1
|
Ledger EVK, Massey RC. PBP4 is required for serum-induced cell wall thickening and antibiotic tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 2024:e0096124. [PMID: 39431816 DOI: 10.1128/aac.00961-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus responds to the host environment by synthesizing a thick peptidoglycan cell wall, which protects the bacterium from membrane-targeting antimicrobials and the immune response. However, the proteins required for this response were previously unknown. Here, we demonstrate by three independent approaches that the penicillin-binding protein PBP4 is crucial for serum-induced cell wall thickening. First, mutants lacking various non-essential cell wall synthesis enzymes were tested, revealing that a mutant lacking pbp4 was unable to generate a thick cell wall in serum. This resulted in reduced serum-induced tolerance of the pbp4 mutant toward the last resort antibiotic daptomycin relative to wild-type cells. Second, we found that serum-induced cell wall thickening occurred in each of a panel of 134 clinical bacteremia isolates, except for one strain with a naturally occurring mutation that results in an S140R substitution in the active site of PBP4. Finally, inhibition of PBP4 with cefoxitin prevented serum-induced cell wall thickening and the resulting antibiotic tolerance in the USA300 strain and clinical MRSA isolates. Together, this provides a rationale for combining daptomycin with cefoxitin, a PBP4 inhibitor, to potentially improve treatment outcomes for patients with invasive MRSA infections.
Collapse
Affiliation(s)
- Elizabeth V K Ledger
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Ruth C Massey
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Beadell B, Yamauchi J, Wong-Beringer A. Comparative in vitro efficacy of antibiotics against the intracellular reservoir of Staphylococcus aureus. J Antimicrob Chemother 2024; 79:2471-2478. [PMID: 39073778 PMCID: PMC11441993 DOI: 10.1093/jac/dkae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Staphylococcus aureus (SA) is a leading cause of bloodstream infection. The liver represents the sentinel immune organ for clearance of bloodstream pathogens and eradication of intracellular SA from liver-resident macrophages (Kupffer cells, KCs) eliminates the likely pathogenic reservoir that contributes to persistent bacteraemia. OBJECTIVES We assessed antimicrobial activity at phagolysosome-mimicking pH, intracellular penetration, and SA eradication within KCs in vitro for clinically prescribed antistaphylococcal agents alone or in combination: vancomycin, daptomycin, ceftaroline, ceftobiprole, oritavancin, oxacillin, cefazolin; rifampin and fosfomycin. METHODS pH-adjusted broth microdilution assays, intracellular bioaccumulation assays, and intracellular killing assays against clinical bloodstream isolates were performed using a murine KC line with study agents. RESULTS Rifampin and β-lactams exhibited enhanced activity [2- to 16-fold minimum inhibitory concentrations (MIC) decrease] at phagolysosomal pH while vancomycin, oritavancin, daptomycin and fosfomycin demonstrated reduced activity (2- to 32-fold MIC increase in order of least to greatest potency reduction). All agents evaluated had poor to modest intracellular to extracellular concentration ratios (0.024-7.8), with exceptions of rifampin and oritavancin (intracellular to extracellular ratios of 17.4 and 78.2, respectively). Finally, we showed that the first-line treatment for SA bacteraemia (SAB), vancomycin, performed worse than all other tested antibiotics in eradicating intracellular SA at human Cmax concentration (0.20 log cfu decrease), while oritavancin performed better than all other agents alone (2.05 versus 1.06-1.36 log cfu decrease). CONCLUSIONS Our findings raise concerns about the efficacy of commonly prescribed antibiotics against intracellular SA reservoirs and emphasize the need to consider targeting pathogen eradication from the liver to achieve early control of SAB.
Collapse
Affiliation(s)
- Brent Beadell
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Joe Yamauchi
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Annie Wong-Beringer
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Pharmacy, Huntington Hospital, Pasadena, CA, USA
| |
Collapse
|
3
|
Ferreira L, Pos E, Nogueira DR, Ferreira FP, Sousa R, Abreu MA. Antibiotics with antibiofilm activity - rifampicin and beyond. Front Microbiol 2024; 15:1435720. [PMID: 39268543 PMCID: PMC11391936 DOI: 10.3389/fmicb.2024.1435720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The management of prosthetic joint infections is a complex and multilayered process that is additionally complicated by the formation of bacterial biofilm. Foreign material provides the ideal grounds for the development of an intricate matrix that hinders treatment and creates a difficult environment for antibiotics to act. Surgical intervention is often warranted but requires appropriate adjunctive therapy. Despite available guidelines, several aspects of antibiotic therapy with antibiofilm activity lack clear definition. Given the escalating challenges posed by antimicrobial resistance, extended treatment durations, and tolerance issues, it is essential to ensure that antimicrobials with antibiofilm activity are both potent and diverse. Evidence of biofilm-active drugs is highlighted, and alternatives to classical regimens are further discussed.
Collapse
Affiliation(s)
- Luís Ferreira
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | - Ema Pos
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | | | - Filipa Pinto Ferreira
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | - Ricardo Sousa
- Department of Orthopaedic Surgery, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
- Grupo de Infeção Osteoarticular do Porto, Porto, Portugal
| | - Miguel Araújo Abreu
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
- Grupo de Infeção Osteoarticular do Porto, Porto, Portugal
| |
Collapse
|
4
|
Ledger EVK, Edwards AM. Host-induced cell wall remodeling impairs opsonophagocytosis of Staphylococcus aureus by neutrophils. mBio 2024; 15:e0164324. [PMID: 39041819 PMCID: PMC11323798 DOI: 10.1128/mbio.01643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus responds to the host environment by increasing the thickness of its cell wall. However, the impact of cell wall thickening on susceptibility to host defenses is unclear. Using bacteria incubated in human serum, we show that host-induced increases in cell wall thickness led to a reduction in the exposure of bound antibody and complement and a corresponding reduction in phagocytosis and killing by neutrophils. The exposure of opsonins bound to protein antigens or lipoteichoic acid (LTA) was most significantly reduced, while opsonization by IgG against wall teichoic acid or peptidoglycan was largely unaffected. Partial digestion of accumulated cell wall using the enzyme lysostaphin restored opsonin exposure and promoted phagocytosis and killing. Concordantly, the antibiotic fosfomycin inhibited cell wall remodeling and maintained the full susceptibility of S. aureus to opsonophagocytic killing by neutrophils. These findings reveal that host-induced changes to the S. aureus cell wall reduce the ability of the immune system to detect and kill this pathogen through reduced exposure of protein- and LTA-bound opsonins. IMPORTANCE Understanding how bacteria adapt to the host environment is critical in determining fundamental mechanisms of immune evasion, pathogenesis, and the identification of targets for new therapeutic approaches. Previous work demonstrated that Staphylococcus aureus remodels its cell envelope in response to host factors and we hypothesized that this may affect recognition by antibodies and thus killing by immune cells. As expected, incubation of S. aureus in human serum resulted in rapid binding of antibodies. However, as bacteria adapted to the serum, the increase in cell wall thickness resulted in a significant reduction in exposure of bound antibodies. This reduced antibody exposure, in turn, led to reduced killing by human neutrophils. Importantly, while antibodies bound to some cell surface structures became obscured, this was not the case for those bound to wall teichoic acid, which may have important implications for vaccine design.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Andrew M. Edwards
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Vitiello A, Rezza G, Silenzi A, Salzano A, Alise M, Boccellino MR, Ponzo A, Zovi A, Sabbatucci M. Therapeutic Strategies to Combat Increasing Rates of Multidrug Resistant Pathogens. Pharm Res 2024; 41:1557-1571. [PMID: 39107513 DOI: 10.1007/s11095-024-03756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/29/2024] [Indexed: 08/30/2024]
Abstract
The emergence of antimicrobic-resistant infectious pathogens and the consequent rising in the incidence and prevalence of demises caused by or associated to infections which are not sensitive to drug treatments is one of today's major global health challenges. Antimicrobial resistance (AMR) can bring to therapeutic failure, infection's persistence and risk of serious illness, in particular in vulnerable populations such as the elderly, patients with neoplastic diseases or the immunocompromised. It is assessed that AMR will induce until 10 million deaths per year by 2050, becoming the leading cause of disease-related deaths. The World Health Organisation (WHO) and the United Nations General Assembly urgently call for new measures to combat the phenomenon. Research and development of new antimicrobial agents has decreased due to market failure. However, promising results are coming from new alternative therapeutic strategies such as monoclonal antibodies, microbiome modulators, nanomaterial-based therapeutics, vaccines, and phages. This narrative review aimed to analyse the benefits and weaknesses of alternative therapeutic strategies to antibiotics which treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Antonio Vitiello
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Giovanni Rezza
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Andrea Silenzi
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Antonio Salzano
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Mosè Alise
- Directorate General of Animal Health and Veterinary Medicines, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | | | - Annarita Ponzo
- Department of Biology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Andrea Zovi
- Directorate General for Hygiene, Food Safety and Nutrition, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy.
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
6
|
Siedentop B, Kachalov VN, Witzany C, Egger M, Kouyos RD, Bonhoeffer S. The effect of combining antibiotics on resistance: A systematic review and meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.07.10.23292374. [PMID: 37503165 PMCID: PMC10370225 DOI: 10.1101/2023.07.10.23292374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
When and under which conditions antibiotic combination therapy decelerates rather than accelerates resistance evolution is not well understood. We examined the effect of combining antibiotics on within-patient resistance development across various bacterial pathogens and antibiotics. We searched CENTRAL, EMBASE and PubMed for (quasi)-randomised controlled trials (RCTs) published from database inception to November 24th, 2022. Trials comparing antibiotic treatments with different numbers of antibiotics were included. A patient was considered to have acquired resistance if, at the follow-up culture, a resistant bacterium (as defined by the study authors) was detected that had not been present in the baseline culture. We combined results using a random effects model and performed meta-regression and stratified analyses. The trials' risk of bias was assessed with the Cochrane tool. 42 trials were eligible and 29, including 5054 patients, were qualified for statistical analysis. In most trials, resistance development was not the primary outcome and studies lacked power. The combined odds ratio (OR) for the acquisition of resistance comparing the group with the higher number of antibiotics with the comparison group was 1.23 (95% CI 0.68-2.25), with substantial between-study heterogeneity (I 2 =77%). We identified tentative evidence for potential beneficial or detrimental effects of antibiotic combination therapy for specific pathogens or medical conditions. The evidence for combining a higher number of antibiotics compared to fewer from RCTs is scarce and overall, is compatible with both benefit or harm. Trials powered to detect differences in resistance development or well-designed observational studies are required to clarify the impact of combination therapy on resistance.
Collapse
Affiliation(s)
- Berit Siedentop
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Viacheslav N. Kachalov
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christopher Witzany
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Population Health Sciences, University of Bristol, Bristol, UK
- Centre for Infectious Disease Epidemiology and Research, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Roger D. Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
7
|
Biscarini S, Mangioni D, Bobbio C, Mela L, Alagna L, Baldelli S, Blasi F, Canetta C, Ceriotti F, Gori A, Grasselli G, Mariani B, Muscatello A, Cattaneo D, Bandera A. Adverse events during intravenous fosfomycin therapy in a real-life scenario. Risk factors and the potential role of therapeutic drug monitoring. BMC Infect Dis 2024; 24:650. [PMID: 38943088 PMCID: PMC11212171 DOI: 10.1186/s12879-024-09541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Intravenous fosfomycin (IVFOF) is gaining interest in severe infections. Its use may be limited by adverse events (AEs). Little experience exists on IVFOF therapeutic drug monitoring (TDM) in real-life setting. PATIENTS AND METHODS Retrospective study of patients receiving IVFOF for > 48 h at Policlinico Hospital (Milan, Italy) from 01/01/2019 to 01/01/2023. AEs associated to IVFOF graded CTCAE ≥ II were considered. Demographic and clinical risk factors for IVFOF-related AEs were analysed with simple and multivariable regression models. The determination of IVFOF TDM was made by a rapid ultraperformance liquid chromatography mass spectrometry method (LC-MS/MS) on plasma samples. The performance of TDM (trough levels (Cmin) in intermittent infusion, steady state levels (Css) in continuous infusion) in predicting AEs ≤ 5 days after its assessment was evaluated. RESULTS Two hundred and twenty-four patients were included. At IVFOF initiation, 81/224 (36.2%) patients were in ICU and 35/224 (15.7%) had septic shock. The most frequent infection site was the low respiratory tract (124/224, 55.4%). Ninety-five patients (42.4%) experienced ≥ 1AEs, with median time of 4.0 (2.0-7.0) days from IVFOF initiation. Hypernatremia was the most frequent AE (53/224, 23.7%). Therapy discontinuation due to AEs occurred in 38/224 (17.0%). ICU setting, low respiratory tract infections and septic shock resulted associated with AEs (RRadjusted 1.59 (95%CI:1.09-2.31), 1.46 (95%CI:1.03-2.07) and 1.73 (95%CI:1.27-2.37), respectively), while IVFOF daily dose did not. Of the 68 patients undergone IVFOF TDM, TDM values predicted overall AEs and hypernatremia with AUROC of 0.65 (95%CI:0.44-0.86) and 0.91 (95%CI:0.79-1.0) respectively for Cmin, 0.67 (95%CI:0.39-0.95) and 0.76 (95%CI:0.52-1.0) respectively for Css. CONCLUSIONS We provided real world data on the use of IVFOF-based regimens and associated AEs. IVFOF TDM deserves further research as it may represent a valid tool to predict AEs. KEY POINTS Real world data on intravenous fosfomycin for severe bacterial infections. AEs occurred in over 40% (therapy discontinuation in 17%) and were related to baseline clinical severity but not to fosfomycin dose. TDM showed promising results in predicting AEs.
Collapse
Affiliation(s)
- Simona Biscarini
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Davide Mangioni
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy.
| | - Chiara Bobbio
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Ludovica Mela
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Laura Alagna
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Sara Baldelli
- Pharmacology Unit, Clinical Chemistry Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Francesco Blasi
- Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore, Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ciro Canetta
- Acute Medical Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ferruccio Ceriotti
- Clinical Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Gori
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Infectious Diseases, ASST-Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anaesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bianca Mariani
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Dario Cattaneo
- Department of Infectious Diseases, ASST-Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Fowler VG, Das AF, Lipka-Diamond J, Ambler JE, Schuch R, Pomerantz R, Cassino C, Jáuregui-Peredo L, Moran GJ, Rupp ME, Lachiewicz AM, Kuti JL, Wise RA, Kaye KS, Zervos MJ, Nichols WG. Exebacase in Addition to Standard-of-Care Antibiotics for Staphylococcus aureus Bloodstream Infections and Right-Sided Infective Endocarditis: A Phase 3, Superiority-Design, Placebo-Controlled, Randomized Clinical Trial (DISRUPT). Clin Infect Dis 2024; 78:1473-1481. [PMID: 38297916 DOI: 10.1093/cid/ciae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Novel treatments are needed for Staphylococcus aureus bacteremia, particularly for methicillin-resistant S. aureus (MRSA). Exebacase is a first-in-class antistaphylococcal lysin that is rapidly bactericidal and synergizes with antibiotics. METHODS In Direct Lysis of Staph Aureus Resistant Pathogen Trial of Exebacase (DISRUPT), a superiority-design phase 3 study, patients with S. aureus bacteremia/endocarditis were randomly assigned to receive a single dose of intravenous exebacase or placebo in addition to standard-of-care antibiotics. The primary efficacy outcome was clinical response at day 14 in the MRSA population. RESULTS A total of 259 patients were randomized before the study was stopped for futility based on the recommendation of the unblinded Data Safety Monitoring Board. Clinical response rates at day 14 in the MRSA population (n = 97) were 50.0% (exebacase + antibiotics; 32/64) versus 60.6% (antibiotics alone; 20/33) (P = .392). Overall, rates of adverse events were similar across groups. No adverse events of hypersensitivity related to exebacase were reported. CONCLUSIONS Exebacase + antibiotics failed to improve clinical response at day 14 in patients with MRSA bacteremia/endocarditis. This result was unexpected based on phase 2 data that established proof-of-concept for exebacase + antibiotics in patients with MRSA bacteremia/endocarditis. In the antibiotics-alone group, the clinical response rate was higher than that seen in phase 2. Heterogeneity within the study population and a relatively small sample size in either the phase 2 or phase 3 studies may have increased the probability of imbalances in the multiple components of day 14 clinical outcome. This study provides lessons for future superiority studies in S. aureus bacteremia/endocarditis. Clinical Trials Registration.NCT04160468.
Collapse
Affiliation(s)
- Vance G Fowler
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Anita F Das
- AD Stat Consulting, Guerneville, California, USA
| | | | | | | | | | - Cara Cassino
- Stony Point Life Sciences Consulting, Benson, Vermont, USA
| | - Luis Jáuregui-Peredo
- Department of Medicine, Mercy Health-St. Vincent Medical Center, Toledo, Ohio, USA
| | - Gregory J Moran
- Department of Medicine, Olive View-UCLA Medical Center, Sylmar, California, USA
| | - Mark E Rupp
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anne M Lachiewicz
- Department of Medicine, University of North Carolina Health Care System, Chapel Hill, North Carolina, USA
| | - Joseph L Kuti
- Department of Medicine, Hartford Hospital, Hartford, Connecticut, USA
| | - Robert A Wise
- Department of Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| | - Keith S Kaye
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Marcus J Zervos
- Department of Medicine, Henry Ford Health System, Detroit, Michigan, USA
| | | |
Collapse
|
9
|
Volk CF, Proctor RA, Rose WE. The Complex Intracellular Lifecycle of Staphylococcus aureus Contributes to Reduced Antibiotic Efficacy and Persistent Bacteremia. Int J Mol Sci 2024; 25:6486. [PMID: 38928191 PMCID: PMC11203666 DOI: 10.3390/ijms25126486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Staphylococcus aureus bacteremia continues to be associated with significant morbidity and mortality, despite improvements in diagnostics and management. Persistent infections pose a major challenge to clinicians and have been consistently shown to increase the risk of mortality and other infectious complications. S. aureus, while typically not considered an intracellular pathogen, has been proven to utilize an intracellular niche, through several phenotypes including small colony variants, as a means for survival that has been linked to chronic, persistent, and recurrent infections. This intracellular persistence allows for protection from the host immune system and leads to reduced antibiotic efficacy through a variety of mechanisms. These include antimicrobial resistance, tolerance, and/or persistence in S. aureus that contribute to persistent bacteremia. This review will discuss the challenges associated with treating these complicated infections and the various methods that S. aureus uses to persist within the intracellular space.
Collapse
Affiliation(s)
- Cecilia F. Volk
- Pharmacy Practice and Translational Research Division, School of Pharmacy, Pharmacy University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Richard A. Proctor
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Warren E. Rose
- Pharmacy Practice and Translational Research Division, School of Pharmacy, Pharmacy University of Wisconsin-Madison, Madison, WI 53705, USA;
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
10
|
Leone S, Pezone I, Pisaturo M, McCaffery E, Alfieri A, Fiore M. Pharmacotherapies for multidrug-resistant gram-positive infections: current options and beyond. Expert Opin Pharmacother 2024; 25:1027-1037. [PMID: 38863433 DOI: 10.1080/14656566.2024.2367003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Infections due to multidrug-resistant organisms (MDRO) are a serious concern for public health with high morbidity and mortality. Though many antibiotics have been introduced to manage these infections, there are remaining concerns regarding the optimal management of Gram-positive MDROs. AREAS COVERED A literature search on the PubMed/Medline database was conducted. We applied no language and time limits for the search strategy. In this narrative review, we discuss the current options for managing Gram-positive MDROs as well as non-traditional antibacterial agents in development. EXPERT OPINION Despite their introduction more than 70 years ago, glycopeptides are still the cornerstone in treating Gram-positive infections: all registrative studies of new antibiotics have glycopeptides as control; these studies are designed as not inferior studies, therefore it is almost impossible to give recommendations other than the use of glycopeptides in the treatment of Gram-positive infections. The best evidence on treatments different from glycopeptides comes from post-hoc analysis and meta-analysis. Non-traditional antibacterial agents are being studied to aid in short and effective antibiotic therapies. The use of non-traditional antibacterial agents is not restricted to replacing traditional antibacterial agents with alternative therapies; instead, they should be used in combination with antibiotic therapies.
Collapse
Affiliation(s)
- Sebastiano Leone
- Division of Infectious Diseases, "San Giuseppe Moscati" Hospital, Avellino, Italy
| | - Ilaria Pezone
- Department of Pediatrics, "San Giuseppe Moscati" Hospital, Aversa CE, Italy
| | - Mariantonietta Pisaturo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Eleni McCaffery
- Department of Emergency Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Aniello Alfieri
- Department of Elective Surgery, Postoperative Intensive Care Unit and Hyperbaric Oxygen Therapy, A.O.R.N. Antonio Cardarelli, Naples, Italy
| | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
11
|
Hong Y, Chen Y, Zhang J, Zhang H, Wang Z, Zhao F, Sun L, Chen M, Zhu F, Zhuang H, Jiang S, Yu Y, Chen Y. Identification of the novel fosfomycin resistance gene fosSC in Staphylococcus capitis. Int J Antimicrob Agents 2024; 63:107162. [PMID: 38561093 DOI: 10.1016/j.ijantimicag.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Fosfomycin has regained attention for treating infections caused by methicillin-resistant Staphylococcus aureus and multidrug-resistant coagulase-negative staphylococci. In this research, our objective was to investigate the mechanisms underlying fosfomycin resistance in Staphylococcus capitis. METHODS The minimum inhibitory concentrations (MICs) of fosfomycin were assessed in 109 clinical S. capitis isolates by the agar dilution method. By cloning the fos-like genes into the shuttle vector, pTSSCm-Pcap, and observing the change in fosfomycin MICs, the gene function was verified. Core genome multilocus sequence typing and comparative genomics analysis were conducted to determine the population characteristics of S. capitis isolates and analyse the genetic environment of the fos-like genes. RESULTS We identified a novel fosfomycin resistance gene, fosSC, on the chromosome in 58 out of 109 (53.2%) S. capitis isolates. The deduced products of the fosSC genes shared 67.15-67.88% amino acid sequence identity with FosB. The RN-pT-fosSC transformants carrying fosSC showed a 512-fold increase in the fosfomycin MICs. The fosSC gene was embedded in a conserved genetic context, but IS431mec was located to the left of the fosSC gene in cluster L due to the insertion of staphylococcal cassette chromosome mec. CONCLUSIONS The chromosomal fosSC genes in some lineages of S. capitis explained their high-level fosfomycin resistance. Ongoing surveillance is crucial for monitoring the potential threat of horizontal transfer, which could be facilitated by the presence of mobile genetic elements surrounding the fosSC gene.
Collapse
Affiliation(s)
- Yueqin Hong
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyi Chen
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junxiong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Xihu District Center for Disease Control and Prevention of Hangzhou, Hangzhou, China
| | - Hao Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hemu Zhuang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Cabanilla MG, Bernauer ML, Atallah LM, Briski MJ, Koury J, Thompson CM, Rodriguez CN, Jakeman B, Byrd TF. Short versus long duration of ceftaroline combination therapy and outcomes in persistent or high-grade MRSA bacteremia: A retrospective single-center study. PLoS One 2024; 19:e0304103. [PMID: 38768130 PMCID: PMC11104650 DOI: 10.1371/journal.pone.0304103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is associated with high mortality rates. Despite antibiotic therapy, persistent bacteremia is challenging to treat. Combination therapy with ceftaroline has emerged as a potential treatment option; however, the optimal duration and clinical implications after bacteremia clearance are unknown. METHODS This retrospective cohort study examined patients with high-grade or persistent MRSA bacteremia who were treated with ceftaroline combination therapy at the University of New Mexico Hospital between January 2014 and June 2021. Patients were categorized into short- (<7 days) or long-duration (≥7 days) groups based on the duration of combination therapy after bacteremia clearance. Outcomes included 30-day all-cause mortality, bacteremia recurrence, post-bacteremia clearance length of stay, and adverse events. RESULTS A total of 32 patients were included in this study. The most common sources of bacteremia were bone/joint and endovascular (28.1%, 9/32 each). The median duration of combination therapy after clearance was seven days (IQR 2.8, 11). Patients in the long-duration group had a lower Charlson comorbidity index (1.0 vs 5.5, p = 0.017) than those in the short-duration group. After adjusting for confounders, there was no significant difference in the 30-day all-cause mortality between the groups (AOR 0.17, 95% CI 0.007-1.85, p = 0.18). No association was found between combination therapy duration and recurrence (OR 2.53, 95% CI 0.19-inf, p = 0.24) or adverse drug events (OR 3.46, 95% CI 0.39-74.86, p = 0.31). After controlling for total hospital length of stay, there was no significant difference in the post-bacteremia clearance length of stay between the two groups (p = 0.37). CONCLUSIONS Prolonging ceftaroline combination therapy after bacteremia clearance did not significantly improve outcomes in patients with persistent or high-grade MRSA bacteremia. The limitations of this study warrant cautious interpretation of its results. Larger studies are needed to determine the optimal duration and role of combination therapy for this difficult-to-treat infection.
Collapse
Affiliation(s)
- M. Gabriela Cabanilla
- Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Department of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | | | - Liana M. Atallah
- Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Matthew J. Briski
- Department of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Jason Koury
- Department of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Cecilia M. Thompson
- TriCore Reference Laboratories, Albuquerque, New Mexico, United States of America
| | - Chelsea N. Rodriguez
- Department of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Bernadette Jakeman
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - Thomas F. Byrd
- Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| |
Collapse
|
13
|
Petersiel N, Davis JS, Meagher N, Price DJ, Tong SYC. Combination of Antistaphylococcal β-Lactam With Standard Therapy Compared to Standard Therapy Alone for the Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia: A Post Hoc Analysis of the CAMERA2 Trial Using a Desirability of Outcome Ranking Approach. Open Forum Infect Dis 2024; 11:ofae181. [PMID: 38698894 PMCID: PMC11065345 DOI: 10.1093/ofid/ofae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
Background Desirability of outcome ranking (DOOR) is an emerging approach to clinical trial outcome measurement using an ordinal scale to incorporate efficacy and safety endpoints. Methods We applied a previously validated DOOR endpoint to a cohort of CAMERA2 trial participants with methicillin-resistant Staphylococcus aureus bacteremia (MRSAB). Participants were randomly assigned to standard therapy, or to standard therapy plus an antistaphylococcal β-lactam (combination therapy). Each participant was assigned a DOOR category, within which they were further ranked according to their hospital length of stay (LOS) and duration of intravenous antibiotic treatment. We calculated the probability and the generalized odds ratio of participants receiving combination therapy having worse outcomes than those receiving standard therapy. Results Participants assigned combination therapy had a 54.5% (95% confidence interval [CI], 48.9%-60.1%; P = .11) probability and a 1.2-fold odds (95% CI, .95-1.50; P = .12) of having a worse outcome than participants on standard therapy. When further ranked according to LOS and duration of antibiotic treatment, participants in the combination group had a 55.6% (95% CI, 49.5%-61.7%) and 55.3% (95% CI, 49.2%-61.4%) probability of having a worse outcome than participants in the standard treatment group, respectively. Conclusions When considering both efficacy and safety, treatment of MRSAB with a combination of standard therapy and a β-lactam likely results in a worse clinical outcome than standard therapy. However, a small benefit of combination therapy cannot be excluded. Most likely the toxicity of combination therapy outweighed any benefit from faster clearance of bacteremia.
Collapse
Affiliation(s)
- Neta Petersiel
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Joshua S Davis
- Devision of Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Niamh Meagher
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David J Price
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Steven Y C Tong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Donnelly J, McDermott H, Gash S, O'Connor C, O'Connell K, O'Donnell S, Dinesh B, Burns K, Fitzpatrick F. Getting to the heart of the matter-are two agents really better than one for the treatment of staphylococcal infective endocarditis? Int J Infect Dis 2024; 142:106975. [PMID: 38395218 DOI: 10.1016/j.ijid.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
The recently published European Society of Cardiology guidelines for infective endocarditis management recommends daptomycin combination therapy for the treatment of staphylococcal endocarditis in severe penicillin allergy, rather than daptomycin monotherapy. We discuss the evidence base behind this recommendation, highlighting concerns regarding the lack of robust clinical studies, increased cost and logistical considerations, and adverse effects of combination therapy. Although further studies are required to elucidate the role of combination vs monotherapy in these patients, we propose a pragmatic management approach to reduce the risk of adverse antimicrobial side effects and limit costs, while aiming to maintain treatment efficacy.
Collapse
Affiliation(s)
- James Donnelly
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland.
| | - Helene McDermott
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Sadhbh Gash
- Department of Pharmacy, Beaumont Hospital, Dublin, Ireland
| | - Ciara O'Connor
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Karina O'Connell
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland; Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinead O'Donnell
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland; Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Binu Dinesh
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland; Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Karen Burns
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland; Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fidelma Fitzpatrick
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland; Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
15
|
Omori K, Kitagawa H, Takada M, Maeda R, Nomura T, Kubo Y, Shigemoto N, Ohge H. Fosfomycin as salvage therapy for persistent methicillin-resistant Staphylococcus aureus bacteremia: A case series and review of the literature. J Infect Chemother 2024; 30:352-356. [PMID: 37922987 DOI: 10.1016/j.jiac.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia can be persistent and refractory; however, the optimal approach for its treatment has not been determined. Although fosfomycin (FOM) has been shown to have synergistic effects with anti-MRSA agents in vitro, clinical experience with FOM combination therapy is limited. Thus, we present cases of persistent MRSA bacteremia that improved with the addition of FOM. In case 1, a 48-year-old man with prosthetic vascular graft infection developed persistent MRSA bacteremia despite vancomycin (VCM) and daptomycin (DAP) administration. On day 46, after the first positive blood culture, we added FOM to DAP. The blood culture became negative on day 53. In case 2, an 85-year-old woman presented with pacemaker-related MRSA bacteremia. She was treated with VCM, followed by DAP and DAP plus rifampicin. However, the bacteremia persisted for 32 days because of difficulties in immediate pacemaker removal. After adding FOM to DAP, the blood culture became negative on day 38. In case 3, a 57-year-old woman developed persistent MRSA bacteremia due to pulmonary valve endocarditis and pulmonary artery thrombosis after total esophagectomy for esophageal cancer. The bacteremia continued for 50 days despite treatment with DAP, followed by VCM, VCM plus minocycline, DAP plus linezolid (LZD), and VCM plus LZD. She was managed conservatively because of surgical complications. After adding FOM to VCM on day 51, the blood culture became negative on day 58. FOM combination therapy may be effective in eliminating bacteria and can serve as salvage therapy for refractory MRSA bacteremia.
Collapse
Affiliation(s)
- Keitaro Omori
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan; Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Division of Infection Control, Hiroshima University Hospital, Hiroshima, Japan.
| | - Hiroki Kitagawa
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan; Division of Infection Control, Hiroshima University Hospital, Hiroshima, Japan; Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Takada
- Division of Pharmacy, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Ryuto Maeda
- Division of Pharmacy, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Toshihito Nomura
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan; Division of Infection Control, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuko Kubo
- Division of Infection Control, Hiroshima University Hospital, Hiroshima, Japan
| | - Norifumi Shigemoto
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan; Division of Infection Control, Hiroshima University Hospital, Hiroshima, Japan; Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Translational Research Center, Hiroshima University, Hiroshima, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan; Division of Infection Control, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
16
|
Tebano G, Zaghi I, Baldasso F, Calgarini C, Capozzi R, Salvadori C, Cricca M, Cristini F. Antibiotic Resistance to Molecules Commonly Prescribed for the Treatment of Antibiotic-Resistant Gram-Positive Pathogens: What Is Relevant for the Clinician? Pathogens 2024; 13:88. [PMID: 38276161 PMCID: PMC10819222 DOI: 10.3390/pathogens13010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Antibiotic resistance in Gram-positive pathogens is a relevant concern, particularly in the hospital setting. Several antibiotics are now available to treat these drug-resistant pathogens, such as daptomycin, dalbavancin, linezolid, tedizolid, ceftaroline, ceftobiprole, and fosfomycin. However, antibiotic resistance can also affect these newer molecules. Overall, this is not a frequent phenomenon, but it is a growing concern in some settings and can compromise the effectiveness of these molecules, leaving few therapeutic options. We reviewed the available evidence about the epidemiology of antibiotic resistance to these antibiotics and the main molecular mechanisms of resistance, particularly methicillin-resistant Sthaphylococcus aureus, methicillin-resistant coagulase-negative staphylococci, vancomycin-resistant Enterococcus faecium, and penicillin-resistant Streptococcus pneumoniae. We discussed the interpretation of susceptibility tests when minimum inhibitory concentrations are not available. We focused on the risk of the emergence of resistance during treatment, particularly for daptomycin and fosfomycin, and we discussed the strategies that can be implemented to reduce this phenomenon, which can lead to clinical failure despite appropriate antibiotic treatment. The judicious use of antibiotics, epidemiological surveillance, and infection control measures is essential to preserving the efficacy of these drugs.
Collapse
Affiliation(s)
- Gianpiero Tebano
- Infectious Diseases Unit, AUSL Romagna, Ravenna Hospital, 48121 Ravenna, Italy; (I.Z.); (C.C.); (C.S.)
| | - Irene Zaghi
- Infectious Diseases Unit, AUSL Romagna, Ravenna Hospital, 48121 Ravenna, Italy; (I.Z.); (C.C.); (C.S.)
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
| | - Francesco Baldasso
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, 47121 Forlì and Cesena, Italy; (F.B.); (R.C.); (F.C.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Chiara Calgarini
- Infectious Diseases Unit, AUSL Romagna, Ravenna Hospital, 48121 Ravenna, Italy; (I.Z.); (C.C.); (C.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Roberta Capozzi
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, 47121 Forlì and Cesena, Italy; (F.B.); (R.C.); (F.C.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Caterina Salvadori
- Infectious Diseases Unit, AUSL Romagna, Ravenna Hospital, 48121 Ravenna, Italy; (I.Z.); (C.C.); (C.S.)
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Francesco Cristini
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, 47121 Forlì and Cesena, Italy; (F.B.); (R.C.); (F.C.)
| |
Collapse
|
17
|
Bavaro DF, Belati A, Bussini L, Cento V, Diella L, Gatti M, Saracino A, Pea F, Viale P, Bartoletti M. Safety and effectiveness of fifth generation cephalosporins for the treatment of methicillin-resistant staphylococcus aureus bloodstream infections: a narrative review exploring past, present, and future. Expert Opin Drug Saf 2024; 23:9-36. [PMID: 38145925 DOI: 10.1080/14740338.2023.2299377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infection (BSI) is a major issue in healthcare, since it is often associated with endocarditis or deep site foci. Relevant morbidity and mortality associated with MRSA-BSIs forced the development of new antibiotic strategies; in particular, this review will focus the attention on fifth-generation cephalosporins (ceftaroline/ceftobiprole), that are the only ß-lactams active against MRSA. AREAS COVERED The review discusses the available randomized controlled trials and real-world observational studies conducted on safety and effectiveness of ceftaroline/ceftobiprole for the treatment of MRSA-BSIs. Finally, a proposal of MRSA-BSI treatment flowchart, based on fifth-generation cephalosporins, is described. EXPERT OPINION The use of anti-MRSA cephalosporins is an acceptable choice either in monotherapy or combination therapy for the treatment of MRSA-BSIs due to their relevant effectiveness and safety. Particularly, their use may be advisable in combination therapy in case of severe infections (including endocarditis or persistent bacteriemia) or in monotherapy in subjects at higher risk of drugs-induced toxicity with older regimens. On the contrary, caution should be taken in case of suspected/ascertained central nervous system infections due to inconsistent data regarding penetration of these drugs in cerebrospinal fluid and brain tissues.
Collapse
Affiliation(s)
- Davide Fiore Bavaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandra Belati
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Linda Bussini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valeria Cento
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Microbiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lucia Diella
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Annalisa Saracino
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
18
|
Oliva A, Cogliati Dezza F, Cancelli F, Curtolo A, Falletta A, Volpicelli L, Venditti M. New Antimicrobials and New Therapy Strategies for Endocarditis: Weapons That Should Be Defended. J Clin Med 2023; 12:7693. [PMID: 38137762 PMCID: PMC10743892 DOI: 10.3390/jcm12247693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The overall low-quality evidence concerning the clinical benefits of different antibiotic regimens for the treatment of infective endocarditis (IE), which has made it difficult to strongly support or reject any regimen of antibiotic therapy, has led to a discrepancy between the available guidelines and clinical practice. In this complex scenario, very recently published guidelines have attempted to fill this gap. Indeed, in recent years several antimicrobials have entered the market, including ceftobiprole, ceftaroline, and the long-acting lipoglycopeptides dalbavancin and oritavancin. Despite being approved for different indications, real-world data on their use for the treatment of IE, alone or in combination, has accumulated over time. Furthermore, an old antibiotic, fosfomycin, has gained renewed interest for the treatment of complicated infections such as IE. In this narrative review, we focused on new antimicrobials and therapeutic strategies that we believe may provide important contributions to the advancement of Gram-positive IE treatment, providing a summary of the current in vitro, in vivo, and clinical evidence supporting their use in clinical practice.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.C.D.); (F.C.); (A.C.); (A.F.); (L.V.); (M.V.)
| | | | | | | | | | | | | |
Collapse
|
19
|
Hackemann VCJ, Hagel S, Jandt KD, Rödel J, Löffler B, Tuchscherr L. The Controversial Effect of Antibiotics on Methicillin-Sensitive S. aureus: A Comparative In Vitro Study. Int J Mol Sci 2023; 24:16308. [PMID: 38003500 PMCID: PMC10671744 DOI: 10.3390/ijms242216308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Methicillin-sensitive Staphylococcus (S.) aureus (MSSA) bacteremia remains a global challenge, despite the availability of antibiotics. Primary treatments include β-lactam agents such as cefazolin and flucloxacillin. Ongoing discussions have focused on the potential synergistic effects of combining these agents with rifampicin or fosfomycin to combat infections associated with biofilm formation. Managing staphylococcal infections is challenging due to antibacterial resistance, biofilms, and S. aureus's ability to invade and replicate within host cells. Intracellular invasion shields the bacteria from antibacterial agents and the immune system, often leading to incomplete bacterial clearance and chronic infections. Additionally, S. aureus can assume a dormant phenotype, known as the small colony variant (SCV), further complicating eradication and promoting persistence. This study investigated the impact of antibiotic combinations on the persistence of S. aureus 6850 and its stable small colony variant (SCV strain JB1) focusing on intracellular survival and biofilm formation. The results from the wild-type strain 6850 demonstrate that β-lactams combined with RIF effectively eliminated biofilms and intracellular bacteria but tend to select for SCVs in planktonic culture and host cells. Higher antibiotic concentrations were associated with an increase in the zeta potential of S. aureus, suggesting reduced membrane permeability to antimicrobials. When using the stable SCV mutant strain JB1, antibiotic combinations with rifampicin successfully cleared planktonic bacteria and biofilms but failed to eradicate intracellular bacteria. Given these findings, it is reasonable to report that β-lactams combined with rifampicin represent the optimal treatment for MSSA bacteremia. However, caution is warranted when employing this treatment over an extended period, as it may elevate the risk of selecting for small colony variants (SCVs) and, consequently, promoting bacterial persistence.
Collapse
Affiliation(s)
| | - Stefan Hagel
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Klaus D Jandt
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743 Jena, Germany
| | - Jürgen Rödel
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Bettina Löffler
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Lorena Tuchscherr
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
20
|
Wang J, Xu X, Zhao X, Xu S, Wang M. hptA Mutation May Mediate Fosfomycin Resistance in Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Microb Drug Resist 2023; 29:497-503. [PMID: 37603296 DOI: 10.1089/mdr.2022.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Fosfomycin can be used alone or in combination to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. However, fosfomycin resistance has been observed in MRSA. In S. aureus, fosfomycin resistance is mediated by the fosfomycin-modifying enzyme FosB, or mutations in the target enzyme MurA. Mutations in the chromosomal glpT and uhpT genes, which encode fosfomycin transporters, also result in fosfomycin resistance. The three-component regulatory system HptRSA mediates the expression of uhpT and glpT in S. aureus. This study aimed to investigate the role of hptRSA mutation in fosfomycin resistance in MRSA clinical isolates. We found that hptRSA mutations were common in MRSA strains isolated from our hospital. Most mutations were amino acid substitutions and widely distributed in fosfomycin-sensitive and fosfomycin-resistant strains. However, HptA-truncated mutations were only found in fosB-negative fosfomycin-resistant strains with wild-type uhpT and glpT genes. Quantitative real-time PCR results showed that the transcription level of uhpT decreased by 13.7-25.6-fold in the HptA-truncated strains. Concordantly, the fosfomycin minimum inhibitory concentration (MIC) of HptA-truncated strains was 64-128 μg/mL, while SA240 was 2 μg/mL. The low transcription level of uhpT and high increase in MIC suggest that hptA mutation may lead to fosfomycin resistance in MRSA. We complemented hptA in one of the HptA-truncated clinical strains (SA179), showing reversal of fosfomycin resistance (from 128 to 32 μg/mL). Then we knocked out hptA in S. aureus Newman; fosfomycin MIC increased from 4 to 64 μg/mL, suggesting that HptA mutation may play an important role in fosfomycin resistance.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Su Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Delgado V, Ajmone Marsan N, de Waha S, Bonaros N, Brida M, Burri H, Caselli S, Doenst T, Ederhy S, Erba PA, Foldager D, Fosbøl EL, Kovac J, Mestres CA, Miller OI, Miro JM, Pazdernik M, Pizzi MN, Quintana E, Rasmussen TB, Ristić AD, Rodés-Cabau J, Sionis A, Zühlke LJ, Borger MA. 2023 ESC Guidelines for the management of endocarditis. Eur Heart J 2023; 44:3948-4042. [PMID: 37622656 DOI: 10.1093/eurheartj/ehad193] [Citation(s) in RCA: 284] [Impact Index Per Article: 284.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
22
|
Dotel R, Gilbert GL, Hutabarat SN, Davis JS, O'Sullivan MVN. Effectiveness of adjunctive rifampicin for treatment of Staphylococcus aureus bacteraemia: a systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother 2023; 78:2419-2427. [PMID: 37583062 DOI: 10.1093/jac/dkad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/24/2023] [Indexed: 08/17/2023] Open
Abstract
OBJECTIVES To assess whether the addition of rifampicin to conventional treatment of Staphylococcus aureus bacteraemia (SAB) reduces bacteriological or clinical failure or death. DATA SOURCES PubMed, Embase and Cochrane CENTRAL databases were searched from inception to 31 December 2022. Reference lists and PubMed citations of eligible studies were checked. REVIEW METHODS Two study authors independently identified randomized controlled trials (RCTs) involving adult participants with SAB, in which an intervention group received adjunctive rifampicin and the control group received usual care with or without a placebo. Dichotomous data (bacteriological and clinical failure and deaths) were analysed and pooled across studies using risk ratio (RR) with 95% confidence intervals (CI) using a Mantel-Haenszel random-effect model. The key variable of interest being whether rifampicin was used. RESULTS Six RCTs including 894 participants-of which 758 (85%) were from one trial-met the inclusion criteria. The addition of rifampicin to conventional treatment of SAB significantly reduced bacteriological failure by 59% (RR 0.41, 95% CI 0.21-0.81, I2 = 0%, number need to treat 27). However, it did not reduce clinical failure (RR 0.70, 95% CI 0.47-1.03, I2 = 0%) or deaths (RR 0.96, 95% CI 0.70-1.32, I2 = 0%). Further, it did not reduce the duration of bacteraemia, or the length of hospital stay. Adjunctive rifampicin reduced SAB recurrences (1% versus 4%, P = 0.01). Emergence of rifampicin resistance during treatment was uncommon (<1%). CONCLUSION Although adjunctive rifampicin reduced the risk of bacteriological failure and recurrences, we found no mortality benefit to support its use in SAB.
Collapse
Affiliation(s)
- R Dotel
- Department of Infectious Diseases, Blacktown Hospital, Sydney, New South Wales, Australia
| | - G L Gilbert
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - S N Hutabarat
- Department of Microbiology and Infectious Diseases, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - J S Davis
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- John Hunter Hospital, University of Newcastle, Newcastle, Australia
| | - M V N O'Sullivan
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Legg A, Davis JS, Roberts JA. Optimal drug therapy for Staphylococcus aureus bacteraemia in adults. Curr Opin Crit Care 2023; 29:446-456. [PMID: 37641503 DOI: 10.1097/mcc.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is a significant human pathogen, causing a variety of infections, from skin and soft tissue infections to endocarditis, bone and joint infections and deep tissue abscesses. Mortality from S. aureus bacteraemia remains high, without major therapeutic advances in recent decades. RECENT FINDINGS In recent years, optimized dosing of antibiotics is increasingly being recognized as a cornerstone of management for severe infections including S. aureus bacteraemia. This comprehensive review details the pharmacokinetics/pharmacodynamics (PK/PD) targets for commonly used antistaphylococcal antibiotics and the doses predicted to achieve them in clinical practice. Recent advances in dosing of teicoplanin and use of cefazolin in CNS infections and findings from combination therapy studies are discussed. Drug exposure relationships related to toxicity are also detailed. SUMMARY This review details the different PK/PD targets for drugs used to treat S. aureus bacteraemia and how to apply them in various scenarios. The drug doses that achieve them, and the risks of toxicity are also provided.
Collapse
Affiliation(s)
- Amy Legg
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Queensland
| | - Joshua S Davis
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory
- School of Medicine and Public Health, The University of Newcastle, Newcastle, New South Wales
| | - Jason A Roberts
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Queensland
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
| |
Collapse
|
24
|
Grillo S, Pujol M, Miró JM, López-Contreras J, Euba G, Gasch O, Boix-Palop L, Garcia-País MJ, Pérez-Rodríguez MT, Gomez-Zorrilla S, Oriol I, López-Cortés LE, Pedro-Botet ML, San-Juan R, Aguado JM, Gioia F, Iftimie S, Morata L, Jover-Sáenz A, García-Pardo G, Loeches B, Izquierdo-Cárdenas Á, Goikoetxea AJ, Gomila-Grange A, Dietl B, Berbel D, Videla S, Hereu P, Padullés A, Pallarès N, Tebé C, Cuervo G, Carratalà J. Cloxacillin plus fosfomycin versus cloxacillin alone for methicillin-susceptible Staphylococcus aureus bacteremia: a randomized trial. Nat Med 2023; 29:2518-2525. [PMID: 37783969 PMCID: PMC10579052 DOI: 10.1038/s41591-023-02569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
Treatment failure occurs in about 25% of patients with methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia. We assessed whether cloxacillin plus fosfomycin achieves better treatment success than cloxacillin alone in hospitalized adults with MSSA bacteremia. We conducted a multicenter, open-label, phase III-IV superiority randomized clinical trial. We randomly assigned patients (1:1) to receive 2 g of intravenous cloxacillin alone every 4 h or with 3 g of intravenous fosfomycin every 6 h for the initial 7 days. The primary endpoint was treatment success at day 7, a composite endpoint with the following criteria: patient alive, stable or with improved quick Sequential Organ Failure Assessment score, afebrile and with negative blood cultures for MSSA, adjudicated by an independent committee blinded to treatment allocation. We randomized 215 patients, of whom 105 received cloxacillin plus fosfomycin and 110 received cloxacillin alone. We analyzed the primary endpoint with the intention-to-treat approach in 214 patients who received at least 1 day of treatment. Treatment success at day 7 after randomization was achieved in 83 (79.8%) of 104 patients receiving combination treatment versus 82 (74.5%) of 110 patients receiving monotherapy (risk difference 5.3%; 95% confidence interval (CI), -5.95-16.48). Secondary endpoints, including mortality and adverse events, were similar in the two groups except for persistent bacteremia at day 3, which was less common in the combination arm. In a prespecified interim analysis, the independent committee recommended stopping recruitment for futility prior to meeting the planned randomization of 366 patients. Cloxacillin plus fosfomycin did not achieve better treatment success at day 7 of therapy than cloxacillin alone in MSSA bacteremia. Further trials should consider the intrinsic heterogeneity of the infection by using a more personalized approach. ClinicalTrials.gov registration: NCT03959345 .
Collapse
Grants
- Funding by Spanish Ministry of Health (grant PI17/01116), Instituto de Salud Carlos III, Madrid, Spain, and Laboratorios ERN, Barcelona, Spain (grant 19PNJ145). Spanish Clinical Research Network (SCReN), Instituto de Salud Carlos II, for its support through the projects PT17/0017/0010 and PT20/000008, integrated into the “Plan Estatal de I+D+I” 2013-2016 and co-financed by the European Regional Development Fund (FEDER).
- José María Miró received a personal 80:20 research grant from Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, during 2017–24. Oriol Gasch received a research grant from the “Pla estratègic de recerca i innovació en salut (PERIS) 2019-2021” (Departament de Salut. Generalitat de Catalunya).
Collapse
Affiliation(s)
- Sara Grillo
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Miquel Pujol
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Josep M Miró
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- University of Barcelona, Barcelona, Spain
- Department of Infectious Diseases, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joaquín López-Contreras
- Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain
| | - Gorane Euba
- Department of Infectious Diseases, Hospital Universitario Cruces, Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Oriol Gasch
- Department of Infectious Diseases, Hospital Universitari Parc Taulí, Sabadell, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Lucia Boix-Palop
- Department of Infectious Diseases, Hospital Universitari Mútua Terrassa, Terrassa, Spain
| | - Maria José Garcia-País
- Department of Internal Medicine, Hospital Universitario Lucus Augusti, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria Teresa Pérez-Rodríguez
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute, Vigo, Spain
| | - Silvia Gomez-Zorrilla
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Barcelona, Spain
| | - Isabel Oriol
- Department of Internal Medicine, Hospital de Sant Joan Despi Moises Broggi, Sant Joan Despi, Spain
| | - Luis Eduardo López-Cortés
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases and Microbiology Clinical Unit, University Hospital Virgen Macarena, Seville, Spain
- Department of Medicine, School of Medicine, University of Sevilla, Biomedicine Institute of Seville (IBiS)/CSIC, Seville, Spain
| | - Maria Luisa Pedro-Botet
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Rafael San-Juan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Francesca Gioia
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigacion Sanitaria, Madrid, Spain
| | - Simona Iftimie
- Institut d'Investigació Sanitària Pere Virgili, Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Reus, Spain
| | - Laura Morata
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- University of Barcelona, Barcelona, Spain
- Department of Infectious Diseases, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alfredo Jover-Sáenz
- Unidad Territorial Infección Nosocomial y Política Antibiòtica (UTIN), Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Graciano García-Pardo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- IISPV, Universitat Rovira i Virgili, Tarragona, Spain
- Grup de control de la Infecció, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Belén Loeches
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario La Paz, Madrid, Spain
| | - Álvaro Izquierdo-Cárdenas
- Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain
| | - Ane Josune Goikoetxea
- Department of Infectious Diseases, Hospital Universitario Cruces, Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Aina Gomila-Grange
- Department of Infectious Diseases, Hospital Universitari Parc Taulí, Sabadell, Spain
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Beatriz Dietl
- Department of Infectious Diseases, Hospital Universitari Mútua Terrassa, Terrassa, Spain
| | - Damaris Berbel
- Department of Microbiology and Parasitology, Hospital Universitari de Bellvitge (IDIBELL), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Sebastian Videla
- University of Barcelona, Barcelona, Spain
- Spanish Clinical Research Network (SCReN), Hospital Universitari de Bellvitge (IDIBELL), Barcelona, Spain
- Department of Clinical Pharmacology, Clinical Research and Clinical Trials Unit, Barcelona, Spain
| | - Pilar Hereu
- University of Barcelona, Barcelona, Spain
- Spanish Clinical Research Network (SCReN), Hospital Universitari de Bellvitge (IDIBELL), Barcelona, Spain
- Department of Clinical Pharmacology, Clinical Research and Clinical Trials Unit, Barcelona, Spain
| | - Ariadna Padullés
- Department of Pharmacy, Hospital Universitari de Bellvitge (IDIBELL), Barcelona, Spain
| | | | | | - Guillermo Cuervo
- Department of Infectious Diseases, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
| |
Collapse
|
25
|
Gatica S, Fuentes B, Rivera-Asín E, Ramírez-Céspedes P, Sepúlveda-Alfaro J, Catalán EA, Bueno SM, Kalergis AM, Simon F, Riedel CA, Melo-Gonzalez F. Novel evidence on sepsis-inducing pathogens: from laboratory to bedside. Front Microbiol 2023; 14:1198200. [PMID: 37426029 PMCID: PMC10327444 DOI: 10.3389/fmicb.2023.1198200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Sepsis is a life-threatening condition and a significant cause of preventable morbidity and mortality globally. Among the leading causative agents of sepsis are bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pyogenes, along with fungal pathogens of the Candida species. Here, we focus on evidence from human studies but also include in vitro and in vivo cellular and molecular evidence, exploring how bacterial and fungal pathogens are associated with bloodstream infection and sepsis. This review presents a narrative update on pathogen epidemiology, virulence factors, host factors of susceptibility, mechanisms of immunomodulation, current therapies, antibiotic resistance, and opportunities for diagnosis, prognosis, and therapeutics, through the perspective of bloodstream infection and sepsis. A list of curated novel host and pathogen factors, diagnostic and prognostic markers, and potential therapeutical targets to tackle sepsis from the research laboratory is presented. Further, we discuss the complex nature of sepsis depending on the sepsis-inducing pathogen and host susceptibility, the more common strains associated with severe pathology and how these aspects may impact in the management of the clinical presentation of sepsis.
Collapse
Affiliation(s)
- Sebastian Gatica
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Brandon Fuentes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Elizabeth Rivera-Asín
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paula Ramírez-Céspedes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A. Catalán
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A. Riedel
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
26
|
Han N, Li J, Zhao F, Li Y, Wang J, Dai X, Zeng D, Xiong W, Zeng Z. Isopropoxy Benzene Guanidine Ameliorates Streptococcus suis Infection In Vivo and In Vitro. Int J Mol Sci 2023; 24:ijms24087354. [PMID: 37108521 PMCID: PMC10138962 DOI: 10.3390/ijms24087354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Streptococcus suis, an encapsulated zoonotic pathogen, has been reported to cause a variety of infectious diseases, such as meningitis and streptococcal-toxic-shock-like syndrome. Increasing antimicrobial resistance has triggered the need for new treatments. In the present study, we found that isopropoxy benzene guanidine (IBG) significantly attenuated the effects caused by S. suis infection, in vivo and in vitro, by killing S. suis and reducing S. suis pathogenicity. Further studies showed that IBG disrupted the integrity of S. suis cell membranes and increased the permeability of S. suis cell membranes, leading to an imbalance in proton motive force and the accumulation of intracellular ATP. Meanwhile, IBG antagonized the hemolysis activity of suilysin and decreased the expression of Sly gene. In vivo, IBG improved the viability of S. suis SS3-infected mice by reducing tissue bacterial load. In conclusion, IBG is a promising compound for the treatment of S. suis infections, given its antibacterial and anti-hemolysis activity.
Collapse
Affiliation(s)
- Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Feifei Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yangyang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolan Dai
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Herrera-Hidalgo L, Fernández-Rubio B, Luque-Márquez R, López-Cortés LE, Gil-Navarro MV, de Alarcón A. Treatment of Enterococcus faecalis Infective Endocarditis: A Continuing Challenge. Antibiotics (Basel) 2023; 12:antibiotics12040704. [PMID: 37107066 PMCID: PMC10135260 DOI: 10.3390/antibiotics12040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Today, Enterococcus faecalis is one of the main causes of infective endocarditis in the world, generally affecting an elderly and fragile population, with a high mortality rate. Enterococci are partially resistant to many commonly used antimicrobial agents such as penicillin and ampicillin, as well as high-level resistance to most cephalosporins and sometimes carbapenems, because of low-affinity penicillin-binding proteins, that lead to an unacceptable number of therapeutic failures with monotherapy. For many years, the synergistic combination of penicillins and aminoglycosides has been the cornerstone of treatment, but the emergence of strains with high resistance to aminoglycosides led to the search for new alternatives, like dual beta-lactam therapy. The development of multi-drug resistant strains of Enterococcus faecium is a matter of considerable concern due to its probable spread to E. faecalis and have necessitated the search of new guidelines with the combination of daptomycin, fosfomycin or tigecycline. Some of them have scarce clinical experience and others are still under investigation and will be analyzed in this review. In addition, the need for prolonged treatment (6–8 weeks) to avoid relapses has forced to the consideration of other viable options as outpatient parenteral strategies, long-acting administrations with the new lipoglycopeptides (dalbavancin or oritavancin), and sequential oral treatments, which will also be discussed.
Collapse
Affiliation(s)
- Laura Herrera-Hidalgo
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología (UCEIMP) Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Beatriz Fernández-Rubio
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Rafael Luque-Márquez
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología (UCEIMP) Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Luis E. López-Cortés
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/SCIC/Universidad de Sevilla, 41009 Seville, Spain
| | - Maria V. Gil-Navarro
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Arístides de Alarcón
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología (UCEIMP) Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
28
|
Pallotto C, Bolla C, Penpa S, Genga G, Sarda C, Svizzeretto E, Tommasi A, Stolaj E, Salvaderi A, Piceni G, Maconi A, Chichino G, Francisci D. Adherence to 2015 ESC Guidelines for the Treatment of Infective Endocarditis: A Retrospective Multicentre Study (LEIOT Study). Antibiotics (Basel) 2023; 12:antibiotics12040705. [PMID: 37107067 PMCID: PMC10135336 DOI: 10.3390/antibiotics12040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Infective endocarditis (IE) is still a severe disease with elevated morbidity and mortality. Nevertheless, the last European guidelines (GL) date back to 2015, and a recent survey described a diffuse suboptimal adherence to their recommendations. Here, we described a real-life scenario about adherence to IE treatment GL. Methods: This was a retrospective, multicentric, case–control study. All the cases of IE admitted to our wards from 2016 to 2020 were enrolled. Patients were divided into two groups, according to the non-adherence (group A, cases) or adherence (group B, controls) to 2015 ESC guidelines. Only targeted treatments were considered. Groups were compared for demographic, clinical, microbiological, and laboratory data and outcome. As a post hoc analysis, we analysed the characteristics of deviations from the guidelines and how these deviations affected mortality. Results: A total of 246 patients were enrolled, with 128 (52%) in group A and 118 (48%) in group B. Groups were homogeneous except for aetiologies: staphylococcal and blood-culture-negative IE were more frequent in group A, while streptococcal and enterococcal IE were more frequent in group B (p < 0.001). In-hospital mortality was comparable in the two groups. The most frequent causes of deviations from the guidelines were use of daptomycin, in addition to standard treatments and the missing administration of rifampin or gentamycin. Conclusions: Adherence to 2015 ESC guidelines was limited but it did not affect mortality.
Collapse
Affiliation(s)
- Carlo Pallotto
- Infectious Diseases Clinic, Santa Maria della Misericordia Hospital, University of Perugia, 06100 Perugia, Italy
| | - Cesare Bolla
- Infectious Diseases, Department of Internal Medicine, Azienda Ospedaliera SS, Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Serena Penpa
- Research Training Innovation Infrastructure, Research and Innovation Department, Azienda Ospedaliera SS, Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Giovanni Genga
- Infectious Diseases Clinic, Santa Maria della Misericordia Hospital, University of Perugia, 06100 Perugia, Italy
| | - Cristina Sarda
- Infectious Diseases, Department of Internal Medicine, Azienda Ospedaliera SS, Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Elisabetta Svizzeretto
- Infectious Diseases Clinic, Santa Maria della Misericordia Hospital, University of Perugia, 06100 Perugia, Italy
| | - Andrea Tommasi
- Infectious Diseases Clinic, Santa Maria della Misericordia Hospital, University of Perugia, 06100 Perugia, Italy
| | - Elisa Stolaj
- Infectious Diseases Clinic, Santa Maria della Misericordia Hospital, University of Perugia, 06100 Perugia, Italy
| | - Andrea Salvaderi
- Infectious Diseases Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giorgia Piceni
- Research Training Innovation Infrastructure, Research and Innovation Department, Azienda Ospedaliera SS, Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Antonio Maconi
- Research Training Innovation Infrastructure, Research and Innovation Department, Azienda Ospedaliera SS, Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Guido Chichino
- Infectious Diseases, Department of Internal Medicine, Azienda Ospedaliera SS, Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Daniela Francisci
- Infectious Diseases Clinic, Santa Maria della Misericordia Hospital, University of Perugia, 06100 Perugia, Italy
| | | |
Collapse
|
29
|
Bonn CM, Rafiqullah IM, Crawford JA, Qian YM, Guthrie JL, Matuszewska M, Robinson DA, McGavin MJ. Repeated Emergence of Variant TetR Family Regulator, FarR, and Increased Resistance to Antimicrobial Unsaturated Fatty Acid among Clonal Complex 5 Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2023; 67:e0074922. [PMID: 36744906 PMCID: PMC10019231 DOI: 10.1128/aac.00749-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Resistance-nodulation-division (RND) superfamily efflux pumps promote antibiotic resistance in Gram-negative pathogens, but their role in Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) is undocumented. However, recent in vitro selections for resistance of S. aureus to an antimicrobial fatty acid, linoleic acid, and an antibiotic, rhodomyrtone, identified H121Y and C116R substitution variants, respectively, in a TetR family regulator, FarR, promoting increased expression of the RND pump FarE. Hypothesizing that in vivo selection pressures have also promoted the emergence of FarR variants, we searched available genome data and found that strains with FarRH121Y from human and bovine hosts have emerged sporadically in clonal complexes (CCs) CC1, CC30, CC8, CC22, and CC97, whereas multiple FarR variants have occurred within CC5 hospital-associated (HA)-MRSA. Of these, FarRE160G and FarRE93EE were exclusive to CC5, while FarRC116Y, FarRP165L, and FarRG166D also occurred in nonrelated CCs, primarily from bovine hosts. Within CC5, FarRC116Y and FarRG166D strains were polyphyletic, each exhibiting two emergence events. FarRC116Y and FarRE160G were individually sufficient to confer increased expression of FarE and enhanced resistance to linoleic acid (LA). Isolates with FarRE93EE were most closely related to S. aureus N315 MRSA and exhibited increased resistance independently of FarRE93EE. Accumulation of pseudogenes and additional polymorphisms in FarRE93EE strains contributed to a multiresistance phenotype which included fosfomycin and fusidic acid resistance in addition to increased linoleic acid resistance. These findings underscore the remarkable adaptive capacity of CC5 MRSA, which includes the polyphyletic USA100 lineage of HA-MRSA that is endemic in the Western hemisphere and known for the acquisition of multiple resistance phenotypes.
Collapse
Affiliation(s)
- Camryn M. Bonn
- Department of Microbiology, University of Western Ontario, London, Ontario, Canada
| | - Iftekhar M. Rafiqullah
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - John A. Crawford
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Yi Meng Qian
- Department of Microbiology, University of Western Ontario, London, Ontario, Canada
| | - Jennifer L. Guthrie
- Department of Microbiology, University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marta Matuszewska
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - D. Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Martin J. McGavin
- Department of Microbiology, University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
Zhou Y, Utama B, Pratap S, Supandy A, Song X, Tran TT, Mehta HH, Arias CA, Shamoo Y. Enolpyruvate transferase MurAA A149E, identified during adaptation of Enterococcus faecium to daptomycin, increases stability of MurAA-MurG interaction. J Biol Chem 2023; 299:102912. [PMID: 36649910 PMCID: PMC9975281 DOI: 10.1016/j.jbc.2023.102912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Daptomycin (DAP) is an antibiotic frequently used as a drug of last resort against vancomycin-resistant enterococci. One of the major challenges when using DAP against vancomycin-resistant enterococci is the emergence of resistance, which is mediated by the cell-envelope stress system LiaFSR. Indeed, inhibition of LiaFSR signaling has been suggested as a strategy to "resensitize" enterococci to DAP. In the absence of LiaFSR, alternative pathways mediating DAP resistance have been identified, including adaptive mutations in the enolpyruvate transferase MurAA (MurAAA149E), which catalyzes the first committed step in peptidoglycan biosynthesis; however, how these mutations confer resistance is unclear. Here, we investigated the biochemical basis for MurAAA149E-mediated adaptation to DAP to determine whether such an alternative pathway would undermine the potential efficacy of therapies that target the LiaFSR pathway. We found cells expressing MurAAA149E had increased susceptibility to glycoside hydrolases, consistent with decreased cell wall integrity. Furthermore, structure-function studies of MurAA and MurAAA149E using X-ray crystallography and biochemical analyses indicated only a modest decrease in MurAAA149E activity, but a 16-fold increase in affinity for MurG, which performs the last intracellular step of peptidoglycan synthesis. Exposure to DAP leads to mislocalization of cell division proteins including MurG. In Bacillus subtilis, MurAA and MurG colocalize at division septa and, thus, we propose MurAAA149E may contribute to DAP nonsusceptibility by increasing the stability of MurAA-MurG interactions to reduce DAP-induced mislocalization of these essential protein complexes.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Budi Utama
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | | | - Adeline Supandy
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Xinhao Song
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Truc T Tran
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Heer H Mehta
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Cesar A Arias
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA; Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, Texas, USA.
| |
Collapse
|
31
|
García de la Mària C, Cañas MA, Fernández-Pittol M, Dahl A, García-González J, Hernández-Meneses M, Cuervo G, Moreno A, Miró JM, Marco F. Emerging issues on Staphylococcus aureus endocarditis and the role in therapy of daptomycin plus fosfomycin. Expert Rev Anti Infect Ther 2023; 21:281-293. [PMID: 36744387 DOI: 10.1080/14787210.2023.2174969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Methicillin-resistant and -susceptible Staphylococcus aureus (MRSA/MSSA) infections are a major global health-care problem. Bacteremia with S. aureus exhibits high rates of morbidity and mortality and can cause complicated infections such as infective endocarditis (IE). The emerging resistance profile of S. aureus is worrisome, and several international agencies have appealed for new treatment approaches to be developed. AREAS COVERED Daptomycin presents a rapid bactericidal effect against MRSA and has been considered at least as effective as vancomycin in treating MRSA bacteremia. However, therapy failure is often related to deep-seated infections, e.g. endocarditis, with high bacterial inocula and daptomycin regimens <10 mg/kg/day. Current antibiotic options for treating invasive S. aureus infections have limitations in monotherapy. Daptomycin in combination with other antibiotics, e.g. fosfomycin, may be effective in improving clinical outcomes in patients with MRSA IE. EXPERT OPINION Exploring therapeutic combinations has shown fosfomycin to have a unique mechanism of action and to be the most effective option in preventing the onset of resistance to and optimizing the efficacy of daptomycin, suggesting the synergistic combination of fosfomycin with daptomycin is a useful alternative treatment option for MSSA or MRSA IE.
Collapse
Affiliation(s)
- Cristina García de la Mària
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Maria-Alexandra Cañas
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | | | - Anders Dahl
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain.,Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Javier García-González
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Marta Hernández-Meneses
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Guillermo Cuervo
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Asunción Moreno
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Jose M Miró
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain.,CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Marco
- Microbiology Department, Centre Diagnòstic Biomèdic (CDB) Hospital Clínic, Barcelona, Spain.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Ledger EVK, Edwards AM. Growth Arrest of Staphylococcus aureus Induces Daptomycin Tolerance via Cell Wall Remodelling. mBio 2023; 14:e0355822. [PMID: 36722949 PMCID: PMC9973334 DOI: 10.1128/mbio.03558-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Abstract
Almost all bactericidal drugs require bacterial replication and/or metabolic activity for their killing activity. When these processes are inhibited by bacteriostatic antibiotics, bacterial killing is significantly reduced. One notable exception is the lipopeptide antibiotic daptomycin, which has been reported to efficiently kill growth-arrested bacteria. However, these studies employed only short periods of growth arrest (<1 h), which may not fully represent the duration of growth arrest that can occur in vivo. We found that a growth inhibitory concentration of the protein synthesis inhibitor tetracycline led to a time-dependent induction of daptomycin tolerance in S. aureus, with an approximately 100,000-fold increase in survival after 16 h of growth arrest, relative to exponential-phase bacteria. Daptomycin tolerance required glucose and was associated with increased production of the cell wall polymers peptidoglycan and wall-teichoic acids. However, while the accumulation of peptidoglycan was required for daptomycin tolerance, only a low abundance of wall teichoic acid was necessary. Therefore, whereas tolerance to most antibiotics occurs passively due to a lack of metabolic activity and/or replication, daptomycin tolerance arises via active cell wall remodelling. IMPORTANCE Understanding why antibiotics sometimes fail to cure infections is fundamental to improving treatment outcomes. This is a major challenge when it comes to Staphylococcus aureus because this pathogen causes several different chronic or recurrent infections. Previous work has shown that a lack of replication, as often occurs during infection, makes bacteria tolerant of most bactericidal antibiotics. However, one antibiotic that has been reported to kill nonreplicating bacteria is daptomycin. In this work, we show that the growth arrest of S. aureus does in fact lead to daptomycin tolerance, but it requires time, nutrients, and biosynthetic pathways, making it distinct from other types of antibiotic tolerance that occur in nonreplicating bacteria.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Targeted Therapy of Severe Infections Caused by Staphylococcus aureus in Critically Ill Adult Patients: A Multidisciplinary Proposal of Therapeutic Algorithms Based on Real-World Evidence. Microorganisms 2023; 11:microorganisms11020394. [PMID: 36838359 PMCID: PMC9960997 DOI: 10.3390/microorganisms11020394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
(1) Introduction: To develop evidence-based algorithms for targeted antibiotic therapy of infections caused by Staphylococcus aureus in critically ill adult patients. (2) Methods: A multidisciplinary team of four experts had several rounds of assessment for developing algorithms concerning targeted antimicrobial therapy of severe infections caused by Staphylococcus aureus in critically ill patients. The literature search was performed by a researcher on PubMed-MEDLINE (until August 2022) to provide evidence for supporting therapeutic choices. Quality and strength of evidence was established according to a hierarchical scale of the study design. Two different algorithms were created, one for methicillin-susceptible Staphylococcus aureus (MSSA) and the other for methicillin-resistant Staphylococcus aureus (MRSA). The therapeutic options were categorized for each different site of infection and were selected also on the basis of pharmacokinetic/pharmacodynamic features. (3) Results: Cefazolin or oxacillin were the agents proposed for all of the different types of severe MSSA infections. The proposed targeted therapies for severe MRSA infections were different according to the infection site: daptomycin plus fosfomycin or ceftaroline or ceftobiprole for bloodstream infections, infective endocarditis, and/or infections associated with intracardiac/intravascular devices; ceftaroline or ceftobiprole for community-acquired pneumonia; linezolid alone or plus fosfomycin for infection-related ventilator-associated complications or for central nervous system infections; daptomycin alone or plus clindamycin for necrotizing skin and soft tissue infections. (4) Conclusions: We are confident that targeted therapies based on scientific evidence and optimization of the pharmacokinetic/pharmacodynamic features of antibiotic monotherapy or combo therapy may represent valuable strategies for treating MSSA and MRSA infections.
Collapse
|
34
|
Tseng TC, Chuang YC, Yang JL, Lin CY, Huang SH, Wang JT, Chen YC, Chang SC. The Combination of Daptomycin with Fosfomycin is More Effective than Daptomycin Alone in Reducing Mortality of Vancomycin-Resistant Enterococcal Bloodstream Infections: A Retrospective, Comparative Cohort Study. Infect Dis Ther 2023; 12:589-606. [PMID: 36629997 PMCID: PMC9925660 DOI: 10.1007/s40121-022-00754-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION High-dose daptomycin-based combinations are recommended for vancomycin-resistant Enterococcus (VRE) bloodstream infection (BSI). Preclinical data have shown a synergistic effect of daptomycin/fosfomycin combinations against VRE. However, clinical studies comparing daptomycin monotherapy with daptomycin/fosfomycin combinations are unavailable. METHODS An observational study of VRE-BSI was performed between 2010-2021 on patients receiving daptomycin monotherapy (≥ 8 mg/kg) or daptomycin combined with intravenous fosfomycin. Patients treated with concomitant β-lactam combinations were excluded. The primary outcome was in-hospital mortality. Outcomes were analyzed using multivariable logistic regression and augmented inverse probability weighting (AIPW) analyses. RESULTS Among 224 patients, 176 received daptomycin monotherapy, and 48 received fosfomycin combinations. The median daptomycin and fosfomycin doses were 9.8 mg/kg and 12 g/day, respectively. In-hospital mortality was 77.3% and 47.9% in the daptomycin monotherapy and fosfomycin combination groups (P < 0.001), respectively. Multivariable logistic regression analysis predicted lower mortality with fosfomycin combination treatment (adjusted odds ratio, 0.35; 95% confidence interval (CI), 0.17-0.73; P = 0.005). AIPW demonstrated a 17.8% reduced mortality with fosfomycin combinations (95% CI, - 30.6- - 4.9%; P = 0.007). The survival benefit was significant, especially among patients with a lower Pitt bacteremia score or fosfomycin minimum inhibitory concentration (MIC) ≤ 64 mg/l. Fosfomycin combination resulted in higher hypernatremia (10.4% vs. 2.8%, P = 0.04) and hypokalemia (33.3% vs. 15.3%, P = 0.009) compared to daptomycin monotherapy. CONCLUSION The combination of high-dose daptomycin with fosfomycin improved the survival rate of patients with VRE-BSI compared to daptomycin alone. The benefit of the combination was most pronounced for VRE with fosfomycin MIC ≤ 64 mg/l and for patients with a low Pitt bacteremia score.
Collapse
Affiliation(s)
- Tai-Chung Tseng
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan.
| | - Jia-Ling Yang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chi-Ying Lin
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Sung-Hsi Huang
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan
| |
Collapse
|
35
|
Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, Ribeiro VST. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics (Basel) 2023; 12:87. [PMID: 36671287 PMCID: PMC9854895 DOI: 10.3390/antibiotics12010087] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a microorganism frequently associated with implant-related infections, owing to its ability to produce biofilms. These infections are difficult to treat because antimicrobials must cross the biofilm to effectively inhibit bacterial growth. Although some antibiotics can penetrate the biofilm and reduce the bacterial load, it is important to understand that the results of routine sensitivity tests are not always valid for interpreting the activity of different drugs. In this review, a broad discussion on the genes involved in biofilm formation, quorum sensing, and antimicrobial activity in monotherapy and combination therapy is presented that should benefit researchers engaged in optimizing the treatment of infections associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Joao Paulo Telles
- AC Camargo Cancer Center, Infectious Diseases Department, São Paulo 01525-001, São Paulo, Brazil
| | - Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Nícolas Henrique Borges
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
36
|
Saravolatz LD, Pawlak J. In vitro activity of fosfomycin alone and in combination against Staphylococcus aureus with reduced susceptibility or resistance to methicillin, vancomycin, daptomycin or linezolid. J Antimicrob Chemother 2022; 78:238-241. [PMID: 36374572 DOI: 10.1093/jac/dkac380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To evaluate the activity of fosfomycin against a group of MRSA strains, including isolates with reduced susceptibility or resistance to vancomycin, daptomycin, linezolid and ceftaroline and to determine the effect of combining various combinations of antimicrobial agents used in the therapy of serious Gram-positive infections. METHODS Broth microdilution testing was used to determine the MICs of fosfomycin, vancomycin, daptomycin, linezolid, ceftaroline and cefazolin. Isolates were selected for further evaluations to determine in vitro synergy between fosfomycin and select antimicrobial agents using chequerboard broth microdilution testing. Fosfomycin was tested in combination with vancomycin, linezolid, daptomycin, ceftaroline and cefazolin. RESULTS Fosfomycin maintained activity against 100% of strains of vancomycin-resistant Staphylococcus aureus (VRSA) and linezolid-resistant S. aureus (LRSA), 86% of VISA and 95% of daptomycin-resistant S. aureus (DRSA) strains. The combination of fosfomycin with ceftaroline consistently demonstrated synergy among all 18 isolates against the strains tested. The next most potent combination regimen was linezolid with fosfomycin, which demonstrated synergy in 16 of the 18 strains. Daptomycin demonstrated synergy in only 7 of the 18 strains tested when combined with fosfomycin. Cefazolin demonstrated synergy in 6 of 6 strains and vancomycin demonstrated no interaction in 6 of 6 strains tested. CONCLUSIONS Fosfomycin demonstrated excellent activity against MRSA as well as isolates with resistance or reduced activity to other anti-MRSA drugs including vancomycin, daptomycin and linezolid. When combined with linezolid or daptomycin, fosfomycin demonstrated synergy for all or most strains tested. Thus, these combinations may have potential clinical utility when treating patients with serious infections caused by MRSA.
Collapse
Affiliation(s)
- Louis D Saravolatz
- Ascension St. John Hospital, Grosse Pointe Woods, MI, USA.,Thomas Mackey Center for Infectious Disease Research, Grosse Pointe Woods, MI, USA.,Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Joan Pawlak
- Ascension St. John Hospital, Grosse Pointe Woods, MI, USA.,Thomas Mackey Center for Infectious Disease Research, Grosse Pointe Woods, MI, USA.,Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| |
Collapse
|
37
|
Antonello RM, Canetti D, Riccardi N. Daptomycin synergistic properties from in vitro and in vivo studies: a systematic review. J Antimicrob Chemother 2022; 78:52-77. [PMID: 36227704 DOI: 10.1093/jac/dkac346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/21/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Daptomycin is a bactericidal lipopeptide antibiotic approved for the treatment of systemic infections (i.e. skin and soft tissue infections, bloodstream infections, infective endocarditis) caused by Gram-positive cocci. It is often prescribed in association with a partner drug to increase its bactericidal effect and to prevent the emergence of resistant strains during treatment; however, its synergistic properties are still under evaluation. METHODS We performed a systematic review to offer clinicians an updated overview of daptomycin synergistic properties from in vitro and in vivo studies. Moreover, we reported all in vitro and in vivo data evaluating daptomycin in combination with other antibiotic agents, subdivided by antibiotic classes, and a summary graph presenting the most favourable combinations at a glance. RESULTS A total of 92 studies and 1087 isolates (723 Staphylococcus aureus, 68 Staphylococcus epidermidis, 179 Enterococcus faecium, 105 Enterococcus faecalis, 12 Enterococcus durans) were included. Synergism accounted for 30.9% of total interactions, while indifferent effect was the most frequently observed interaction (41.9%). Antagonistic effect accounted for 0.7% of total interactions. The highest synergistic rates against S. aureus were observed with daptomycin in combination with fosfomycin (55.6%). For S. epidermidis and Enterococcus spp., the most effective combinations were daptomycin plus ceftobiprole (50%) and daptomycin plus fosfomycin (63.6%) or rifampicin (62.8%), respectively. FUTURE PERSPECTIVES We believe this systematic review could be useful for the future updates of guidelines on systemic infections where daptomycin plays a key role.
Collapse
Affiliation(s)
- Roberta Maria Antonello
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50121, Italy
| | - Diana Canetti
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Niccolò Riccardi
- Department of Clinical and Experimental Medicine, Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa 56124, Italy
| |
Collapse
|
38
|
Chen Y, Ji S, Sun L, Wang H, Zhu F, Chen M, Zhuang H, Wang Z, Jiang S, Yu Y, Chen Y. The novel fosfomycin resistance gene fosY is present on a genomic island in CC1 methicillin-resistant Staphylococcus aureus. Emerg Microbes Infect 2022; 11:1166-1173. [PMID: 35332834 PMCID: PMC9037201 DOI: 10.1080/22221751.2022.2058421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fosfomycin has gained attention as a combination therapy for methicillin-resistant Staphylococcus aureus infections. Hence, the detection of novel fosfomycin-resistance mechanisms in S. aureus is important. Here, the minimal inhibitory concentrations (MICs) of fosfomycin in CC1 methicillin-resistant S. aureus were determined. The pangenome analysis and comparative genomics were used to analyse CC1 MRSA. The gene function was confirmed by cloning the gene into pTXΔ. A phylogenetic tree was constructed to determine the clustering of the CC1 strains of S. aureus. We identified a novel gene, designated fosY, that confers fosfomycin resistance in S. aureus. The FosY protein is a putative bacillithiol transferase enzyme sharing 65.9-77.5% amino acid identity with FosB and FosD, respectively. The function of fosY in decreasing fosfomycin susceptibility was confirmed by cloning it into pTXΔ. The pTX-fosY transformant exhibited a 16-fold increase in fosfomycin MIC. The bioinformatic analysis showed that fosY is in a novel genomic island designated RIfosY (for "resistance island carrying fosY") that originated from other species. The global phylogenetic tree of ST1 MRSA displayed this fosY-positive ST1 clone, originating from different regions, in the same clade. The novel resistance gene in the fos family, fosY, and a genomic island, RIfosY, can promote cross-species gene transfer and confer resistance to CC1 MRSA causing the failure of clinical treatment. This emphasises the importance of genetic surveillance of resistance genes among MRSA isolates.
Collapse
Affiliation(s)
- Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
39
|
Ryder JH, Tong SYC, Gallagher JC, McDonald EG, Thevarajan I, Lee TC, Cortés-Penfield NW. Deconstructing the Dogma: Systematic Literature Review and Meta-analysis of Adjunctive Gentamicin and Rifampin in Staphylococcal Prosthetic Valve Endocarditis. Open Forum Infect Dis 2022; 9:ofac583. [PMID: 36408468 PMCID: PMC9669455 DOI: 10.1093/ofid/ofac583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Based primarily on in vitro and animal models, with little data directly addressing patient outcomes, current guidelines recommend treating staphylococcal prosthetic valve endocarditis (PVE) with antibiotic combinations including gentamicin and rifampin. Here, we synthesize the clinical data on adjunctive rifampin and gentamicin in staphylococcal PVE. METHODS We conducted a systematic review and meta-analysis of PubMed- and Cochrane-indexed studies reporting outcomes of staphylococcal PVE treated with adjunctive rifampin, gentamicin, both agents, or neither (ie, glycopeptide or β-lactam monotherapy). We recorded outcomes including mortality, relapsed infection, length of stay, nephrotoxicity, hepatotoxicity, and important drug-drug interactions (DDIs). RESULTS Four relevant studies were identified. Two studies (n = 117) suggested that adding gentamicin to rifampin-containing regimens did not reduce clinical failure (odds ratio [OR], 0.98 [95% confidence interval {CI}, .39-2.46]), and 2 studies (n = 201) suggested that adding rifampin to gentamicin-containing regimens did not reduce clinical failure (OR, 1.29 [95% CI, .71-2.33]). Neither gentamicin nor rifampin was associated with reduced infection relapse; 1 study found that rifampin treatment was associated with longer hospitalizations (mean, 31.3 vs 42.3 days; P < .001). Comparative safety outcomes were rarely reported, but 1 study found rifampin to be associated with hepatoxicity, nephrotoxicity, and DDIs, leading to treatment discontinuation in 31% of patients. CONCLUSIONS The existing clinical data do not suggest a benefit of either adjunctive gentamicin or rifampin in staphylococcal PVE. Given that other studies also suggest these agents add nephrotoxicity, hepatoxicity, and risk of DDIs without benefit in staphylococcal endovascular infections, we suggest that recommendations for gentamicin and rifampin in PVE be downgraded and primarily be used within the context of clinical trials.
Collapse
Affiliation(s)
- Jonathan H Ryder
- Correspondence: Jonathan H. Ryder, MD, University of Nebraska Medical Center, 985400 Nebraska Medical Center, Omaha, NE 68198 ()
| | - Steven Y C Tong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jason C Gallagher
- Department of Pharmacy Practice, Temple University, Philadelphia, Pennsylvania, USA
| | - Emily G McDonald
- Clinical Practice Assessment Unit, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Irani Thevarajan
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | | |
Collapse
|
40
|
Holland TL, Bayer AS, Fowler VG. Persistent Methicilin-Resistant Staphylococcus aureus Bacteremia: Resetting the Clock for Optimal Management. Clin Infect Dis 2022; 75:1668-1674. [PMID: 35535790 PMCID: PMC9617577 DOI: 10.1093/cid/ciac364] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 01/25/2023] Open
Abstract
A positive follow-up blood culture for methicillin-resistant Staphylococcus aureus (MRSA) while on seemingly appropriate therapy is a common and ominous development. However, the definition and management of persistent MRSA bacteremia is unstandardized. In this Opinion Paper, we identify the presence of bacteremia for > 1 calendar day as a "worry point" that should trigger an intensive diagnostic evaluation to identify metastatic infection sites. Next, we define the duration of MRSA bacteremia that likely constitutes antibiotic failure and outline a potential management algorithm for such patients. Finally, we propose pragmatic clinical trial designs to test treatment strategies for persistent MRSA bacteremia.
Collapse
Affiliation(s)
- Thomas L Holland
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Arnold S Bayer
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, California, USA
- The Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Vance G Fowler
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
41
|
The combination of daptomycin with β-lactam antibiotics is more effective than daptomycin alone for vancomycin-resistant Enterococcus faecium bloodstream infection. J Infect Public Health 2022; 15:1396-1402. [DOI: 10.1016/j.jiph.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
|
42
|
Abstract
PURPOSE OF REVIEW To review recently published evidence relevant to Staphylococcus aureus bacteremia (SAB). RECENT FINDINGS Staphylococcus aureus is the most common pathogen causing co-infections and superinfections in patients with COVID-19. Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia ratios have sharply risen during the pandemic. SAB mortality is 18% at 1 month and 27% at 3 months but has gradually decreased over the last 30 years. Recurrences and reinfections are common (9%). Standardised items to define complicated SAB, and a new cut-off defining persisting bacteremia after 2 days with positive blood cultures have been proposed. Multiple antibiotic combinations have been trialled including vancomycin or daptomycin with β-lactams, fosfomycin, or clindamycin, without significant results. In the recently published guidelines, vancomycin remains the first line of treatment for MRSA bacteremia. For the management of methicillin-susceptible Staphylococcus aureus , cefazolin less frequently causes acute kidney injury than flucloxacillin, and when susceptibility is demonstrated, de-escalation to penicillin G is suggested. SUMMARY Our review confirms that Staphylococcus aureus represents a special aetiology among all causes of bloodstream infections. Pending results of platform and larger trials, its distinct epidemiology and determinants mandate careful integration of clinical variables and best available evidence to optimize patient outcomes.
Collapse
Affiliation(s)
- Alexis Tabah
- Intensive Care Unit, Redcliffe Hospital, Metro North Hospital and Health Services
- Queensland University of Technology
- Faculty of Medicine, University of Queensland
| | - Kevin B Laupland
- Queensland University of Technology
- Department of Intensive Care Services, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
43
|
Tiseo G, Brigante G, Giacobbe DR, Maraolo AE, Gona F, Falcone M, Giannella M, Grossi P, Pea F, Rossolini GM, Sanguinetti M, Sarti M, Scarparo C, Tumbarello M, Venditti M, Viale P, Bassetti M, Luzzaro F, Menichetti F, Stefani S, Tinelli M. Diagnosis and management of infections caused by multidrug-resistant bacteria: guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int J Antimicrob Agents 2022; 60:106611. [PMID: 35697179 DOI: 10.1016/j.ijantimicag.2022.106611] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 02/08/2023]
Abstract
Management of patients with infections caused by multidrug-resistant organisms is challenging and requires a multidisciplinary approach to achieve successful clinical outcomes. The aim of this paper is to provide recommendations for the diagnosis and optimal management of these infections, with a focus on targeted antibiotic therapy. The document was produced by a panel of experts nominated by the five endorsing Italian societies, namely the Italian Association of Clinical Microbiologists (AMCLI), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Society of Microbiology (SIM), the Italian Society of Infectious and Tropical Diseases (SIMIT) and the Italian Society of Anti-Infective Therapy (SITA). Population, Intervention, Comparison and Outcomes (PICO) questions about microbiological diagnosis, pharmacological strategies and targeted antibiotic therapy were addressed for the following pathogens: carbapenem-resistant Enterobacterales; carbapenem-resistant Pseudomonas aeruginosa; carbapenem-resistant Acinetobacter baumannii; and methicillin-resistant Staphylococcus aureus. A systematic review of the literature published from January 2011 to November 2020 was guided by the PICO strategy. As data from randomised controlled trials (RCTs) were expected to be limited, observational studies were also reviewed. The certainty of evidence was classified using the GRADE approach. Recommendations were classified as strong or conditional. Detailed recommendations were formulated for each pathogen. The majority of available RCTs have serious risk of bias, and many observational studies have several limitations, including small sample size, retrospective design and presence of confounders. Thus, some recommendations are based on low or very-low certainty of evidence. Importantly, these recommendations should be continually updated to reflect emerging evidence from clinical studies and real-world experience.
Collapse
Affiliation(s)
- Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Gioconda Brigante
- Clinical Pathology Laboratory, ASST Valle Olona, Busto Arsizio, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Floriana Gona
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Maddalena Giannella
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy, and Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Largo 'A. Gemelli', Rome, Italy
| | - Mario Sarti
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Scarparo
- Clinical Microbiology Laboratory, Angel's Hospital, AULSS3 Serenissima, Mestre, Venice, Italy
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mario Venditti
- Policlinico 'Umberto I', Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Rome, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Francesco Menichetti
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy.
| | - Stefania Stefani
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Marco Tinelli
- Infectious Diseases Consultation Service, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
44
|
Ledger EVK, Mesnage S, Edwards AM. Human serum triggers antibiotic tolerance in Staphylococcus aureus. Nat Commun 2022; 13:2041. [PMID: 35440121 PMCID: PMC9018823 DOI: 10.1038/s41467-022-29717-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus frequently causes infections that are challenging to treat, leading to high rates of persistent and relapsing infection. Here, to understand how the host environment influences treatment outcomes, we study the impact of human serum on staphylococcal antibiotic susceptibility. We show that serum triggers a high degree of tolerance to the lipopeptide antibiotic daptomycin and several other classes of antibiotic. Serum-induced daptomycin tolerance is due to two independent mechanisms. Firstly, the host defence peptide LL-37 induces tolerance by triggering the staphylococcal GraRS two-component system, leading to increased peptidoglycan accumulation. Secondly, GraRS-independent increases in membrane cardiolipin abundance are required for full tolerance. When both mechanisms are blocked, S. aureus incubated in serum is as susceptible to daptomycin as when grown in laboratory media. Our work demonstrates that host factors can significantly modulate antibiotic susceptibility via diverse mechanisms, and combination therapy may provide a way to mitigate this.
Collapse
Affiliation(s)
- Elizabeth V K Ledger
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| | - Stéphane Mesnage
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK.
| |
Collapse
|
45
|
Giacobbe DR, Dettori S, Corcione S, Vena A, Sepulcri C, Maraolo AE, De Rosa FG, Bassetti M. Emerging Treatment Options for Acute Bacterial Skin and Skin Structure Infections and Bloodstream Infections Caused by Staphylococcus aureus: A Comprehensive Review of the Evidence. Infect Drug Resist 2022; 15:2137-2157. [PMID: 35498629 PMCID: PMC9041368 DOI: 10.2147/idr.s318322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniele Roberto Giacobbe
- Clinica Malattie Infettive, Ospedale Policlinico San Martino – IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
- Correspondence: Daniele Roberto Giacobbe, Clinica Malattie Infettive, Ospedale Policlinico San Martino – IRCCS, L.go R. Benzi 10, Genoa, 16132, Italy, Tel +390105554658, Email
| | - Silvia Dettori
- Clinica Malattie Infettive, Ospedale Policlinico San Martino – IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Division of Infectious Diseases, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Antonio Vena
- Clinica Malattie Infettive, Ospedale Policlinico San Martino – IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Chiara Sepulcri
- Clinica Malattie Infettive, Ospedale Policlinico San Martino – IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, Division of Infectious Diseases, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Matteo Bassetti
- Clinica Malattie Infettive, Ospedale Policlinico San Martino – IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
46
|
Burgin DJ, Liu R, Hsieh RC, Heinzinger LR, Otto M. Investigational agents for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: progress in clinical trials. Expert Opin Investig Drugs 2022; 31:263-279. [PMID: 35129409 PMCID: PMC10988647 DOI: 10.1080/13543784.2022.2040015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Bacteremia caused by Staphylococcus aureus is common. Cases caused by methicillin-resistant S. aureus (MRSA) are particularly formidable and often lethal. The mortality associated with MRSA bacteremia has not significantly decreased over the past couple of decades and concerns regarding efficacy and toxicity of standard therapy highlight the need for novel agents and new therapeutic approaches. AREAS COVERED This paper explores clinical trials investigating novel therapeutic approaches to S. aureus bacteremia. There is a special focus on MRSA bacteremia. Monotherapy and combination therapies and novel antimicrobials and adjunctive therapies that are only recently being established for therapeutic use are discussed. EXPERT OPINION The unfavorable safety profile of combination antimicrobial therapy in clinical trials has outweighed its benefits. Therefore, future investigation should focus on optimizing duration and de-escalation protocols. Antibody and bacteriophage lysin-based candidates have mostly been limited to safety trials, but progress with these agents is demonstrated through a lysin-based agent receiving a phase III trial. Antibiotics indicated for use in treating MRSA skin infections see continued investigation as treatments for MRSA bacteremia despite the difficulty of completing trials in this patient population. Promising agents include dalbavancin, ceftobiprole, ceftaroline, and exebacase.
Collapse
Affiliation(s)
- Dylan J. Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Roger C. Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lauren R. Heinzinger
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
47
|
Alhadrami HA, Abdulaal WH, Hassan HM, Alhakamy NA, Sayed AM. In Silico-Based Discovery of Natural Anthraquinones with Potential against Multidrug-Resistant E. coli. Pharmaceuticals (Basel) 2022; 15:ph15010086. [PMID: 35056143 PMCID: PMC8778091 DOI: 10.3390/ph15010086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/21/2023] Open
Abstract
E. coli is a Gram-negative bacterium that causes different human infections. Additionally, it resists common antibiotics due to its outer protective membrane. Natural products have been proven to be efficient antibiotics. However, plant natural products are far less explored in this regard. Accordingly, over 16,000 structures covering almost all African medicinal plants in AfroDb in a structural-based virtual screening were used to find efficient anti-E. coli candidates. These drug-like structures were docked into the active sites of two important molecular targets (i.e., E. coli’s Ddl-B and Gyr-B). The top-scoring hits (i.e., got docking scores < −10 kcal/mol) produced in the initial virtual screening (0.15% of the database structures for Ddl-B and 0.17% of the database structures for Gyr-B in the database) were further refined using molecular dynamic simulation-based binding free energy (ΔG) calculation. Anthraquinones were found to prevail among the retrieved hits. Accordingly, readily available anthraquinone derivatives (10 hits) were selected, prepared, and tested in vitro against Ddl-B, Gyr-B, multidrug-resistant (MDR) E. coli, MRSA, and VRSA. A number of the tested derivatives demonstrated strong micromolar enzyme inhibition and antibacterial activity against E. coli, MRSA, and VRSA, with MIC values ranging from 2 to 64 µg/mL. Moreover, both E. coli’s Ddl-B and Gyr-B were inhibited by emodin and chrysophanol with IC50 values comparable to the reference inhibitors (IC50 = 216 ± 5.6, 236 ± 8.9 and 0.81 ± 0.3, 1.5 ± 0.5 µM for Ddl-B and Gyr-B, respectively). All of the active antibacterial anthraquinone hits showed low to moderate cellular cytotoxicity (CC50 > 50 µM) against human normal fibroblasts (WI-38). Furthermore, molecular dynamic simulation (MDS) experiments were carried out to reveal the binding modes of these inhibitors inside the active site of each enzyme. The findings presented in this study are regarded as a significant step toward developing novel antibacterial agents against MDR strains.
Collapse
Affiliation(s)
- Hani A. Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia;
- Molecular Diagnostic Lab, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Wesam H. Abdulaal
- Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence: (H.M.H.); (A.M.S.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia;
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Correspondence: (H.M.H.); (A.M.S.)
| |
Collapse
|
48
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1436-1443. [DOI: 10.1093/jac/dkac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 11/15/2022] Open
|
49
|
Davis K, Greenstein T, Viau Colindres R, Aldridge BB. Leveraging laboratory and clinical studies to design effective antibiotic combination therapy. Curr Opin Microbiol 2021; 64:68-75. [PMID: 34628295 PMCID: PMC8671129 DOI: 10.1016/j.mib.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 01/21/2023]
Abstract
Interest in antibiotic combination therapy is increasing due to antimicrobial resistance and a slowing antibiotic pipeline. However, aside from specific indications, combination therapy in the clinic is often not administered systematically; instead, it is used at the physician's discretion as a bet-hedging mechanism to increase the chances of appropriately targeting a pathogen(s) with an unknown antibiotic resistance profile. Some recent clinical trials have been unable to demonstrate superior efficacy of combination therapy over monotherapy. Other trials have shown a benefit of combination therapy in defined circumstances consistent with recent studies indicating that factors including species, strain, resistance profile, and microenvironment affect drug combination efficacy and drug interactions. In this review, we discuss how a careful study design that takes these factors into account, along with the different drug interaction and potency metrics for assessing combination performance, may provide the necessary insight to understand the best clinical use-cases for combination therapy.
Collapse
Affiliation(s)
- Kathleen Davis
- Department of Molecular Biology & Microbiology, Tufts University School of Medicine, United States; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States
| | - Talia Greenstein
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Graduate School of Biomedical Sciences, Tufts University School of Medicine, United States
| | - Roberto Viau Colindres
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Department of Geographic Medicine and Infectious Diseases, Tufts Medical Center, United States
| | - Bree B Aldridge
- Department of Molecular Biology & Microbiology, Tufts University School of Medicine, United States; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Graduate School of Biomedical Sciences, Tufts University School of Medicine, United States
| |
Collapse
|
50
|
Bian L, Liang J, Zhao H, Ye K, Li Z, Liu T, Peng J, Wu Y, Lin G. Rapid Monitoring of Vancomycin Concentration in Serum Using Europium (III) Chelate Nanoparticle-Based Lateral Flow Immunoassay. Front Chem 2021; 9:763686. [PMID: 34733823 PMCID: PMC8558538 DOI: 10.3389/fchem.2021.763686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Establishing personalized medication plans for patients to maximize therapeutic efficacy and minimize the toxicity of vancomycin (VAN) requires rapid, simple, and accurate monitoring of VAN concentration in body fluid. In this study, we have developed a simple and rapid analytical method by integrating Eu (III) chelate nanoparticles (CN-EUs) and lateral flow immunoassay (LFIA) to achieve the real-time monitoring of VAN concentration in serum within 15 min. This approach was performed on nitrocellulose (NC) membrane assembled LFIA strips via indirect competitive immunoassay and exhibited a wide linear range of detection (0.1–80 μg*ml−1) with a low limit of detection (69.2 ng*ml−1). The coefficients of variation (CV) of the intra- and inter-assay in the detection of VAN were 7.12–8.53% and 8.46–11.82%, respectively. The dilution test and specificity indicated this method had a stability that was not affected by the serum matrix and some other antibiotics. Furthermore, the applicability of the proposed method was assessed by comparing the determined results with those measured by LC-MS/MS, showing a satisfactory correlation (R2 = 0.9713). The proposed CN-EUs-based LFIA manifested promising analytical performance, which showed potential value in the real-time monitoring of VAN and could help optimize the clinical use of more antibiotics.
Collapse
Affiliation(s)
- Lun Bian
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Junyu Liang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Zhao
- Department of Plastic and Aesthetic Surgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke Ye
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhaoyue Li
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jie Peng
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingsong Wu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Guanfeng Lin
- Experimental Center of Teaching and Scientific Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|