1
|
Xu J, Chen Y, Yu J, Liu S, Meng Y, Li C, Huang Q, Xiao Y. Clinical Characteristics, Serotypes and Antimicrobial Resistance of Invasive Salmonella Infections in HIV-Infected Patients in Hangzhou, China, 2012-2023. Infect Drug Resist 2024; 17:3839-3849. [PMID: 39247755 PMCID: PMC11380868 DOI: 10.2147/idr.s465979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose Developing countries, invasive Salmonella infections can cause considerable morbidity and mortality. There is a relative lack of data on coinfection with Salmonella in HIV-infected patients in Hangzhou, China. Patients and Methods In this study, we manually collected case data of patients aged >18 years with HIV combined with invasive Salmonella infections admitted to Xixi Hospital in Hangzhou from January 2012 to August 2023 by logging into the Hospital Information System, and identified 26 strains of invasive Salmonella using a fully automated microbiological identification system and mass spectrometer. Serotypes were determined using Salmonella diagnostic sera based on the White-Kauffmann-Le Minor scheme. Drug sensitivity tests were performed using the automated instrumental method of the MIC method. Results A total of 26 HIV-infected patients with invasive Salmonella coinfections were identified over 11 years; Twenty-five of the 26 patients (96.2%) were males, with a mean age of 33.5 years (26.75, 46.75). The most common type of infection was bloodstream infection (92.3%). One patient also had concomitant meningitis and osteoarthritis, followed by pneumonia (7.7%). The presence of multiple bacterial infections or even multiple opportunistic pathogens was clearly established in 7 (26.9%) patients. Three (11.6%) patients were automatically discharged from the hospital with deterioration of their condition, and one (3.8%) patient died. Salmonella enteritidis was the most common serotype in 6 patients (23.2%), and Salmonella Dublin was the most common serotype in 6 patients (23.2%). Drug sensitivity results revealed multidrug resistance in a total of 8 (30.8%) patients. Conclusion The clinical presentation of invasive Salmonella infection in HIV patients is nonspecific and easily masked by other mixed infections. A CD4+ count <100 cells/µL and comorbid intestinal lesions may be important susceptibility factors. Salmonella has a high rate of resistance to common antibiotics, and the risk of multidrug resistance should not be ignored.
Collapse
Affiliation(s)
- Jingying Xu
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuan Chen
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianhua Yu
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Shourong Liu
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Meng
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chaodan Li
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qian Huang
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yunlei Xiao
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Development of a rapid diagnostic test based on loop-mediated isothermal amplification to identify the most frequent non-typhoidal Salmonella serovars from culture. Eur J Clin Microbiol Infect Dis 2023; 42:461-470. [PMID: 36810725 PMCID: PMC9998568 DOI: 10.1007/s10096-023-04571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Identification of Salmonella serovars is performed by conventional seroagglutination or sequencing. These methods are labor-intensive and require technical experience. An easy-to-perform assay allowing the timely identification of the most common non-typhoidal serovars (NTS) is needed. In this study, a molecular assay based on loop-mediated isothermal amplification (LAMP) targeting specific gene sequences of Salmonella Enteritidis, S. Typhimurium, S. Infantis, S. Derby, and S. Choleraesuis has been developed for rapid serovar identification from cultured colonies. A total of 318 Salmonella strains and 25 isolates of other Enterobacterales species that served as negative controls were analyzed. All S. Enteritidis (n = 40), S. Infantis (n = 27), and S. Choleraesuis (n = 11) strains were correctly identified. Seven out of 104 S. Typhimurium and 10 out of 38 S. Derby strains missed a positive signal. Cross-reactions of the gene targets were only rarely observed and restricted to the S. Typhimurium primer set (5 false-positives). Sensitivity and specificity of the assay compared to seroagglutination were as follows: 100% and 100% for S. Enteritidis, 93.3% and 97.7% for S. Typhimurium, 100% and 100% for S. Infantis, 73.7% and 100% for S. Derby, and 100% and 100% for S. Choleraesuis, respectively. With results available in just a few minutes of hands-on time and a test run time of 20 min, the LAMP assay developed here may be a useful tool for the rapid identification of common Salmonella NTS in daily routine diagnostics.
Collapse
|
3
|
Hirako IC, Antunes MM, Rezende RM, Hojo-Souza NS, Figueiredo MM, Dias T, Nakaya H, Menezes GB, Gazzinelli RT. Uptake of Plasmodium chabaudi hemozoin drives Kupffer cell death and fuels superinfections. Sci Rep 2022; 12:19805. [PMID: 36396745 PMCID: PMC9671901 DOI: 10.1038/s41598-022-23858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Kupffer cells (KCs) are self-maintained tissue-resident macrophages that line liver sinusoids and play an important role on host defense. It has been demonstrated that upon infection or intense liver inflammation, KCs might be severely depleted and replaced by immature monocytic cells; however, the mechanisms of cell death and the alterations on liver immunity against infections deserves further investigation. We explored the impact of acute Plasmodium infection on KC biology and on the hepatic immune response against secondary infections. Similar to patients, infection with Plasmodium chabaudi induced acute liver damage as determined by serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation. This was associated with accumulation of hemozoin, increased of proinflammatory response and impaired bacterial and viral clearance, which led to pathogen spread to other organs. In line with this, mice infected with Plasmodium had enhanced mortality during secondary infections, which was associated with increased production of mitochondrial superoxide, lipid peroxidation and increased free iron within KCs-hallmarks of cell death by ferroptosis. Therefore, we revealed that accumulation of iron with KCs, triggered by uptake of circulating hemozoin, is a novel mechanism of macrophage depletion and liver inflammation during malaria, providing novel insights on host susceptibility to secondary infections. Malaria can cause severe liver damage, along with depletion of liver macrophages, which can predispose individuals to secondary infections and enhance the chances of death.
Collapse
Affiliation(s)
- Isabella C Hirako
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Lazare Research Building, 3rd Floor, Worcester, MA, USA
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Thomaz Dias
- Escola de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helder Nakaya
- Escola de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Tostes Gazzinelli
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil.
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Lazare Research Building, 3rd Floor, Worcester, MA, USA.
- Departamento de Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Song W, Shan Q, Qiu Y, Lin X, Zhu C, Zhuo Z, Wang C, Tong J, Li R, Wan C, Zhu Y, Chen M, Xu Y, Lin D, Wu S, Jia C, Gao H, Yang J, Zhao S, Zeng M. Clinical profiles and antimicrobial resistance patterns of invasive Salmonella infections in children in China. Eur J Clin Microbiol Infect Dis 2022; 41:1215-1225. [PMID: 36040531 PMCID: PMC9489584 DOI: 10.1007/s10096-022-04476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022]
Abstract
Invasive Salmonella infections result in a significant burden of disease including morbidity, mortality, and financial cost in many countries. Besides typhoid fever, the clinical impact of non-typhoid Salmonella infections is increasingly recognized with the improvement of laboratory detection capacity and techniques. A retrospective multicenter study was conducted to analyze the clinical profiles and antimicrobial resistance patterns of invasive Salmonella infections in hospitalized children in China during 2016-2018. A total of 130 children with invasive Salmonella infections were included with the median age of 12 months (range: 1-144 months). Seventy-nine percent of cases occurred between May and October. Pneumonia was the most common comorbidity in 33 (25.4%) patients. Meningitis and septic arthritis caused by nontyphoidal Salmonella (NTS) infections occurred in 12 (9.2%) patients and 5 (3.8%) patients. Patients < 12 months (OR: 16.04) and with septic shock (OR: 23.4), vomit (OR: 13.33), convulsion (OR: 15.86), C-reactive protein (CRP) ≥ 40 g/L (OR: 5.56), and a higher level of procalcitonin (PCT) (OR: 1.05) on admission were statistically associated to an increased risk of developing meningitis. Compared to 114 patients with NTS infections, 16 patients with typhoid fever presented with higher levels of CRP and PCT (P < 0.05). The rates of resistance to ampicillin, sulfamethoxazole/trimethoprim, ciprofloxacin, and ceftriaxone among Salmonella Typhi and NTS isolates were 50% vs 57.3%, 9.1% vs 24.8%, 0% vs 11.2%, and 0% vs 9.9%, respectively. NTS has been the major cause of invasive Salmonella infections in Chinese children and can result in severe diseases. Antimicrobial resistance among NTS was more common.
Collapse
Affiliation(s)
- Wen Song
- Department of Infectious Diseases, Hangzhou Children's Hospital, 195 Wenhui Road, Hangzhou, 310014, China
- Department of Hospital Infection Management, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, China
| | - Qingwen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yue Qiu
- Department of Infectious Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xianyao Lin
- Department of Infectious Diseases, Hangzhou Children's Hospital, 195 Wenhui Road, Hangzhou, 310014, China
| | - Chunhui Zhu
- Department of Infectious Diseases, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Zhiqiang Zhuo
- Department of Infectious Diseases, Xiamen Children's Hospital, Xiamen, China
| | - Caihong Wang
- Department of Infectious Diseases, Xiamen Children's Hospital, Xiamen, China
| | - Jianning Tong
- Department of Pediatric, Gastroenterology and Infectious Diseases, Qingdao Women and Children's Hospital, Qingdao, China
| | - Rui Li
- Department of Pediatric, Gastroenterology and Infectious Diseases, Qingdao Women and Children's Hospital, Qingdao, China
| | - Chaomin Wan
- Department of Pediatrics, Sichuan University West China Second Hospital (West China Women's and Children's Hospital), Chengdu, China
| | - Yu Zhu
- Department of Pediatrics, Sichuan University West China Second Hospital (West China Women's and Children's Hospital), Chengdu, China
| | - Minxia Chen
- Department of Infectious Diseases, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yi Xu
- Department of Infectious Diseases, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Daojiong Lin
- Department of Infectious Diseases, Hainan Women and Children's Medical Center, Haikou, China
| | - Shouye Wu
- Department of Infectious Diseases, Hainan Women and Children's Medical Center, Haikou, China
| | - Chunmei Jia
- Department of Pharmacy, The Forth Hospital of Baotou, Baotou, China
| | - Huiling Gao
- Department of Pharmacy, The Forth Hospital of Baotou, Baotou, China
| | - Junwen Yang
- Department of Microbiology Laboratory, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital), Zhengzhou, China
| | - Shiyong Zhao
- Department of Infectious Diseases, Hangzhou Children's Hospital, 195 Wenhui Road, Hangzhou, 310014, China.
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
5
|
Kariuki S, Kering K, Wairimu C, Onsare R, Mbae C. Antimicrobial Resistance Rates and Surveillance in Sub-Saharan Africa: Where Are We Now? Infect Drug Resist 2022; 15:3589-3609. [PMID: 35837538 PMCID: PMC9273632 DOI: 10.2147/idr.s342753] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023] Open
Abstract
Introduction Although antimicrobials have traditionally been used to treat infections and improve health outcomes, resistance to commonly used antimicrobials has posed a major challenge. An estimated 700,000 deaths occur globally every year as a result of infections caused by antimicrobial-resistant pathogens. Antimicrobial resistance (AMR) also contributes directly to the decline in the global economy. In 2019, sub-Saharan Africa (SSA) had the highest mortality rate (23.5 deaths per 100,000) attributable to AMR compared to other regions. Methods We searched PubMed for articles relevant to AMR in pathogens in the WHO-GLASS list and in other infections of local importance in SSA. In this review, we focused on AMR rates and surveillance of AMR for these priority pathogens and some of the most encountered pathogens of public health significance. In addition, we reviewed the implementation of national action plans to mitigate against AMR in countries in SSA. Results and Discussion The SSA region is disproportionately affected by AMR, in part owing to the prevailing high levels of poverty, which result in a high burden of infectious diseases, poor regulation of antimicrobial use, and a lack of alternatives to ineffective antimicrobials. The global action plan as a strategy for prevention and combating AMR has been adopted by most countries, but fewer countries are able to fully implement country-specific action plans, and several challenges exist in many settings. Conclusion A concerted One Health approach will be required to ramp up implementation of action plans in the region. In addition to AMR surveillance, effective implementation of infection prevention and control, water, sanitation, and hygiene, and antimicrobial stewardship programs will be key cost-effective strategies in helping to tackle AMR.
Collapse
Affiliation(s)
- Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya,Correspondence: Samuel Kariuki, Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya, Email
| | - Kelvin Kering
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Celestine Wairimu
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Robert Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
6
|
Non-Typhoidal Salmonella Infection in Children: Influence of Antibiotic Therapy on Postconvalescent Excretion and Clinical Course-A Systematic Review. Antibiotics (Basel) 2021; 10:antibiotics10101187. [PMID: 34680768 PMCID: PMC8532930 DOI: 10.3390/antibiotics10101187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Although published recommendations are available, the use of antibiotics in non-typhoidal Salmonella (NTS) infections in children is still controversially debated in clinical practice. Patients might even be put at risk, with necessary antibiotic therapy being withheld due to the widespread concern of prolonged post-convalescent shedding. The authors conducted a systematic review to assess whether antibiotic treatment influences fecal excretion or the clinical course in children with NTS infection. (2) Methods: The review was carried out following the PRISMA guidelines. In a Medline database search, studies assessing the influence of antibiotic therapy on excretion and/or the clinical course of NTS infections were selected. Studies reporting on adults only were not considered. Out of 532 publications which were identified during the systematic literature search, 14 publications were finally included (3273 patients in total). Quality and bias assessment was performed using the Newcastle-Ottawa scale (NOS) or the Cochrane risk-of bias tool (ROB-2). (3) Results: Four early studies from decades ago demonstrated a prolongation of intestinal NTS excretion in children after antibiotic treatment, whereas most studies published more recently observed no significant influence, which might be due to having used more “modern” antibiotic regimes (n = 7 studies). Most studies did not describe significant differences regarding the severity and duration of symptoms between untreated patients and those treated with antibiotics. Quality and bias were mainly moderate (NOS) or variable (ROB-2), respectively. (4) Conclusions: There is no substantial evidence of prolonged excretion of NTS in pediatric patients after treatment with newer antimicrobials. Consequently, clinicians should not withhold antibiotics in NTS infection for children at risk, such as for very young children, children with comorbidities, and those with suspected invasive disease due to concerns about prolonged post-convalescent bacterial excretion. In the majority of cases with uncomplicated NTS diarrhea, clinicians should refrain from applying antibiotics.
Collapse
|
7
|
Park SE, Pham DT, Pak GD, Panzner U, Maria Cruz Espinoza L, von Kalckreuth V, Im J, Mogeni OD, Schütt-Gerowitt H, Crump JA, Breiman RF, Adu-Sarkodie Y, Owusu-Dabo E, Rakotozandrindrainy R, Bassiahi Soura A, Aseffa A, Gasmelseed N, Sooka A, Keddy KH, May J, Aaby P, Biggs HM, Hertz JT, Montgomery JM, Cosmas L, Olack B, Fields B, Sarpong N, Razafindrabe TJL, Raminosoa TM, Kabore LP, Sampo E, Teferi M, Yeshitela B, El Tayeb MA, Krumkamp R, Dekker DM, Jaeger A, Tall A, Gassama A, Niang A, Bjerregaard-Andersen M, Løfberg SV, Deerin JF, Park JK, Konings F, Carey ME, Van Puyvelde S, Ali M, Clemens J, Dougan G, Baker S, Marks F. The genomic epidemiology of multi-drug resistant invasive non-typhoidal Salmonella in selected sub-Saharan African countries. BMJ Glob Health 2021; 6:bmjgh-2021-005659. [PMID: 34341020 PMCID: PMC8330565 DOI: 10.1136/bmjgh-2021-005659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/06/2021] [Indexed: 01/23/2023] Open
Abstract
Background Invasive non-typhoidal Salmonella (iNTS) is one of the leading causes of bacteraemia in sub-Saharan Africa. We aimed to provide a better understanding of the genetic characteristics and transmission patterns associated with multi-drug resistant (MDR) iNTS serovars across the continent. Methods A total of 166 iNTS isolates collected from a multi-centre surveillance in 10 African countries (2010–2014) and a fever study in Ghana (2007–2009) were genome sequenced to investigate the geographical distribution, antimicrobial genetic determinants and population structure of iNTS serotypes–genotypes. Phylogenetic analyses were conducted in the context of the existing genomic frameworks for various iNTS serovars. Population-based incidence of MDR-iNTS disease was estimated in each study site. Results Salmonella Typhimurium sequence-type (ST) 313 and Salmonella Enteritidis ST11 were predominant, and both exhibited high frequencies of MDR; Salmonella Dublin ST10 was identified in West Africa only. Mutations in the gyrA gene (fluoroquinolone resistance) were identified in S. Enteritidis and S. Typhimurium in Ghana; an ST313 isolate carrying blaCTX-M-15 was found in Kenya. International transmission of MDR ST313 (lineage II) and MDR ST11 (West African clade) was observed between Ghana and neighbouring West African countries. The incidence of MDR-iNTS disease exceeded 100/100 000 person-years-of-observation in children aged <5 years in several West African countries. Conclusions We identified the circulation of multiple MDR iNTS serovar STs in the sampled sub-Saharan African countries. Investment in the development and deployment of iNTS vaccines coupled with intensified antimicrobial resistance surveillance are essential to limit the impact of these pathogens in Africa.
Collapse
Affiliation(s)
- Se Eun Park
- International Vaccine Institute, Seoul, Republic of Korea.,Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Duy Thanh Pham
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Gi Deok Pak
- International Vaccine Institute, Seoul, Republic of Korea
| | - Ursula Panzner
- International Vaccine Institute, Seoul, Republic of Korea
| | | | | | - Justin Im
- International Vaccine Institute, Seoul, Republic of Korea
| | | | - Heidi Schütt-Gerowitt
- International Vaccine Institute, Seoul, Republic of Korea.,Institute of Medical Microbiology, University of Cologne, Cologne, Germany
| | - John A Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand.,Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA.,Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Robert F Breiman
- Centers for Disease Control and Prevention, KEMRI Complex, Nairobi, Kenya.,Global Health Institute, Emory University, Atlanta, Georgia, USA
| | - Yaw Adu-Sarkodie
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Ellis Owusu-Dabo
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | | | - Abdramane Bassiahi Soura
- Institut Supérieur des Sciences de la Population, University of Ouagadougou, Ouagadougou, Burkina Faso
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Nagla Gasmelseed
- Faculty of Medicine, University of Gezira, Wad Medani, Sudan.,Faculty of Science, University of Hafr Al Batin, Hafr Albatin, Saudi Arabia
| | - Arvinda Sooka
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Karen H Keddy
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jürgen May
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Braunschweig, Germany
| | - Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Holly M Biggs
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA.,Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Julian T Hertz
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA.,Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Joel M Montgomery
- Centers for Disease Control and Prevention, KEMRI Complex, Nairobi, Kenya
| | - Leonard Cosmas
- Centers for Disease Control and Prevention, KEMRI Complex, Nairobi, Kenya
| | | | - Barry Fields
- Centers for Disease Control and Prevention, KEMRI Complex, Nairobi, Kenya
| | - Nimako Sarpong
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,German Center for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Braunschweig, Germany
| | - Denise Myriam Dekker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Braunschweig, Germany
| | - Anna Jaeger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Braunschweig, Germany
| | - Adama Tall
- Institute Pasteur de Dakar, Dakar, Senegal
| | - Amy Gassama
- Institute Pasteur de Dakar, Dakar, Senegal.,Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Morten Bjerregaard-Andersen
- Bandim Health Project, Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Sandra Valborg Løfberg
- Bandim Health Project, Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | | | - Jin Kyung Park
- International Vaccine Institute, Seoul, Republic of Korea
| | - Frank Konings
- International Vaccine Institute, Seoul, Republic of Korea
| | - Megan E Carey
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Sandra Van Puyvelde
- Medicine, Cambridge University, Cambridge, UK.,Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Mohammad Ali
- International Vaccine Institute, Seoul, Republic of Korea.,Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - John Clemens
- International Vaccine Institute, Seoul, Republic of Korea.,International Centre for Diarrheal Disease Research, Dhaka, Bangladesh.,University of California, Fielding School of Public Health, Los Angeles, California, USA
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Stephen Baker
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Florian Marks
- International Vaccine Institute, Seoul, Republic of Korea
| |
Collapse
|