1
|
Chen X, Yu N, Yang N, Zhang J, Chen J. Simultaneous determination of sixteen phthalic acid esters (PAEs) in soil and evaluation of matrix effect using a QuEChERS/GC/MS-internal standard method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51253-51266. [PMID: 39106010 DOI: 10.1007/s11356-024-34600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Phthalic acid esters (PAEs) are emerging pollutants that need to be analyzed precisely. Chromatography-based determination of PAE content in soils are frequently affected by matrix effect, which may limit the quantification of different kinds of PAEs from different types of soil. Here we optimized a QuEChERS protocol combined with gas chromatography-mass spectrometry (GC-MS) for simultaneous determination of 16 PAEs in different soils. PAEs in different type of soils (fluvo-aquic soil, red soil, and black soil) were extracted with acetonitrile followed by GC-MS detection based on quantitative ion internal standard method. All 16 PAEs showed excellent linear relationships with mass peak areas (R2 > 0.99). The limits of detection (LOD) and limits of quantitation (LOQ) of all the samples were in the range of 0.91-66.97 µg/kg and 2.7-200.9 µg/kg, respectively. The accurate test at 0.5, 0.1, and 1.0 mg/kg spiking level recorded recovery rate between 80.11% and 100.99% with relative standard deviations (RSDs) ranging from 0.37 to 8.50% in tested matrices. No significant matrix effect was observed for most tested PAEs. This is a simple method with high sensitivity and strong stability, which is suitable and reproducible for quantifying large number of PAEs in different types of soil.
Collapse
Affiliation(s)
- Xiaolong Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Ningwei Yu
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Nan Yang
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Jiahui Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Jian Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, 210014, China.
| |
Collapse
|
2
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
3
|
Baneshi M, Tonney-Gagne J, Halilu F, Pilavangan K, Sabu Abraham B, Prosser A, Kanchanadevi Marimuthu N, Kaliaperumal R, Britten AJ, Mkandawire M. Unpacking Phthalates from Obscurity in the Environment. Molecules 2023; 29:106. [PMID: 38202689 PMCID: PMC10780137 DOI: 10.3390/molecules29010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Phthalates (PAEs) are a group of synthetic esters of phthalic acid compounds mostly used as plasticizers in plastic materials but are widely applied in most industries and products. As plasticizers in plastic materials, they are not chemically bound to the polymeric matrix and easily leach out. Logically, PAEs should be prevalent in the environment, but their prevalence, transport, fate, and effects have been largely unknown until recently. This has been attributed, inter alia, to a lack of standardized analytical procedures for identifying them in complex matrices. Nevertheless, current advancements in analytical techniques facilitate the understanding of PAEs in the environment. It is now known that they can potentially impact ecological and human health adversely, leading to their categorization as endocrine-disrupting chemicals, carcinogenic, and liver- and kidney-failure-causing agents, which has landed them among contaminants of emerging concern (CECs). Thus, this review article reports and discusses the developments and advancements in PAEs' standard analytical methods, facilitating their emergence from obscurity. It further explores the opportunities, challenges, and limits of their advancements.
Collapse
Affiliation(s)
- Marzieh Baneshi
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Jamey Tonney-Gagne
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Fatima Halilu
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Kavya Pilavangan
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Ben Sabu Abraham
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
- Engineering Co-op Intern, Dalhousie University, 1334 Barrington Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - Ava Prosser
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Nikaran Kanchanadevi Marimuthu
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
- MITACS Globalink Intern, Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore 14, Tamil Nadu 641 014, India
| | - Rajendran Kaliaperumal
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Allen J. Britten
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Martin Mkandawire
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| |
Collapse
|
4
|
Labra-Vázquez P, Gressier M, Rioland G, Menu MJ. A review on solution- and vapor-responsive sensors for the detection of phthalates. Anal Chim Acta 2023; 1282:341828. [PMID: 37923401 DOI: 10.1016/j.aca.2023.341828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
Phthalic acid esters, largely referred to as phthalates, are today acknowledged as important pollutants used in the manufacture of polyvinyl chloride (PVC)-based plastics, whose use extends to almost every aspect of modern life. The risk of exposure to phthalates is particularly relevant as high concentrations are regularly found in drinking water, food-contact materials and medical devices, motivating an immense body of research devoted to methods for their detection in liquid samples. Conversely, phthalate vapors have only recently been acknowledged as potentially important atmospheric pollutants and as early fire indicators; additionally, deposition of these vapors can pose significant problems to the proper functioning of spacecraft and diverse on-board devices, leading to major space agencies recognizing the need of developing vapor-responsive phthalate sensors. In this manuscript we present a literature survey on solution- and vapor-responsive sensors and analytical assays for the detection of phthalates, providing a detailed analysis of a vast array of analytical data to offer a clear idea on the analytical performance (limits of detection and quantification, linear range) and advantages provided by each class of sensor covered in this review (electrochemical, optical and vapor-responsive) in the context of their potential real-life applications; the manuscript also gives detailed fundamental information on the various physicochemical responses exploited by these sensors and assays that could potentially be harnessed by new researchers entering the field.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France.
| | - Marie Gressier
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 31401, Toulouse, France
| | - Marie-Joëlle Menu
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France.
| |
Collapse
|
5
|
El-Sharif H, Patel S, Ndunda E, Reddy S. Electrochemical detection of dioctyl phthalate using molecularly imprinted polymer modified screen-printed electrodes. Anal Chim Acta 2022; 1196:339547. [DOI: 10.1016/j.aca.2022.339547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 11/01/2022]
|
6
|
Accelerated solvent extraction combined with GC–MS: A convenient technique for the determination and compound-specific stable isotope analysis of phthalates in mine tailings. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Singh G, Gollapalli R, Blinder A, Gallo F, Patel M. A case study demonstrating the migration of diethyl phthalate from an ancillary component to the drug product. J Pharm Biomed Anal 2019; 164:574-580. [PMID: 30466025 DOI: 10.1016/j.jpba.2018.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Phthalates are chemical compounds employed as plasticizers in the plastic industry and have been reported to migrate into drug products. The extent of their migration into the drug product depends upon various factors including the chemical nature of the migrant and the permeability of its packaging container. Migration of semi-volatile phthalates such as Diethyl phthalate (DEP) into drug products is often related to the primary and secondary packaging but due to its chemical nature, it could also migrate from an ancillary component. Therefore, it is not only important to screen the primary and secondary components, but also the ancillary materials that are used during the handling of drug products. In our study, we discovered an ancillary material (scotch tape) to be the source of DEP found in an ophthalmic drug product using orthogonal mass spectroscopy techniques (GC-MS and LC-MS). It is evident from our data that DEP migrated from the scotch tape into the drug product crossing the physical barriers provided by the primary (LDPE container closure system) and secondary packaging (carton and label). The tape was used as an ancillary material to wrap the packaged drug product units together for storage in the stability chamber. The primary and the secondary packaging of the drug product did not exhibit any traces of DEP. The aim of this report is to demonstrate how a chemical compound can migrate into the drug product from an ancillary source (which is not a part of its packaging) and adulterate a drug product. The impact of ancillary materials on drug products should be evaluated appropriately prior to their implementation.
Collapse
Affiliation(s)
- Gagandeep Singh
- Research and Development, Akorn Pharmaceuticals, 50 Lakeview Parkway, Suite 112, Vernon Hills, IL, 60061, USA.
| | - Ramarao Gollapalli
- Research and Development, Akorn Pharmaceuticals, 50 Lakeview Parkway, Suite 112, Vernon Hills, IL, 60061, USA
| | - Alejandro Blinder
- Research and Development, Akorn Pharmaceuticals, 50 Lakeview Parkway, Suite 112, Vernon Hills, IL, 60061, USA
| | - Felix Gallo
- Research and Development, Akorn Pharmaceuticals, 50 Lakeview Parkway, Suite 112, Vernon Hills, IL, 60061, USA
| | - Milan Patel
- Research and Development, Akorn Pharmaceuticals, 50 Lakeview Parkway, Suite 112, Vernon Hills, IL, 60061, USA
| |
Collapse
|
8
|
Eskandarpour N, Sereshti H. Electrospun polycaprolactam-manganese oxide fiber for headspace-solid phase microextraction of phthalate esters in water samples. CHEMOSPHERE 2018; 191:36-43. [PMID: 29028539 DOI: 10.1016/j.chemosphere.2017.10.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
The nanofibrous polycaprolactam (polyamide 6 (PA6)) incorporated with manganese oxide (MnO) nanoparticles was fabricated by electrospinning and used as a new fiber coating for headspace-solid phase microextraction (HS-SPME) of the selected phthalate esters (PEs) in water samples prior to GC-μECD. The adsorbent was fully characterized using scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). The main parameters that affect the HS-SPME efficiency such as extraction temperature, ionic strength, extraction and desorption times were investigated. The analytical figures of merit were obtained under the optimized conditions as follows: linear dynamic range (LDR), 0.500-5.00 × 102 ng mL-1; relative standard deviations (RSDs, n = 3), 1.86-10.9%; limits of detection (LODs), 0.0400-0.193 ng mL-1. The method was applied for determination of the target analytes in river water, bottled water, mineral water and soda samples and the relative recoveries were obtained between 90.3 and 107%.
Collapse
Affiliation(s)
| | - Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Determination of phthalates in food simulants and liquid samples using ultrasound-assisted dispersive liquid–liquid microextraction followed by solidification of floating organic drop. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Tsai CF, Hsieh TH, Lee JN, Hsu CY, Wang YC, Kuo KK, Wu HL, Chiu CC, Tsai EM, Kuo PL. Curcumin Suppresses Phthalate-Induced Metastasis and the Proportion of Cancer Stem Cell (CSC)-like Cells via the Inhibition of AhR/ERK/SK1 Signaling in Hepatocellular Carcinoma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10388-10398. [PMID: 26585812 DOI: 10.1021/acs.jafc.5b04415] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent evidence indicating that phthalates promote cancer development, including cell proliferation, migration, and invasion, has raised public health concerns. Here, we show that bis(2-ethylhexyl) phthalate promotes the migration, invasion, and epithelial-mesenchymal transition of hepatocellular carcinoma cells. In addition, bis(2-ethylhexyl) phthalate increased the proportion of cancer stem cell (CSC)-like cells and stemness maintenance in vitro as well as tumor growth and metastasis in vivo. The various activities of curcumin, including anticancer, anti-inflammation, antioxidation, and immunomodulation, have been investigated extensively. Curcumin suppressed phthalate-induced cell migration, invasion, and epithelial-mesenchymal transition, decreased the proportion of CSC-like cells in hepatocellular carcinoma cell lines in vitro, and inhibited tumor growth and metastasis in vivo. We also reveal that curcumin suppressed phthalate-induced migration, invasion, and CSC-like cell maintenance through inhibition of the aryl hydrocarbon receptor/ERK/SK1/S1P3 signaling pathway. Our results suggest that curcumin may be a potential antidote for phthalate-induced cancer progression.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
| | - Tsung-Hua Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
| | - Jau-Nan Lee
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital , Kaohsiung City 807, Taiwan
| | - Chia-Yi Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
| | - Yu-Chih Wang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital , Kaohsiung City 807, Taiwan
| | - Kung-Kai Kuo
- Division of Hepatobiliary Pancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University , Tainan 701, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital , Kaohsiung City 807, Taiwan
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Tuncel SG, Şenlik D. Determination of Phthalates in Milk by Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction and Gas Chromatography–Mass Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1098654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Net S, Delmont A, Sempéré R, Paluselli A, Ouddane B. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 515-516:162-180. [PMID: 25723871 DOI: 10.1016/j.scitotenv.2015.02.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
Because of their widespread application, phthalates or phthalic acid esters (PAEs) are ubiquitous in the environment. Their presence has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health, so their quantification has become a necessity. Various extraction procedures as well as gas/liquid chromatography and mass spectrometry detection techniques are found as suitable for reliable detection of such compounds. However, PAEs are ubiquitous in the laboratory environment including ambient air, reagents, sampling equipment, and various analytical devices, that induces difficult analysis of real samples with a low PAE background. Therefore, accurate PAE analysis in environmental matrices is a challenging task. This paper reviews the extensive literature data on the techniques for PAE quantification in natural media. Sampling, sample extraction/pretreatment and detection for quantifying PAEs in different environmental matrices (air, water, sludge, sediment and soil) have been reviewed and compared. The concept of "green analytical chemistry" for PAE determination is also discussed. Moreover useful information about the material preparation and the procedures of quality control and quality assurance are presented to overcome the problem of sample contamination and these encountered due to matrix effects in order to avoid overestimating PAE concentrations in the environment.
Collapse
Affiliation(s)
- Sopheak Net
- Université Lille 1, Laboratoire LASIR-UMR 8516 CNRS, Equipe Physico-chimie de l'Environnement, Cité Scientifique 59655 Villeneuve d'Ascq, France.
| | - Anne Delmont
- Aix-Marseille University, Mediterranean Institute of Oceanography (M I O), UM 110, 13288, Marseille, Cedex 9, Université de Toulon, 83957, CNRS/IRD, France
| | - Richard Sempéré
- Aix-Marseille University, Mediterranean Institute of Oceanography (M I O), UM 110, 13288, Marseille, Cedex 9, Université de Toulon, 83957, CNRS/IRD, France
| | - Andrea Paluselli
- Aix-Marseille University, Mediterranean Institute of Oceanography (M I O), UM 110, 13288, Marseille, Cedex 9, Université de Toulon, 83957, CNRS/IRD, France
| | - Baghdad Ouddane
- Université Lille 1, Laboratoire LASIR-UMR 8516 CNRS, Equipe Physico-chimie de l'Environnement, Cité Scientifique 59655 Villeneuve d'Ascq, France
| |
Collapse
|
13
|
Bernard L, Décaudin B, Lecoeur M, Richard D, Bourdeaux D, Cueff R, Sautou V. Analytical methods for the determination of DEHP plasticizer alternatives present in medical devices: a review. Talanta 2014; 129:39-54. [PMID: 25127563 DOI: 10.1016/j.talanta.2014.04.069] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023]
Abstract
Until 2010, diethylhexylphthalate (DEHP) was the plasticizer most commonly used to soften PVC medical devices (MDs), because of a good efficiency/cost ratio. In flexible plasticized PVC, phthalates are not chemically bound to PVC and they are released into the environment and thus may come into contact with patients. The European Directive 2007/47/CE, classified DEHP as a product with a toxicity risk and restricted its use in MDs. MD manufacturers were therefore forced to quickly find alternatives to DEHP to maintain the elasticity of PVC nutrition tubings, infusion sets and hemodialysis lines. Several replacement plasticizers, so-called "alternative to DEHP plasticizers" were incorporated into the MDs. Nowadays, the risk of exposure to these compounds for hospitalized patients, particularly in situations classified "at risk", has not yet been evaluated, because migrations studies, providing sufficient exposure and human toxicity data have not been performed. To assess the risk to patients of DEHP plasticizer alternatives, reliable analytical methods must be first developed in order to generate data that supports clinical studies being conducted in this area. After a brief introduction of the characteristics and toxicity of the selected plasticizers used currently in MDs, this review outlines recently analytical methods available to determine and quantify these plasticizers in several matrices, allowing the evaluation of potential risk and so risk management.
Collapse
Affiliation(s)
- L Bernard
- CHU Clermont-Ferrand, Pôle Pharmacie, Rue Montalembert, 63003 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, EA 4676 C-BIOSENSS, BP 10448, F-63000 Clermont-Ferrand, France.
| | - B Décaudin
- Université Lille Nord de France, EA4481, GRIIOT, BP83, 59006 Lille, France; CHRU Lille, Pharmacie, Avenue Oscar Lambret, 59037 Lille, France
| | - M Lecoeur
- Université Lille Nord de France, EA4481, GRIIOT, BP83, 59006 Lille, France
| | - D Richard
- CHU Clermont-Ferrand, Service de Pharmacologie (CREPTA), Rue Montalembert, 63003 Clermont-Ferrand, France
| | - D Bourdeaux
- CHU Clermont-Ferrand, Pôle Pharmacie, Rue Montalembert, 63003 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, EA 4676 C-BIOSENSS, BP 10448, F-63000 Clermont-Ferrand, France
| | - R Cueff
- Clermont Université, Université d'Auvergne, EA 4676 C-BIOSENSS, BP 10448, F-63000 Clermont-Ferrand, France
| | - V Sautou
- CHU Clermont-Ferrand, Pôle Pharmacie, Rue Montalembert, 63003 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, EA 4676 C-BIOSENSS, BP 10448, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
14
|
WANG NN, WANG HD, DING JH, OUYANG YZ, ZHU XB, CHEN HW. Detection of Plasticizers in Soil Using Surface Desorption Atmospheric Pressure Chemical Ionization Imaging Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(13)60724-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|