systems. DMF caused an immediate influx of calcium from the extracellular space, long-term increased cytosolic calcium levels and reduced calcium stored in intracellular stores. The DMF-elicited current had the electrophysiological characteristics of a transient receptor potential channel and the intracellular calcium levels were normalized by antagonists of TRPA1. Interestingly, the sarco/endoplasmic reticulum Ca2+-ATPase SERCA2b was downregulated but more active due to glutathionylation of the redox-sensitive cysteine 674. DMF therefore causes pleiotropic changes in cellular calcium homeostasis which are likely caused by redox-sensitive post-translational modifications. These changes probably contribute to its immunosuppressive effects.
Collapse
Affiliation(s)
- Ann-Kathrin Herrmann
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Verena Wüllner
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Sonja Moos
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Jonas Graf
- Dept. of Neurology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jialin Chen
- Dept. of Cellular and Molecular Medicine, KU Leuven, Leudven, Belgium
| | - Bernd Kieseier
- Dept. of Neurology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Florian C Kurschus
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Philipp Albrecht
- Dept. of Neurology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Peter Vangheluwe
- Dept. of Cellular and Molecular Medicine, KU Leuven, Leudven, Belgium
| | - Axel Methner
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, Germany.
| |
Collapse
|
7
|
Viana F. TRPA1 channels: molecular sentinels of cellular stress and tissue damage. J Physiol 2017; 594:4151-69. [PMID: 27079970 DOI: 10.1113/jp270935] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/31/2016] [Indexed: 01/08/2023] Open
Abstract
TRPA1 is a non-selective cation channel expressed in mammalian peripheral pain receptors, with a major role in chemonociception. TRPA1 has also been implicated in noxious cold and mechanical pain sensation. TRPA1 has an ancient origin and plays important functions in lower organisms, including thermotaxis, mechanotransduction and modulation of lifespan. Here we highlight the role of TRPA1 as a multipurpose sensor of harmful signals, including toxic bacterial products and UV light, and as a sensor of stress and tissue damage. Sensing roles span beyond the peripheral nervous system to include major barrier tissues: gut, skin and lung. Tissue injury, environmental irritants and microbial pathogens are danger signals that can threaten the health of organisms. These signals lead to the coordinated activation of the nociceptive and the innate immune system to provide a homeostatic response trying to re-establish physiological conditions including tissue repair. Activation of TRPA1 participates in protective neuroimmune interactions at multiple levels, sensing ROS and bacterial products and triggering the release of neuropeptides. However, an exaggerated response to danger signals is maladaptive and can lead to the development of chronic inflammatory conditions.
Collapse
Affiliation(s)
- Félix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| |
Collapse
|