1
|
Qin Y, Liao Y, Zhou J, Liu W, Chen H, Chen X, Wang W, Zhang N, Zhao Y, Wang L, Gu B, Liu S. Comparative evaluation of BacT/ALERT VIRTUO and BACTEC FX400 blood culture systems for the detection of bloodstream infections. Microbiol Spectr 2025; 13:e0185024. [PMID: 39611835 PMCID: PMC11705859 DOI: 10.1128/spectrum.01850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024] Open
Abstract
Bloodstream infections (BSI) pose significant threats to patient health, necessitating timely and accurate diagnostics to reduce mortality and morbidity. This study aimed to evaluate the clinical performance of the BacT/ALERT VIRTUO blood culture system with FANPlus bottles compared to the BACTEC FX400 system in detecting bloodstream pathogens. A total of 1,772 blood specimens were collected from various hospital wards. Specimen selection criteria were based on clinical suspicion of bloodstream infections, ensuring the inclusion of relevant and representative patient samples. These blood samples, collected from the same suspected sepsis patients, were cultured in parallel using both the BacT/ALERT VIRTUO and BACTEC FX400 systems. The diagnostic efficiency of both systems, including detection rates, time to detection (TTD), and sensitivity across different bacterial species, was assessed. In various application scenarios, the VIRTUO system demonstrates a higher positive detection rate, whether in the intensive care unit (ICU) (8.5% vs 6.4%, P = 0.028) or in general wards. Additionally, for different types of bacteria, the TVIRTUO system exhibits superior detection rates for anaerobic bacteria (5.9% vs 3.2%, P < 0.001) and aerobic bacteria (9.1% vs 7.2%, P = 0.043). Furthermore, it boasts a shorter median TTD of 14 hours compared to 16 hours, and a higher sensitivity for Gram-positive bacteria (2.8% vs 1.6%, P < 0.001). These findings emphasize VIRTUO's effectiveness in enhancing diagnostic accuracy, achieving faster time to detection, and expanding the spectrum of detected organisms, thereby facilitating the quicker initiation of appropriate therapies, supporting precise clinical decision-making, and ultimately improving patient outcomes.IMPORTANCEOur study conducted a critical evaluation of advanced blood culture technologies for managing bloodstream infections (BSI). A distinctive strength of our research is the large sample size and the concurrent testing of the same patients with two systems, a methodology rarely achieved in other studies. BSIs present severe health threats, necessitating prompt and accurate diagnostics to mitigate morbidity and mortality. The BacT/ALERT VIRTUO system, in comparison to the BACTEC FX400 system, demonstrated superior detection capabilities, emphasizing the critical role of advanced diagnostics in clinical settings.
Collapse
Affiliation(s)
- Yurong Qin
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yiwen Liao
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jingfang Zhou
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weijiang Liu
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Huimin Chen
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoli Chen
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weisha Wang
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ni Zhang
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhu Zhao
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Wang
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Bing Gu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Suling Liu
- Department of Laboratory Medicine, Guangdong Provincial People‘s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Xu Y, Peng M, Zhou T, Yang Y, Xu P, Xie T, Cao X, Chen B, Ouyang J. Diagnostic performance of metagenomic next-generation sequencing among hematological malignancy patients with bloodstream infections after antimicrobial therapy. J Infect 2024:106395. [PMID: 39733825 DOI: 10.1016/j.jinf.2024.106395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/02/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Metagenomic next-generation sequencing (mNGS) is an effective method for detecting pathogenic pathogens of bloodstream infection (BSI). However, there is no consensus on whether the use of antibiotics affects the diagnostic performance of mNGS. We conducted a prospective clinical study aiming to evaluate the effect of antimicrobial treatment on mNGS. METHODS Blood samples were collected for mNGS testing within 24h of culture-confirmed with BSI, with re-examination conducted every 2-3 days. RESULTS A total of 38 patients with BSI were enrolled. The mNGS positive (mNGS-pos) rate declined sharply after the use of antibiotics, with only 17 (44.78%) patients remaining mNGS-pos while the rest were mNGS negative (mNGS-neg). The median duration of pathogen identification was significantly longer for mNGS compared to blood culture (BC) (4 days vs 1 days; P < 0.0001). A positivity duration of ≥ 3 days was an independent risk factor of septic shock (OR, 20.671; 95% CI, 1.958-218.190; P = 0.012). Patients with mNGS-pos and mNGS-neg differed by the median duration of fever (6 days vs 3 days; P = 0.038), rates of drug resistance (35.3% vs 4.8%; P = 0.017), rates of septic shock (47.1% vs 14.3%; P = 0.029), and 28-day mortality (29.4% vs 4.8%; P = 0.041). CONCLUSIONS The antimicrobial treatment will greatly reduce the positive rate of mNGS. The duration of mNGS is significantly longer than that of BC. The prolonged duration of mNGS suggests an increased risk of septic shock and could be identified as a high-risk factor of adverse infection outcome, requiring more aggressive anti-infective treatment measures.
Collapse
Affiliation(s)
- Yueyi Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, PR China
| | - Miaoxin Peng
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, PR China
| | - Tong Zhou
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, PR China
| | - Yonggong Yang
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, PR China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, PR China
| | - Ting Xie
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, PR China
| | - Xuefang Cao
- Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, 310000, PR China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, PR China.
| | - Jian Ouyang
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, PR China.
| |
Collapse
|
3
|
Olearo F, Christner M, Lütgehetmann M, Aepfelbacher M, Fischer N, Rohde H. Revisiting diagnostics: Microbial cell free DNA-sequencing: addressing unmet challenges in implant-related cardiovascular Infections. Clin Microbiol Infect 2024:S1198-743X(24)00545-7. [PMID: 39550030 DOI: 10.1016/j.cmi.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/23/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Affiliation(s)
- Flaminia Olearo
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Christner
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Artner T, Sharma S, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free DNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118583. [PMID: 39353793 DOI: 10.1016/j.atherosclerosis.2024.118583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and despite treatment efforts, cardiovascular function cannot always be restored, and progression of disease be prevented. Critical insights are oftentimes based on tissue samples. Current knowledge of tissue pathology typically relies on invasive biopsies or postmortem samples. Liquid biopsies, which assess circulating mediators to deduce the histology and pathology of distant tissues, have been advancing rapidly in cancer research and offer a promising approach to be translated to the understanding and treatment of CVD. The widely understood elevations in cell-free DNA during acute and chronic cardiovascular conditions, associate with disease, severity, and offer prognostic value. The role of neutrophil extracellular traps (NETs) and circulating nucleases in thrombosis provide a solid rationale for liquid biopsies in CVD. cfDNA originates from various tissue types and cellular sources, including mitochondria and nuclei, and can be used to trace cell and tissue type lineage, as well as to gain insight into the activation status of cells. This article discusses the origin, structure, and potential utility of cfDNA, offering a deeper and less invasive approach for the understanding of the complexities of CVD.
Collapse
Affiliation(s)
- Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| | - Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| |
Collapse
|
5
|
Christians FC, Akhund-Zade J, Jarman K, Venkatasubrahmanyam S, Noll N, Blauwkamp TA, Bercovici S, Zielinska A, Carr AL, Craney A, Pike M, Farrell JJ, Dadwal S, Wood JB, Matkovich E, McAdams S, Nolte FS. Analytical and clinical validation of direct detection of antimicrobial resistance markers by plasma microbial cell-free DNA sequencing. J Clin Microbiol 2024; 62:e0042524. [PMID: 39194269 PMCID: PMC11481525 DOI: 10.1128/jcm.00425-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Sequencing of plasma microbial cell-free DNA (mcfDNA) has gained increased acceptance as a valuable adjunct to standard-of-care testing for diagnosis of infections throughout the body. Here, we report the analytical and clinical validation of a novel application of mcfDNA sequencing, the non-invasive detection of seven common antimicrobial resistance (AMR) genetic markers in 18 important pathogens. The AMR markers include SCCmec, mecA, mecC, vanA, vanB, blaCTX-M, and blaKPC. The AMR markers were computationally linked to the pathogens detected. Analytical validation showed high reproducibility (100%), inclusivity (54 to 100%), and exclusivity (100%). Clinical accuracy was assessed with 114 unique plasma samples from patients at seven study sites with concordant culture results for target bacteria from a variety of specimen types and correlated with available phenotypic antimicrobial susceptibility test results and genotypic results. The positive percent agreement (PPA), negative percent agreement (NPA), and diagnostic yield (DY) were estimated for each AMR marker. DY was defined as the percentage of tests that yielded an actionable result of either detected or not detected. The results for the combination of SCCmec and mecA for staphylococci were PPA 19/20 (95.0%), NPA 21/22 (95.4%), DY 42/60 (70.0%); vanA for enterococci were PPA 3/3 (100%), NPA 2/2 (100%), DY 5/6 (83.3%); blaCTX-M for gram-negative bacilli were PPA 5/6 (83.3%), NPA 29/29 (100%), DY 35/49 (71.4%); and blaKPC for gram-negative bacilli were PPA 0/2 (0%), NPA: 23/23 (100%), DY 25/44 (56.8%). The addition of AMR capability to plasma mcfDNA sequencing should provide clinicians with an effective new culture-independent tool for optimization of therapy. IMPORTANCE This manuscript is ideally suited for the Innovative Diagnostic Methods sections as it reports the analytical and clinical validation of a novel application of plasma microbial cell-free DNA sequencing for direct detection of seven selected antimicrobial resistance markers in 18 target pathogens. Clearly, it has potential clinical utility in optimizing therapy and was incorporated into the Karius test workflow in September 2023. In addition, the workflow could readily be adapted to expand the number of target bacteria and antimicrobial resistance markers as needed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Matthew Pike
- Carle Foundation Hospital, Urbana, Illinois, USA
| | | | - Sanjeet Dadwal
- City of Hope National Medical Center, Duarte, California, USA
| | - James B. Wood
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
6
|
Marra AR, Lopes GOV, Pardo I, Hsieh MK, Kobayashi T, Marra PS, Marschall J, Pinho JRR, Amgarten DE, de Mello Malta F, Dos Santos NV, Edmond MB. Metagenomic next-generation sequencing in patients with fever of unknown origin: A comprehensive systematic literature review and meta-analysis. Diagn Microbiol Infect Dis 2024; 110:116465. [PMID: 39059148 DOI: 10.1016/j.diagmicrobio.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Metagenomic Next-Generation Sequencing (mNGS) holds promise in diagnosing fever of unknown origin (FUO) by detecting diverse pathogens. We systematically reviewed the literature to evaluate mNGS's accuracy, clinical efficacy, and limitations in FUO diagnosis. Nine studies revealed mNGS's positivity rate ranging from 66.7% to 93.5% for bacterial bloodstream infections and systemic infections. Meta-analysis of three studies involving 857 patients, including 354 with FUO, showed a sensitivity of 0.91 (95% CI: 0.87-0.93) and specificity of 0.64 (95% CI: 0.58-0.70). Despite lower specificity, mNGS demonstrated a higher Diagnostic Odds Ratio (DOR) of 17.0 (95% CI: 4.5-63.4) compared to conventional microbiological tests (CMTs) at 4.7 (95% CI: 2.9-7.6). While mNGS offers high sensitivity but low specificity in identifying causative pathogens for FUO, its superior DOR suggests potential for more accurate diagnoses and targeted interventions. Further research is warranted to optimize its clinical application in FUO management.
Collapse
Affiliation(s)
- Alexandre R Marra
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil; Department of Internal Medicine, University of Iowa Carver College of Medicine, C51 GH - 200 Hawkins Drive, Iowa City, IA 52242, United States.
| | - Gabriel O V Lopes
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Isabele Pardo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Mariana Kim Hsieh
- Program of Hospital Epidemiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States
| | - Takaaki Kobayashi
- Department of Internal Medicine, University of Iowa Carver College of Medicine, C51 GH - 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Pedro S Marra
- University of California, San Francisco School of Medicine, San Francisco, CA, United States
| | - Jonas Marschall
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - João Renato Rebello Pinho
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil; LIM03/07, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Deyvid Emanuel Amgarten
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Fernanda de Mello Malta
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Nathalia Villa Dos Santos
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Michael B Edmond
- Department of Medicine, West Virginia University School of Medicine, Morgantown, WV, United States
| |
Collapse
|
7
|
Liborio MP, Harris PNA, Ravi C, Irwin AD. Getting Up to Speed: Rapid Pathogen and Antimicrobial Resistance Diagnostics in Sepsis. Microorganisms 2024; 12:1824. [PMID: 39338498 PMCID: PMC11434042 DOI: 10.3390/microorganisms12091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Time to receive effective therapy is a primary determinant of mortality in patients with sepsis. Blood culture is the reference standard for the microbiological diagnosis of bloodstream infections, despite its low sensitivity and prolonged time to receive a pathogen detection. In recent years, rapid tests for pathogen identification, antimicrobial susceptibility, and sepsis identification have emerged, both culture-based and culture-independent methods. This rapid narrative review presents currently commercially available approved diagnostic molecular technologies in bloodstream infections, including their clinical performance and impact on patient outcome, when available. Peer-reviewed publications relevant to the topic were searched through PubMed, and manufacturer websites of commercially available assays identified were also consulted as further sources of information. We have reviewed data about the following technologies for pathogen identification: fluorescence in situ hybridization with peptide nucleic acid probes (Accelerate PhenoTM), microarray-based assay (Verigene®), multiplex polymerase chain reaction (cobas® eplex, BioFire® FilmArray®, Molecular Mouse, Unyvero BCU SystemTM), matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (Rapid MBT Sepsityper®), T2 magnetic resonance (T2Bacteria Panel), and metagenomics-based assays (Karius©, DISQVER®, Day Zero Diagnostics). Technologies for antimicrobial susceptibility testing included the following: Alfed 60 ASTTM, VITEK® REVEALTM, dRASTTM, ASTar®, Fastinov®, QuickMIC®, ResistellTM, and LifeScale. Characteristics, microbiological performance, and issues of each method are described, as well as their clinical performance, when available.
Collapse
Affiliation(s)
- Mariana P. Liborio
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
| | - Patrick N. A. Harris
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
- Herston Infectious Disease Institute, Metro North, QLD Health, Herston, QLD 4029, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4006, Australia
| | - Chitra Ravi
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
| | - Adam D. Irwin
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia
| |
Collapse
|
8
|
Balks J, Grumaz S, Mazzitelli S, Neder U, Lemloh L, Melaku T, Glaser K, Mueller A, Kipfmueller F. Microbial cell-free DNA-sequencing as an addition to conventional diagnostics in neonatal sepsis. Pediatr Res 2024:10.1038/s41390-024-03448-1. [PMID: 39143203 DOI: 10.1038/s41390-024-03448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Bloodstream infections remain a challenge for neonatologists, as traditional culture-based methods are time-consuming and rely on adequate blood volume. Next-generation sequencing (NGS) offers an alternative, as it can identify microbial cell-free DNA (mcfDNA) in a small blood sample, providing rapid pathogen detection. This study aimed to assess the diagnostic performance of DISQVER®-NGS compared to blood cultures in neonatal patients with suspected sepsis. METHODS In neonates with suspected sepsis, blood cultures and samples for NGS were prospectively collected. Patients were divided into four categories: 1) sepsis, blood culture positive, 2) clinical sepsis, culture negative, 3) suspected sepsis, 4) validation cohort. RESULTS NGS detected bacterial, viral or fungal mcfDNA in 24 of 82 samples. Blood cultures were collected in 46 of 84 patients (15/46 positive). DISQVER® correctly identified pathogens in 9/15 patients with a positive blood culture, two with intrinsic resistance to their antibiotic regimen. In seven samples NGS reported the mcfDNA of bacteria that could have theoretically grown in culture but did not. CONCLUSIONS NGS may enhance sensitivity in sepsis diagnostics by detecting mcfDNA in neonates with suspected sepsis. Interpreting NGS results requires correlation with clinical data, laboratory values, and routine microbiological tests for a comprehensive understanding of the patient's condition. IMPACT Conventional blood culture methods have limitations in accuracy and turnaround time. The study aimed to investigate the diagnostic performance of the Next-Generation Sequencing method DISQVER® compared to traditional blood cultures in neonatal patients with suspected sepsis. Our findings suggest that NGS has the potential to augment the precision of conventional diagnostic techniques, can lead to improved detection of pathogens and targeted treatment approaches in neonatal sepsis. It is emphasized that further validation and integration with clinical and microbiological data are required to ensure optimal clinical utility.
Collapse
Affiliation(s)
- Julian Balks
- Division of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | | | | | | | - Lotte Lemloh
- Division of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Tamene Melaku
- Division of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Kirsten Glaser
- Division of Neonatology, Department of Women's and Children's Health, University Medical Center Leipzig, Leipzig, Germany
| | - Andreas Mueller
- Division of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Florian Kipfmueller
- Division of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
9
|
Aftandilian C, Bito XR, Berman D, Zhang A, Duttagupta R, Davis KL. Plasma microbial cell-free DNA following chimeric antigen receptor T cell therapy in pediatric patients with relapsed/refractory leukemia. Eur J Haematol 2024; 113:208-217. [PMID: 38658354 DOI: 10.1111/ejh.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising treatment for pediatric patients with relapsed or refractory B cell acute lymphoblastic leukemia (R/R B ALL). Cytokine release syndrome (CRS) is a common toxicity after CAR T cell therapy and fever is often the first symptom. Differentiating CRS from infection after CAR T cell therapy can be challenging. Plasma microbial cell free DNA (mcfDNA) is a novel diagnostic tool which allows for qualitative and quantitative assessment of over 1000 organisms. This pilot study sought to characterize mcfDNA results in pediatric patients with R/R B ALL in the first 2 months after CAR T cell therapy.
Collapse
Affiliation(s)
- Catherine Aftandilian
- Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Stanford University, Palo Alto, California, USA
| | - Xue Rachel Bito
- Cancer and Blood Disease Institute, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | | | - Amy Zhang
- Department of Medicine, Quantitative Sciences Unit, Stanford University School of Medicine, Palo Alto, California, USA
| | | | - Kara L Davis
- Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Stanford University, Palo Alto, California, USA
| |
Collapse
|
10
|
Cao H, Chen Y, Ge L, Kwong JSW, Lai H, Hu F, Zhang R, Zhao H, Hu L, He R, Zheng W, Zhang J. An umbrella review of the diagnostic value of next-generation sequencing in infectious diseases. Int J Clin Pharm 2024; 46:780-794. [PMID: 38570474 DOI: 10.1007/s11096-024-01704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND An increasing number of systematic reviews (SRs) have evaluated the diagnostic values of next-generation sequencing (NGS) in infectious diseases (IDs). AIM This umbrella analysis aimed to assess the potential risk of bias in existing SRs and to summarize the published diagnostic values of NGS in different IDs. METHOD We searched PubMed, Embase, and the Cochrane Library until September 2023 for SRs assessing the diagnostic validity of NGS for IDs. Two investigators independently determined review eligibility, extracted data, and evaluated reporting quality, risk of bias, methodological quality, and evidence certainty in the included SRs. RESULTS Eleven SRs were analyzed. Most SRs exhibited a moderate level of reporting quality, while a serious risk of bias was observed in all SRs. The diagnostic performance of NGS in detecting pneumocystis pneumonia and periprosthetic/prosthetic joint infection was notably robust, showing excellent sensitivity (pneumocystis pneumonia: 0.96, 95% CI 0.90-0.99, very low certainty; periprosthetic/prosthetic joint infection: 0.93, 95% CI 0.83-0.97, very low certainty) and specificity (pneumocystis pneumonia: 0.96, 95% CI 0.92-0.98, very low certainty; periprosthetic/prosthetic joint infection: 0.95, 95% CI 0.92-0.97, very low certainty). NGS exhibited high specificity for central nervous system infection, bacterial meningoencephalitis, and tuberculous meningitis. The sensitivity to these infectious diseases was moderate. NGS demonstrated moderate sensitivity and specificity for multiple infections and pulmonary infections. CONCLUSION This umbrella analysis indicates that NGS is a promising technique for diagnosing pneumocystis pneumonia and periprosthetic/prosthetic joint infection with excellent sensitivity and specificity. More high-quality original research and SRs are needed to verify the current findings.
Collapse
Affiliation(s)
- Hong Cao
- School of Pharmaceutical Sciences, Guizhou University, 2708 South of Huaxi Avenue Road, Guiyang, Guizhou Province, China
- Department of Pharmacy, Guizhou Provincial People's Hospital, No.83 Zhongshandong Road, Guiyang, Guizhou Province, China
| | - Yan Chen
- School of Pharmaceutical Sciences, Guizhou University, 2708 South of Huaxi Avenue Road, Guiyang, Guizhou Province, China
- Department of Pharmacy, Guizhou Provincial People's Hospital, No.83 Zhongshandong Road, Guiyang, Guizhou Province, China
| | - Long Ge
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, No. 199, Donggang West Road, Chengguan District, Lanzhou City, Gansu Province, China
| | - Joey Sum-Wing Kwong
- Global Health Nursing, Graduate School of Nursing Science, St. Luke's International University, 10-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-0044, Japan
| | - Honghao Lai
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, No. 199, Donggang West Road, Chengguan District, Lanzhou City, Gansu Province, China
| | - Fangfang Hu
- Department of Laboratory, Guizhou Provincial People's Hospital, No.83 Zhongshandong Road, Guiyang, 550002, Guizhou Province, China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, No.83 Zhongshandong Road, Guiyang, Guizhou Province, China
| | - Huaye Zhao
- Department of Pharmacy, Guizhou Provincial People's Hospital, No.83 Zhongshandong Road, Guiyang, Guizhou Province, China
| | - Linfang Hu
- Department of Pharmacy, Guizhou Provincial People's Hospital, No.83 Zhongshandong Road, Guiyang, Guizhou Province, China
| | - Rui He
- Experimental Cancer Medicine, Department of Laboratory Medicine, Karolinska Institute, Room 601, Novum PI 6, Hälsovägen 7, Huddinge, 14157, Stockholm, Sweden
| | - Wenyi Zheng
- Experimental Cancer Medicine, Department of Laboratory Medicine, Karolinska Institute, Room 601, Novum PI 6, Hälsovägen 7, Huddinge, 14157, Stockholm, Sweden
| | - Jiaxing Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, No.83 Zhongshandong Road, Guiyang, Guizhou Province, China.
| |
Collapse
|
11
|
Ong SWX, Luo J, Fridman DJ, Lee SM, Johnstone J, Schwartz KL, Diong C, Patel SN, Macfadden DR, Langford BJ, Tong SYC, Brown KA, Daneman N. Epidemiology and clinical relevance of persistent bacteraemia in patients with Gram-negative bloodstream infection: a retrospective cohort study. J Antimicrob Chemother 2024; 79:2053-2061. [PMID: 38958258 PMCID: PMC11290881 DOI: 10.1093/jac/dkae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVES The risk factors and outcomes associated with persistent bacteraemia in Gram-negative bloodstream infection (GN-BSI) are not well described. We conducted a follow-on analysis of a retrospective population-wide cohort to characterize persistent bacteraemia in patients with GN-BSI. METHODS We included all hospitalized patients >18 years old with GN-BSI between April 2017 and December 2021 in Ontario who received follow-up blood culture (FUBC) 2-5 days after the index positive blood culture. Persistent bacteraemia was defined as having a positive FUBC with the same Gram-negative organism as the index blood culture. We identified variables independently associated with persistent bacteraemia in a multivariable logistic regression model. We evaluated whether persistent bacteraemia was associated with increased odds of 30- and 90-day all-cause mortality using multivariable logistic regression models adjusted for potential confounders. RESULTS In this study, 8807 patients were included; 600 (6.8%) had persistent bacteraemia. Having a permanent catheter, antimicrobial resistance, nosocomial infection, ICU admission, respiratory or skin and soft tissue source of infection, and infection by a non-fermenter or non-Enterobacterales/anaerobic organism were associated with increased odds of having persistent bacteraemia. The 30-day mortality was 17.2% versus 9.6% in those with and without persistent bacteraemia (aOR 1.65, 95% CI 1.29-2.11), while 90-day mortality was 25.5% versus 16.9%, respectively (aOR 1.53, 95% CI 1.24-1.89). Prevalence and odds of developing persistent bacteraemia varied widely depending on causative organism. CONCLUSIONS Persistent bacteraemia is uncommon in GN-BSI but is associated with poorer outcomes. A validated risk stratification tool may be useful to identify patients with persistent bacteraemia.
Collapse
Affiliation(s)
- Sean W X Ong
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
- Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, Canada
- ICES, Toronto, Canada
| | | | | | | | - Jennie Johnstone
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Division of Infectious Diseases, Sinai Health, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Kevin L Schwartz
- ICES, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Public Health Ontario, Toronto, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | | | - Samir N Patel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Public Health Ontario, Toronto, Canada
| | - Derek R Macfadden
- Division of Infectious Diseases, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Bradley J Langford
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Public Health Ontario, Toronto, Canada
| | - Steven Y C Tong
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kevin A Brown
- ICES, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Public Health Ontario, Toronto, Canada
| | - Nick Daneman
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
- Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, Canada
- ICES, Toronto, Canada
- Public Health Ontario, Toronto, Canada
| |
Collapse
|
12
|
Tyagi S, Katara P. Metatranscriptomics: A Tool for Clinical Metagenomics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:394-407. [PMID: 39029911 DOI: 10.1089/omi.2024.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In the field of bioinformatics, amplicon sequencing of 16S rRNA genes has long been used to investigate community membership and taxonomic abundance in microbiome studies. As we can observe, shotgun metagenomics has become the dominant method in this field. This is largely owing to advancements in sequencing technology, which now allow for random sequencing of the entire genetic content of a microbiome. Furthermore, this method allows profiling both genes and the microbiome's membership. Although these methods have provided extensive insights into various microbiomes, they solely assess the existence of organisms or genes, without determining their active role within the microbiome. Microbiome scholarship now includes metatranscriptomics to decipher how a community of microorganisms responds to changing environmental conditions over a period of time. Metagenomic studies identify the microbes that make up a community but metatranscriptomics explores the diversity of active genes within that community, understanding their expression profile and observing how these genes respond to changes in environmental conditions. This expert review article offers a critical examination of the computational metatranscriptomics tools for studying the transcriptomes of microbial communities. First, we unpack the reasons behind the need for community transcriptomics. Second, we explore the prospects and challenges of metatranscriptomic workflows, starting with isolation and sequencing of the RNA community, then moving on to bioinformatics approaches for quantifying RNA features, and statistical techniques for detecting differential expression in a community. Finally, we discuss strengths and shortcomings in relation to other microbiome analysis approaches, pipelines, use cases and limitations, and contextualize metatranscriptomics as a tool for clinical metagenomics.
Collapse
Affiliation(s)
- Shivani Tyagi
- Computational Omics Lab, Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj, India
| | - Pramod Katara
- Computational Omics Lab, Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj, India
| |
Collapse
|
13
|
Hu Y, Zhao Y, Zhang Y, Chen W, Zhang H, Jin X. Cell-free DNA: a promising biomarker in infectious diseases. Trends Microbiol 2024:S0966-842X(24)00168-9. [PMID: 38997867 DOI: 10.1016/j.tim.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Infectious diseases pose serious threats to public health worldwide. Conventional diagnostic methods for infectious diseases often exhibit low sensitivity, invasiveness, and long turnaround times. User-friendly point-of-care tests are urgently needed for early diagnosis, treatment monitoring, and prognostic prediction of infectious diseases. Cell-free DNA (cfDNA), a promising non-invasive biomarker widely used in oncology and pregnancy, has shown great potential in clinical applications for diagnosing infectious diseases. Here, we discuss the most recent cfDNA research on infectious diseases from both the pathogen and host perspectives. We also discuss the technical challenges in this field and propose solutions to overcome them. Additionally, we provide an outlook on the potential of cfDNA as a diagnostic, treatment, and prognostic marker for infectious diseases.
Collapse
Affiliation(s)
- Yuxuan Hu
- BGI Research, Shenzhen 518083, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | | | - Yan Zhang
- BGI Research, Shenzhen 518083, China
| | - Weijun Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | | | - Xin Jin
- BGI Research, Shenzhen 518083, China; The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen, China.
| |
Collapse
|
14
|
Petri F, Mahmoud OK, Ranganath N, El Zein S, Abu Saleh O, Berbari EF, Fida M. Plasma Microbial Cell-free DNA Next-generation Sequencing Can Be a Useful Diagnostic Tool in Patients With Osteoarticular Infections. Open Forum Infect Dis 2024; 11:ofae328. [PMID: 38989532 PMCID: PMC11234144 DOI: 10.1093/ofid/ofae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
Background Recent advances in shotgun metagenomic sequencing (sMGS) for detecting microbial cell-free DNA (mcfDNA) in peripheral blood have shown promise across various patient populations. This study evaluates the application of sMGS for diagnosing osteoarticular infections (OAIs), a condition with significant diagnostic challenges. Methods We conducted a retrospective analysis on 73 patients suspected of OAIs at the Mayo Clinic from 2019 to 2023, incorporating mcfDNA sMGS (Karius test [KT]) into their diagnostic evaluation. We categorized the clinical impact of KT on OAI diagnoses and management into 4 distinct outcomes. (1) KT was able to confirm an established diagnosis, (2) KT supported noninfectious diseases diagnosis, (3) KT established an unsuspected diagnosis, (4) KT did not add relevant information. Results In our cohort, KT was performed in 73 patients. Among the infected individuals, KT yielded positive results in 22 of 43 (51.2%) cases. Of these 22 cases, 11 (50%) showed agreement with conventional diagnostic workup, whereas in 5 (22.7%) cases, the KT established an unsuspected diagnosis. Native vertebral osteomyelitis diagnosis (P < .001) or OAIs with concomitant presence of endocarditis or endovascular infection (P = .005) were statistically associated with a definite, probable, or possible diagnostic certainty of KT result. Conclusions In complex OAIs, KT enhanced diagnostic accuracy by 11.6%, proving especially beneficial in diagnosing native vertebral osteomyelitis and infections with concurrent endocarditis or endovascular complications. Our findings underscore the utility of KT in the diagnostic workflow for challenging OAI cases, potentially altering clinical management for a significant subset of patients.
Collapse
Affiliation(s)
- Francesco Petri
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco, “L. Sacco” University Hospital, Milan, Italy
| | - Omar K Mahmoud
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Nischal Ranganath
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Said El Zein
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Omar Abu Saleh
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Elie F Berbari
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Madiha Fida
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Ankrah PK, Bock A, Ruffin F, Hanson BM, Arias CA, Maskarinec SA, Parsons J, Fowler VG, Thaden JT. Persistent Gram-negative Bloodstream Infection Increases the Risk of Recurrent Bloodstream Infection With the Same Species. Clin Infect Dis 2024; 78:1458-1461. [PMID: 38366610 PMCID: PMC11175691 DOI: 10.1093/cid/ciae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
The association between persistent gram-negative bloodstream infection (GN-BSI), or ongoing positive cultures, and recurrent GN-BSI has not been investigated. Among 992 adults, persistent GN-BSI was associated with increased recurrent GN-BSI with the same bacterial species and strain (6% vs 2%; P = .04). Persistent GN-BSI may be a marker of complicated infection.
Collapse
Affiliation(s)
- Paa Kwesi Ankrah
- Division of Infectious Disease, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Andrew Bock
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Felicia Ruffin
- Division of Infectious Disease, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Blake M Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
- Center for Infectious Diseases, Department of Epidemiology, UTHealth Houston School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| | - Cesar A Arias
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Stacey A Maskarinec
- Division of Infectious Disease, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joshua Parsons
- Division of Infectious Disease, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vance G Fowler
- Division of Infectious Disease, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joshua T Thaden
- Division of Infectious Disease, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
16
|
Das D, Avssn R, Chittela RK. A phenol-chloroform free method for cfDNA isolation from cell conditioned media: development, optimization and comparative analysis. Anal Biochem 2024; 687:115454. [PMID: 38158107 DOI: 10.1016/j.ab.2023.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The non-invasive invasive nature of cell-free DNA (cfDNA) as diagnostic, prognostic, and theragnostic biomarkers has gained immense popularity in recent years. The clinical utility of cfDNA biomarkers may depend on understanding their origin and biological significance. Apoptosis, necrosis, and/or active release are possible mechanisms of cellular DNA release into the cell-free milieu. In-vitro cell culture models can provide useful insights into cfDNA biology. The yields and quality of cfDNA in the cell conditioned media (CCM) are largely dependent on the extraction method used. Here, we developed a phenol-chloroform-free cfDNA extraction method from CCM and compared it with three others published cfDNA extraction methods and four commercially available kits. Real-Time PCR (qPCR) targeting two different loci and a fluorescence-based Qubit assay were performed to quantify the extracted cfDNA. The absolute concentration of the extracted cfDNA varies with the target used for the qPCR assay; however, the relative trend remains similar for both qPCR assays. The cfDNA yield from CCM provided by the developed method was found to be either higher or comparable to the other methods used. In conclusion, we developed a safe, rapid and cost-effective cfDNA extraction protocol with minimal hands-on time; with no compromise in cfDNA yields.
Collapse
Affiliation(s)
- Dhruv Das
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Trombay, Mumbai, 400094, India
| | - Rao Avssn
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Trombay, Mumbai, 400094, India.
| |
Collapse
|
17
|
Peri AM, O’Callaghan K, Rafiei N, Graves B, Sinclair H, Brischetto A, Lim K, Parkes-Smith J, Eustace M, Davidson N, Tabah A, Stewart A, Chatfield MD, Harris PNA, Paterson DL. Persistence of Detectable Pathogens by Culture-Independent Systems (T2 Magnetic Resonance) in Patients With Bloodstream Infection: Prognostic Role and Possible Clinical Implications. Clin Infect Dis 2024; 78:283-291. [PMID: 37890109 PMCID: PMC10874273 DOI: 10.1093/cid/ciad663] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Persistent Staphylococcus aureus bacteremia is associated with metastatic infection and adverse outcomes, whereas gram-negative bacteremia is normally transient and shorter course therapy is increasingly advocated for affected patients. Whether the prolonged detection of pathogen DNA in blood by culture-independent systems could have prognostic value and guide management decisions is unknown. METHODS We performed a multicenter, prospective, observational study on 102 patients with bloodstream infection (BSI) to compare time to bloodstream clearance according to T2 magnetic resonance and blood cultures over a 4-day follow-up. We also explored the association between duration of detectable pathogens according to T2 magnetic resonance (magnetic resonance-DNAemia [MR-DNAemia]) and clinical outcomes. RESULTS Time to bloodstream clearance according to T2 magnetic resonance was significantly longer than blood culture clearance (HR, .54; 95% CI, .39-.75) and did not differ according to the causative pathogen (P = .5). Each additional day of MR-DNAemia increased the odds of persistent infection (defined as metastatic infection or delayed source control) both in the overall population (OR, 1.98; 95% CI, 1.45-2.70) and in S. aureus (OR, 1.92; 95% CI, 1.12-3.29) and gram-negative bacteremia (OR, 2.21; 95% CI, 1.35-3.60). MR-DNAemia duration was also associated with no improvement in Sequential Organ Failure Assessment score at day 7 from infection onset (OR, 1.76; 95% CI, 1.21-2.56). CONCLUSIONS T2 magnetic resonance may help diagnose BSI in patients on antimicrobials with negative blood cultures as well as to identify patients with metastatic infection, source control failure, or adverse short-term outcome. Future studies may inform its usefulness within the setting of antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Anna Maria Peri
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin O’Callaghan
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Nastaran Rafiei
- Infectious Diseases Unit, Caboolture Hospital, Caboolture, Queensland, Australia
| | - Bianca Graves
- Herston Infectious Diseases Institute, Herston, Brisbane, Queensland, Australia
| | - Holly Sinclair
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Anna Brischetto
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Karen Lim
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Jill Parkes-Smith
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Matthew Eustace
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Natalie Davidson
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Alexis Tabah
- Intensive Care Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Adam Stewart
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Mark D Chatfield
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Patrick N A Harris
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute, Herston, Brisbane, Queensland, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - David L Paterson
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
18
|
Heldman MR, Ahmed AA, Liu W, Vo A, Keane-Candib J, Stevens-Ayers T, Boeckh M, Blauwkamp TA, Fisher CE, Hill JA. Serial Quantitation of Plasma Microbial Cell-Free DNA Before and After Diagnosis of Pulmonary Invasive Mold Infections After Hematopoietic Cell Transplant. J Infect Dis 2024; 229:576-587. [PMID: 37405403 DOI: 10.1093/infdis/jiad255] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Plasma microbial cell-free DNA sequencing (mcfDNA-Seq) is a noninvasive test for microbial diagnosis of invasive mold infection (IMI). The utility of mcfDNA-Seq for predicting IMI onset and the clinical implications of mcfDNA concentrations are unknown. METHODS We retrospectively tested plasma from hematopoietic cell transplant (HCT) recipients with pulmonary IMI and ≥1 mold identified by mcfDNA-Seq in plasma collected within 14 days of clinical diagnosis. Samples collected from up to 4 weeks before and 4 weeks after IMI diagnosis were evaluated using mcfDNA-Seq. RESULTS Thirty-five HCT recipients with 39 IMIs (16 Aspergillus and 23 non-Aspergillus infections) were included. Pathogenic molds were detected in 38%, 26%, 11%, and 0% of samples collected during the first, second, third, and fourth week before clinical diagnosis, respectively. In non-Aspergillus infections, median mcfDNA concentrations in samples collected within 3 days of clinical diagnosis were higher in infections with versus without extrapulmonary spread (4.3 vs 3.3 log10 molecules per microliter [mpm], P = .02), and all patients (8/8) with mcfDNA concentrations >4.0 log10 mpm died within 42 days after clinical diagnosis. CONCLUSIONS Plasma mcfDNA-Seq can identify pathogenic molds up to 3 weeks before clinical diagnosis of pulmonary IMI. Plasma mcfDNA concentrations may correlate with extrapulmonary spread and mortality in non-Aspergillus IMI.
Collapse
Affiliation(s)
- Madeleine R Heldman
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Winnie Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Alythia Vo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Cynthia E Fisher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
19
|
Zhao M, Zhang Y, Chen L, Yan X, Xu T, Fu M, Han Y, Zhang Y, Zhang B, Cao J, Lin J, Shen D, Li S, Zhu C, Zhao W. Nanopore sequencing of infectious fluid is a promising supplement for gold-standard culture in real-world clinical scenario. Front Cell Infect Microbiol 2024; 14:1330788. [PMID: 38352054 PMCID: PMC10861792 DOI: 10.3389/fcimb.2024.1330788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Infectious diseases are major causes of morbidity and mortality worldwide, necessitating the rapid identification and accurate diagnosis of pathogens. While unbiased metagenomic next-generation sequencing (mNGS) has been extensively utilized in clinical pathogen identification and scientific microbiome detection, there is limited research about the application of nanopore platform-based mNGS in the diagnostic performance of various infectious fluid samples. Methods In this study, we collected 297 suspected infectious fluids from 10 clinical centers and detected them with conventional microbiology culture and nanopore platform-based mNGS. The objective was to assess detective and diagnostic performance of nanopore-sequencing technology (NST) in real-world scenarios. Results Combined with gold-standard culture and clinical adjudication, nanopore sequencing demonstrated nearly 100% positive predictive agreements in microbial-colonized sites, such as the respiratory and urinary tracts. For samples collected from initially sterile body sites, the detected microorganisms were highly suspected pathogens, and the negative predictive agreements were relatively higher than those in the microbial-colonized sites, particularly with 100% in abscess and 95.7% in cerebrospinal fluid. Furthermore, consistent performance was also observed in the identification of antimicrobial resistance genes and drug susceptibility testing of pathogenic strains of Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii. Discussion Rapid NST is a promising clinical tool to supplement gold-standard culture, and it has the potential improve patient prognosis and facilitate clinical treatment of infectious diseases.
Collapse
Affiliation(s)
- Manna Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongyang Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Li Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuebing Yan
- Department of Infectious Disease, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianmin Xu
- Department of Infectious Diseases, The Third People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Maoying Fu
- Infectious Diseases Department, Kunshan First People’s Hospital, Kunshan, Jiangsu, China
| | - Yangguang Han
- Department of Infectious Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhang
- Department of Infection Medicine, The Fifth People’s Hospital of Wuxi, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Bin Zhang
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Juan Cao
- Emergency Department, Shanghai Shibei Hospital, Shanghai, China
| | - Jing Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dan Shen
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
| | - Shuo Li
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
- Medical Department, Nanjing Dian Diagnostics Group Co., Ltd., Nanjing, Jiangsu, China
| | - Chuanlong Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weifeng Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Vinh Dong H, Saleh T, Kaur I, Yang S. Elucidating the Clinical Interpretation and Impact of a Positive Plasma Cell-Free DNA Metagenomics Test Result-A Single Center Retrospective Study. J Appl Lab Med 2024; 9:14-27. [PMID: 38167775 DOI: 10.1093/jalm/jfad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The Karius Test (KT), a cell-free DNA metagenomic next-generation sequencing assay, has potential to improve diagnostic evaluation of infectious diseases. Published data describing clinical impact of positive KT results are limited. We attempt to elucidate the clinical interpretation and impact of positive KT results based on types and patterns of detected pathogens and patient characteristics. METHODS All positive KT results from a single institution in 2022 were screened. Patients with results that met predefined categories were included for review by a panel of 3 infectious diseases physicians and one clinical microbiologist. Predefined categories included reports with fungal, parasitic, notable bacterial, notable viral pathogens, or polybacterial results (≥3 bacteria). Polybacterial results were further classified into patterns of microbiome detected. Clinical impact and its correlation with result or patient characteristics were explored. RESULTS Ninety-two patients met the inclusion criteria, most were immunocompromised (73%). Positive KT results that met predefined categories had the following clinical impact: positive in 30.4%, negative in 2.2%, and none in 65.2%. Polybacterial results, especially interpreted as oral flora had lowest clinical impact (7.1% and 0.0%, respectively), while detection of parasites or notable bacterial pathogens had the highest clinical impact (100% and 77.8%, respectively). There was no correlation between patient characteristics and clinical impact. CONCLUSIONS Among a cohort of largely immunocompromised patients, we were able to demonstrate clinical impact of specific KT result types and patterns but did not find correlation between patient characteristics and clinical impact. Our results should be confirmed in future larger cohorts.
Collapse
Affiliation(s)
- Huan Vinh Dong
- Department of Pediatrics, Division of Pediatric Infectious Diseases, David Geffen School of Medicine, University of California Los Angles, Los Angeles, CA, United States
| | - Tawny Saleh
- Department of Pediatrics, Division of Pediatric Infectious Diseases, David Geffen School of Medicine, University of California Los Angles, Los Angeles, CA, United States
| | - Ishminder Kaur
- Department of Pediatrics, Division of Pediatric Infectious Diseases, David Geffen School of Medicine, University of California Los Angles, Los Angeles, CA, United States
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Shah JR, Sohail MR, Lasco T, Goss JA, Mohajer MA, Khalil S. Clinical utility of plasma microbial cell-free DNA sequencing in determining microbiologic etiology of infectious syndromes in solid organ transplant recipients. Ther Adv Infect Dis 2024; 11:20499361241308643. [PMID: 39717490 PMCID: PMC11664510 DOI: 10.1177/20499361241308643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Background Metagenomic next-generation sequencing (mNGS) is increasingly being used for microbial detection in various infectious syndromes. However, data regarding the use of mNGS in solid organ transplant recipients (SOTR) are lacking. Objectives To describe and analyze real-world clinical impact of mNGS using plasma microbial cell-free DNA (mcfDNA) in SOTR.Design: Retrospectively reviewed all adult SOTR who underwent mNGS testing using plasma mcfDNA at Baylor St Luke's Medical Center from March 2017 to February 2023. Methods Clinical impact (positive, neutral, and negative) was assessed using standardized objective criteria. Three Infectious Diseases physicians independently performed clinical adjudication to determine the correlation of mcfDNA results with clinical diagnosis. A descriptive analysis of the patient and clinical characteristics was performed. Results A total of 113 mcfDNA tests in liver (42%), kidney (35%), lung (20%) and heart (13%) transplant recipients were performed in the study period. The most common clinical syndromes were pneumonia (36%), fever of unknown origin (16%), and intra-abdominal infections (15%). Most (80, 71%) of the mcfDNA test results were positive for microorganisms. Twenty-seven (24%) cases were classified as positive clinical impact, 82 (73%) were neutral and 4 (3%) were negative, respectively. Conclusion In SOTR, mcfDNA sequencing can add a positive clinical impact in a quarter of the cases and identify microorganisms beyond conventional microbiological testing across clinical syndromes. The negative clinical impact was rare. However, larger prospective studies are needed to define the optimal timing and utilization of mcfDNA in the sequence of diagnostic evaluation for syndrome-specific workup in SOTR. Summary Metagenomic next-generation sequencing (mNGS) is a novel diagnostic tool that can identify difficult-to-detect microorganisms in SOTR. Our study demonstrates that the mNGS test resulted in a positive clinical impact in 1 out of 4 patients.
Collapse
Affiliation(s)
- Jesal R. Shah
- Baylor College of Medicine, Department of Medicine, Section of Infectious Diseases, Houston, TX, USA
| | - Muhammad Rizwan Sohail
- Baylor College of Medicine, Department of Medicine, Section of Infectious Diseases, Houston, TX, USA
| | - Todd Lasco
- Baylor College of Medicine, Department of Pathology and Immunology, Houston, TX, USA
- Department of Pathology, Baylor St Luke’s Medical Center, Houston, TX, USA
| | - John A. Goss
- Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| | - Mayar Al Mohajer
- Baylor College of Medicine, Department of Medicine, Section of Infectious Diseases, Houston, TX, USA
| | - Sarwat Khalil
- Baylor College of Medicine, Department of Medicine, Section of Infectious Diseases, Houston, TX 77030-3498, USA
| |
Collapse
|
22
|
Flurin L, Fisher CR, Wolf MJ, Pritt BS, DeSimone DC, Patel R. Comparison of Blood-Based Shotgun and Targeted Metagenomic Sequencing for Microbiological Diagnosis of Infective Endocarditis. Open Forum Infect Dis 2023; 10:ofad546. [PMID: 38075017 PMCID: PMC10709542 DOI: 10.1093/ofid/ofad546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
Background Shotgun and targeted metagenomic sequencing have been shown in separate studies to be potentially useful for culture-free pathogen identification in blood and/or plasma of patients with infective endocarditis (IE). However, the 2 approaches have not been directly compared. The aim of this study was to compare shotgun metagenomic sequencing with targeted metagenomic sequencing (tMGS) for organism identification in blood or plasma of patients with IE. Methods Patients with possible or definite IE were prospectively enrolled from October 2020 to July 2021. Shotgun metagenomic sequencing was performed with the Karius test, which uses microbial cell-free DNA (mcfDNA) sequencing to detect, identify, and quantitate DNA-based pathogens in plasma. tMGS was performed using a 16S ribosomal RNA (rRNA) polymerase chain reaction assay targeting the V1 to V3 regions of the 16S rRNA gene. Results were compared using the McNemar test of paired proportions. Results Samples from 34 patients were investigated. The Karius test was positive in 24/34 (71%), including 3/6 (50%) with blood culture-negative endocarditis (BCNE), which was not significantly different from the positivity rate of tMGS (P = .41). Results of the Karius test were concordant with tMGS in 75% of cases. The Karius test detected 2 cases of methicillin-resistant Staphylococcus aureus among the 7 S. aureus detections, in accordance with results of phenotypic susceptibility testing. The combination of blood cultures, the Karius test, and tMGS found a potential causative pathogen in 33/34 (97%), including 5/6 with BCNE. Conclusions The Karius test and tMGS yielded comparable detection rates; however, beyond organism identification, the Karius test generated potentially useful antibiotic resistance data.
Collapse
Affiliation(s)
- Laure Flurin
- Divisions of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Intensive Care, University Hospital of Guadeloupe, Pointe-à-Pitre, France
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Cody R Fisher
- Divisions of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J Wolf
- Divisions of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Bobbi S Pritt
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel C DeSimone
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Divisions of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Minter DJ, Appa A, Chambers HF, Doernberg SB. Contemporary Management of Staphylococcus aureus Bacteremia-Controversies in Clinical Practice. Clin Infect Dis 2023; 77:e57-e68. [PMID: 37950887 DOI: 10.1093/cid/ciad500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 11/13/2023] Open
Abstract
Staphylococcus aureus bacteremia (SAB) carries a high risk for excess morbidity and mortality. Despite its prevalence, significant practice variation continues to permeate clinical management of this syndrome. Since the publication of the 2011 Infectious Diseases Society of America (IDSA) guidelines on management of methicillin-resistant Staphylococcus aureus infections, the field of SAB has evolved with the emergence of newer diagnostic strategies and therapeutic options. In this review, we seek to provide a comprehensive overview of the evaluation and management of SAB, with special focus on areas where the highest level of evidence is lacking to inform best practices.
Collapse
Affiliation(s)
- Daniel J Minter
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ayesha Appa
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Division of HIV, Infectious Diseases, and Global Medicine at Zuckerberg San Francisco General Hospital, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Henry F Chambers
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Division of HIV, Infectious Diseases, and Global Medicine at Zuckerberg San Francisco General Hospital, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sarah B Doernberg
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
24
|
Kanaujia R, Sharma V, Biswal M, Singh S, Ray P, Angrup A. Microbial cell-free DNA detection: Minimally invasive diagnosis of infectious diseases. Indian J Med Microbiol 2023; 46:100433. [PMID: 37945127 DOI: 10.1016/j.ijmmb.2023.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Detection of infectious diseases, especially among immunocompromised and patients on prolonged anti-microbial treatment, remains challenging, limited by conventional techniques with low sensitivity and long-turnaround time. Molecular detection by polymerase chain reaction (PCR) also has limited utility as it requires a targeted approach with prior suspicion of the infecting organism. Advancements in sequencing methodologies, specifically next-generation sequencing (NGS), have presented a promising opportunity to identify pathogens in cases where conventional techniques may be inadequate. However, the direct application of these techniques for diagnosing invasive infections is still limited by the need for invasive sampling, highlighting the pressing need to develop and implement non-invasive or minimally invasive approaches to improve the diagnosis of invasive infections. OBJECTIVES The objectives of this article are to explore the notable features, clinical utility, and constraints associated with the detection of microbial circulating cell-free DNA (mcfDNA) as a minimally invasive diagnostic tool for infectious diseases. CONTENT The mcfDNA detection provides an opportunity to identify micro-organisms in the blood of a patient. It is especially beneficial in immunocompromised patients where invasive sampling is not possible or where repeated cultures are negative. This review will discuss the applications and constraints of detecting mcfDNA for diagnosing infections and the various platforms available for its detection.
Collapse
Affiliation(s)
| | - Vikas Sharma
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Manisha Biswal
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, AIMS, Mohali, India
| | - Pallab Ray
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Archana Angrup
- Department of Medical Microbiology, PGIMER, Chandigarh, India.
| |
Collapse
|
25
|
Bell DT. Deciphering the potential of plasma cell-free metagenomic next-generation sequencing using the Karius test. Curr Opin Infect Dis 2023; 36:420-425. [PMID: 37493238 DOI: 10.1097/qco.0000000000000942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW Plasma cell-free metagenomic next-generation sequencing (cf-mNGS) is increasingly employed for the diagnosis of infection, but a consensus for optimal use has not been established. This minireview focuses on the commercially available Karius Test and is aimed at local leaders seeking to understand the complexities of cf-mNGS to make informed test utilization policies and better interpret results. RECENT FINDINGS Recent retrospective studies have reported how the Karius Test was applied at their institutions and identified areas of potential patient benefit. In addition, substantive studies have reported how this test performs in specific indications, particularly invasive fungal disease, endovascular infection and lower respiratory infection. SUMMARY Successfully integrating plasma cf-mNGS requires careful assessment of performance in the specific applications and patient populations in which it is used. Individual institutions must independently evaluate implementation strategies and determine where diagnostic yields outweigh the potential pitfalls.
Collapse
Affiliation(s)
- Drew T Bell
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA
| |
Collapse
|
26
|
Weiss ZF, Pyden AD, Jhaveri TA, Kanjilal S. The diagnostic and clinical utility of microbial cell-free DNA sequencing in a real-world setting. Diagn Microbiol Infect Dis 2023; 107:116004. [PMID: 37467522 DOI: 10.1016/j.diagmicrobio.2023.116004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/13/2023] [Accepted: 06/07/2023] [Indexed: 07/21/2023]
Abstract
Microbial cell free DNA sequencing is increasingly used for diagnosis of infection but few studies describe its utility in real-world settings. We performed a single-center retrospective case series of microbial cell free DNA testing using the Karius assay from 29 patient samples to define the clinical reasoning and the impact of testing. Indications fell into 3 categories, identifying a causative pathogen in patients with an infectious syndrome and negative microbiologic workup (15/29, 52%), seeking another pathogen when organisms identified by traditional diagnostics failed to explain the clinical presentation (9/29, 31%) and to "rule out" infection in patients with nonspecific symptoms and negative microbiologic workup (5/29, 17%). Clinical impact was positive in 13/29 (45%) and all were for patients with high pretest probability for infection. Impact was negative in 3/29 (10%) cases. There was no impact in 15/29 (52%) cases. Further work is needed to define the optimal timing accounting for test performance, and patient characteristics.
Collapse
Affiliation(s)
- Zoe Freeman Weiss
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Infectious Diseases and Geographic Medicine and Department of Anatomic and Clinical Pathology, Tufts University School of Medicine, Boston, MA, USA.
| | - Alexander D Pyden
- Department of Laboratory Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Tulip A Jhaveri
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sanjat Kanjilal
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Pilgrim Healthcare Institute & Harvard Medical School, Department of Population Medicine; Boston, MA, USA
| |
Collapse
|
27
|
Park SY, Chang EJ, Ledeboer N, Messacar K, Lindner MS, Venkatasubrahmanyam S, Wilber JC, Vaughn ML, Bercovici S, Perkins BA, Nolte FS. Plasma Microbial Cell-Free DNA Sequencing from over 15,000 Patients Identified a Broad Spectrum of Pathogens. J Clin Microbiol 2023; 61:e0185522. [PMID: 37439686 PMCID: PMC10446866 DOI: 10.1128/jcm.01855-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Microbial cell-free DNA (mcfDNA) sequencing is an emerging infectious disease diagnostic tool which enables unbiased pathogen detection and quantification from plasma. The Karius Test, a commercial mcfDNA sequencing assay developed by and available since 2017 from Karius, Inc. (Redwood City, CA), detects and quantifies mcfDNA as molecules/μL in plasma. The commercial sample data and results for all tests conducted from April 2018 through mid-September 2021 were evaluated for laboratory quality metrics, reported pathogens, and data from test requisition forms. A total of 18,690 reports were generated from 15,165 patients in a hospital setting among 39 states and the District of Columbia. The median time from sample receipt to reported result was 26 h (interquartile range [IQR] 25 to 28), and 96% of samples had valid test results. Almost two-thirds (65%) of patients were adults, and 29% at the time of diagnostic testing had ICD-10 codes representing a diverse array of clinical scenarios. There were 10,752 (58%) reports that yielded at least one taxon for a total of 22,792 detections spanning 701 unique microbial taxa. The 50 most common taxa detected included 36 bacteria, 9 viruses, and 5 fungi. Opportunistic fungi (374 Aspergillus spp., 258 Pneumocystis jirovecii, 196 Mucorales, and 33 dematiaceous fungi) comprised 861 (4%) of all detections. Additional diagnostically challenging pathogens (247 zoonotic and vector-borne pathogens, 144 Mycobacterium spp., 80 Legionella spp., 78 systemic dimorphic fungi, 69 Nocardia spp., and 57 protozoan parasites) comprised 675 (3%) of all detections. This is the largest reported cohort of patients tested using plasma mcfDNA sequencing and represents the first report of a clinical grade metagenomic test performed at scale. Data reveal new insights into the breadth and complexity of potential pathogens identified.
Collapse
Affiliation(s)
| | | | | | - Kevin Messacar
- University of Colorado, Children’s Hospital Colorado, Aurora, Colorado, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
[Chinese expert consensus on the application of metagenomic next-generation sequencing technology in the diagnosis of pathogens in hematological patients (2023)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:617-623. [PMID: 37803833 PMCID: PMC10520238 DOI: 10.3760/cma.j.issn.0253-2727.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 10/08/2023]
|
29
|
Mourad A, Fowler VG, Holland TL. Which trial do we need? Next-generation sequencing to individualize therapy in Staphylococcus aureus bacteraemia. Clin Microbiol Infect 2023; 29:955-958. [PMID: 37040826 PMCID: PMC11105115 DOI: 10.1016/j.cmi.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 04/13/2023]
Abstract
We propose a two-stage clinical trial in patients with Staphylococcus aureus bacteremia (SAB). In Stage 1 we will evaluate metagenomic next generation sequencing from blood as a quantitative biological surrogate for clinical endpoint in patients with SAB, similar to quantitative HIV viral load in HIV-infected patients. In Stage 2, we will conduct a randomized controlled trial to individualize duration of antibiotic therapy for based upon the presence of S. aureus genetic material in patients’ blood. The proposed study addresses two critical aspects of treatment of patients with SAB: the identification of a surrogate biological endpoint for future clinical trials, and a new approach by which to individualize patient management.
Collapse
Affiliation(s)
- Ahmad Mourad
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Thomas L Holland
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
30
|
Mizusawa M, Carroll KC. Recent updates in the development of molecular assays for the rapid identification and susceptibility testing of MRSA. Expert Rev Mol Diagn 2023; 23:679-699. [PMID: 37419696 DOI: 10.1080/14737159.2023.2234823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of healthcare- and community-associated infections. Nasal carriage of MRSA is a risk factor for subsequent MRSA infections. Increased morbidity and mortality are associated with MRSA infections and screening and diagnostic tests for MRSA play an important role in clinical management. AREAS COVERED A literature search was conducted in PubMed and supplemented by citation searching. In this article, we provide a comprehensive review of molecular-based methods for MRSA screening and diagnostic tests including individual nucleic acid detection assays, syndromic panels, and sequencing technologies with a focus on their analytical performance. EXPERT OPINION Molecular based-assays for the detection of MRSA have improved in terms of accuracy and availability. Rapid turnaround enables earlier contact isolation and decolonization for MRSA. The availability of syndromic panel tests that include MRSA as a target has expanded from positive blood cultures to pneumonia and osteoarticular infections. Sequencing technologies allow detailed characterizations of novel methicillin-resistance mechanisms that can be incorporated into future assays. Next generation sequencing is capable of diagnosing MRSA infections that cannot be identified by conventional methods and metagenomic next-generation sequencing (mNGS) assays will likely move closer to implementation as front-line diagnostics in the near future.
Collapse
Affiliation(s)
- Masako Mizusawa
- Monmouth Medical Center, Rutgers University Robert Wood Johnson Medical School, Long Branch, NJ, USA
| | - Karen C Carroll
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Batool M, Galloway-Peña J. Clinical metagenomics-challenges and future prospects. Front Microbiol 2023; 14:1186424. [PMID: 37448579 PMCID: PMC10337830 DOI: 10.3389/fmicb.2023.1186424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Infections lacking precise diagnosis are often caused by a rare or uncharacterized pathogen, a combination of pathogens, or a known pathogen carrying undocumented or newly acquired genes. Despite medical advances in infectious disease diagnostics, many patients still experience mortality or long-term consequences due to undiagnosed or misdiagnosed infections. Thus, there is a need for an exhaustive and universal diagnostic strategy to reduce the fraction of undocumented infections. Compared to conventional diagnostics, metagenomic next-generation sequencing (mNGS) is a promising, culture-independent sequencing technology that is sensitive to detecting rare, novel, and unexpected pathogens with no preconception. Despite the fact that several studies and case reports have identified the effectiveness of mNGS in improving clinical diagnosis, there are obvious shortcomings in terms of sensitivity, specificity, costs, standardization of bioinformatic pipelines, and interpretation of findings that limit the integration of mNGS into clinical practice. Therefore, physicians must understand the potential benefits and drawbacks of mNGS when applying it to clinical practice. In this review, we will examine the current accomplishments, efficacy, and restrictions of mNGS in relation to conventional diagnostic methods. Furthermore, we will suggest potential approaches to enhance mNGS to its maximum capacity as a clinical diagnostic tool for identifying severe infections.
Collapse
Affiliation(s)
| | - Jessica Galloway-Peña
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
32
|
Liu Q, Liu X, Hu B, Xu H, Sun R, Li P, Zhang Y, Yang H, Ma N, Sun X. Diagnostic performance and clinical impact of blood metagenomic next-generation sequencing in ICU patients suspected monomicrobial and polymicrobial bloodstream infections. Front Cell Infect Microbiol 2023; 13:1192931. [PMID: 37434786 PMCID: PMC10330723 DOI: 10.3389/fcimb.2023.1192931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Early and effective application of antimicrobial medication has been evidenced to improve outcomes of patients with bloodstream infection (BSI). However, conventional microbiological tests (CMTs) have a number of limitations that hamper a rapid diagnosis. Methods We retrospectively collected 162 cases suspected BSI from intensive care unit with blood metagenomics next-generation sequencing (mNGS) results, to comparatively evaluate the diagnostic performance and the clinical impact on antibiotics usage of mNGS. Results and discussion Results showed that compared with blood culture, mNGS detected a greater number of pathogens, especially for Aspergillus spp, and yielded a significantly higher positive rate. With the final clinical diagnosis as the standard, the sensitivity of mNGS (excluding viruses) was 58.06%, significantly higher than that of blood culture (34.68%, P<0.001). Combing blood mNGS and culture results, the sensitivity improved to 72.58%. Forty-six patients had infected by mixed pathogens, among which Klebsiella pneumoniae and Acinetobacter baumannii contributed most. Compared to monomicrobial, cases with polymicrobial BSI exhibited dramatically higher level of SOFA, AST, hospitalized mortality and 90-day mortality (P<0.05). A total of 101 patients underwent antibiotics adjustment, among which 85 were adjusted according to microbiological results, including 45 cases based on the mNGS results (40 cases escalation and 5 cases de-escalation) and 32 cases on blood culture. Collectively, for patients suspected BSI in critical condition, mNGS results can provide valuable diagnostic information and contribute to the optimizing of antibiotic treatment. Combining conventional tests with mNGS may significantly improve the detection rate for pathogens and optimize antibiotic treatment in critically ill patients with BSI.
Collapse
Affiliation(s)
- Qilong Liu
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaojing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bingxue Hu
- Department of Scientific Affairs, Vision Medicals for Infectious Diseases, Guangzhou, Guangdong Province, China
| | - Huan Xu
- Department of Scientific Affairs, Vision Medicals for Infectious Diseases, Guangzhou, Guangdong Province, China
| | - Rongqing Sun
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Pengfei Li
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunwei Zhang
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hongfu Yang
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ning Ma
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoge Sun
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
33
|
Everhart J, Henshaw NG. Updates in Molecular Diagnostics in Solid Organ Transplantation Recipients. Infect Dis Clin North Am 2023:S0891-5520(23)00038-7. [PMID: 37244805 DOI: 10.1016/j.idc.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Advances in molecular diagnostics have the potential to improve patient care among solid organ transplant recipients by reducing time to pathogen identification and informing directed therapy. Although cultures remain the cornerstone of traditional microbiology, advanced molecular diagnostics, such as metagenomic next-generation sequencing (mNGS), may increase detection of pathogens. This is particularly true in the settings of prior antibiotic exposure, and when causative organisms are fastidious. mNGS also offers a hypothesis-free diagnostic method of testing. This is useful in situations whereby the differential is broad or when the infectious agent is unlikely to be detected by routine methods.
Collapse
Affiliation(s)
- James Everhart
- Duke University Medical Center, 2351 Erwin Road, Wadsworth Building, Room 0170, Durham, NC 27705, USA.
| | - Nancy G Henshaw
- Duke University Medical Center, 2351 Erwin Road, Wadsworth Building, Room 0170, Durham, NC 27705, USA
| |
Collapse
|
34
|
Onofrei VA, Adam CA, Marcu DTM, Crisan Dabija R, Ceasovschih A, Constantin M, Grigorescu ED, Petroaie AD, Mitu F. Infective Endocarditis during Pregnancy-Keep It Safe and Simple! MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050939. [PMID: 37241171 DOI: 10.3390/medicina59050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The diagnosis of infective endocarditis (IE) during pregnancy is accompanied by a poor prognosis for both mother and fetus in the absence of prompt management by multidisciplinary teams. We searched the electronic databases of PubMed, MEDLINE and EMBASE for clinical studies addressing the management of infective endocarditis during pregnancy, with the aim of realizing a literature review ranging from risk factors to diagnostic investigations to optimal therapeutic management for mother and fetus alike. The presence of previous cardiovascular pathologies such as rheumatic heart disease, congenital heart disease, prosthetic valves, hemodialysis, intravenous catheters or immunosuppression are the main risk factors predisposing patients to IE during pregnancy. The identification of modern risk factors such as intracardiac devices and intravenous drug administration as well as genetic diagnostic methods such as cell-free deoxyribonucleic acid (DNA) next-generation sequencing require that these cases be addressed in multidisciplinary teams. Guiding treatment to eradicate infection and protect the fetus simultaneously creates challenges for cardiologists and gynecologists alike.
Collapse
Affiliation(s)
- Viviana Aursulesei Onofrei
- Department of Medical Specialties I, II, III and Preventive Medicine and Interdisciplinary, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- "St. Spiridon" Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Cristina Andreea Adam
- Department of Medical Specialties I, II, III and Preventive Medicine and Interdisciplinary, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Cardiovascular Rehabilitation Clinic, Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
| | - Dragos Traian Marius Marcu
- Department of Medical Specialties I, II, III and Preventive Medicine and Interdisciplinary, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Hospital of Pneumophthisiology Iași, Doctor Iosif Cihac Street No. 30, 700115 Iasi, Romania
| | - Radu Crisan Dabija
- Department of Medical Specialties I, II, III and Preventive Medicine and Interdisciplinary, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Hospital of Pneumophthisiology Iași, Doctor Iosif Cihac Street No. 30, 700115 Iasi, Romania
| | - Alexandr Ceasovschih
- Department of Medical Specialties I, II, III and Preventive Medicine and Interdisciplinary, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- "St. Spiridon" Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Mihai Constantin
- Department of Medical Specialties I, II, III and Preventive Medicine and Interdisciplinary, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- "St. Spiridon" Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Elena-Daniela Grigorescu
- Department of Medical Specialties I, II, III and Preventive Medicine and Interdisciplinary, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Antoneta Dacia Petroaie
- Department of Medical Specialties I, II, III and Preventive Medicine and Interdisciplinary, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties I, II, III and Preventive Medicine and Interdisciplinary, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Cardiovascular Rehabilitation Clinic, Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
- Academy of Medical Sciences, Ion C. Brătianu Boulevard No. 1, 030167 Bucharest, Romania
- Academy of Romanian Scientists, Professor Dr. Doc. Dimitrie Mangeron Boulevard No. 433, 700050 Iasi, Romania
| |
Collapse
|
35
|
Eichenberger EM, Degner N, Scott ER, Ruffin F, Franzone J, Sharma-Kuinkel B, Shah P, Hong D, Dalai SC, Blair L, Hollemon D, Chang E, Ho C, Wanda L, de Vries CR, Fowler VG, Ahmed AA. Microbial Cell-Free DNA Identifies the Causative Pathogen in Infective Endocarditis and Remains Detectable Longer Than Conventional Blood Culture in Patients with Prior Antibiotic Therapy. Clin Infect Dis 2023; 76:e1492-e1500. [PMID: 35684984 PMCID: PMC10169441 DOI: 10.1093/cid/ciac426] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The diagnosis of infective endocarditis (IE) can be difficult, particularly if blood cultures fail to yield a pathogen. This study evaluates the potential utility of microbial cell-free DNA (mcfDNA) as a tool to identify the microbial etiology of IE. METHODS Blood samples from patients with suspected IE were serially collected. mcfDNA was extracted from plasma and underwent next-generation sequencing. Reads were aligned against a library containing DNA sequences belonging to >1400 different pathogens. mcfDNA from organisms present above a statistical threshold were reported and quantified in molecules per milliliter (MPM). Additional mcfDNA was collected on each subject every 2-3 days for a total of 7 collections or until discharge. RESULTS Of 30 enrolled patients with suspected IE, 23 had definite IE, 2 had possible IE, and IE was rejected in 5 patients by modified Duke Criteria. Only the 23 patients with definite IE were included for analysis. Both mcfDNA and blood cultures achieved a sensitivity of 87%. The median duration of positivity from antibiotic treatment initiation was estimated to be approximately 38.1 days for mcfDNA versus 3.7 days for blood culture (proportional odds, 2.952; P = .02771), using a semiparametric survival analysis. mcfDNA (log10) levels significantly declined (-0.3 MPM log10 units, 95% credible interval -0.45 to -0.14) after surgical source control was performed (pre- vs postprocedure, posterior probability >0.99). CONCLUSION mcfDNA accurately identifies the microbial etiology of IE. Sequential mcfDNA levels may ultimately help to individualize therapy by estimating a patient's burden of infection and response to treatment.
Collapse
Affiliation(s)
- Emily M Eichenberger
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Felicia Ruffin
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - John Franzone
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Batu Sharma-Kuinkel
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Pratik Shah
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - David Hong
- Karius, Inc., Redwood City, California, USA
| | | | - Lily Blair
- Karius, Inc., Redwood City, California, USA
| | | | | | - Carine Ho
- Karius, Inc., Redwood City, California, USA
| | - Lisa Wanda
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Vance G Fowler
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
36
|
Pietrzak B, Kawacka I, Olejnik-Schmidt A, Schmidt M. Circulating Microbial Cell-Free DNA in Health and Disease. Int J Mol Sci 2023; 24:ijms24033051. [PMID: 36769374 PMCID: PMC9917616 DOI: 10.3390/ijms24033051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Human blood contains low biomass of circulating microbial cell-free DNA (cfmDNA) that predominantly originates from bacteria. Numerous studies have detected circulating cfmDNA in patients with infectious and non-infectious diseases, and in healthy individuals. Remarkable differences were found in the microbial composition of healthy subjects and patients compared to cohorts with various diseases or even patients with diversified prognoses, implying that these alterations may be associated with disease development. Although the function of circulating cfmDNA needs to be elucidated (whether it acts as a bystander of dysbiosis or a key player in disease development), several studies have demonstrated its potential as a non-invasive biomarker that may improve diagnosis and treatment efficacy. The origin of circulating cfmDNA is still the subject of much deliberation, but studies have identified members of various microbiome niches, including the gut, oral cavity, airways, and skin. Further studies investigating the origin and function of circulating cfmDNA are needed. Moreover, low-biomass microbiome studies are prone to contamination, therefore stringent negative experimental control reactions and decontamination frameworks are advised in order to detect genuine circulating cfmDNA.
Collapse
Affiliation(s)
- Bernadeta Pietrzak
- Correspondence: (B.P.); (M.S.); Tel.: +48-61-846-6023 (B.P.); +48-61-846-6024 (M.S.)
| | | | | | - Marcin Schmidt
- Correspondence: (B.P.); (M.S.); Tel.: +48-61-846-6023 (B.P.); +48-61-846-6024 (M.S.)
| |
Collapse
|
37
|
Messages from the Seventh International Conference on Clinical Metagenomics (ICCMg7). Microbes Infect 2023; 25:105105. [PMID: 36720401 DOI: 10.1016/j.micinf.2023.105105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Clinical metagenomics (CMg), referring to the application of metagenomic sequencing of clinical samples to obtain clinically relevant information for the diagnosis and management of infectious diseases, has been rapidly evolving these last years. Following this trend, we held the seventh International Conference on Clinical Metagenomics (ICCMg7) in Geneva in October 2022. During the two-day conference, cutting-edge advances and new discoveries using CMg were presented which we summarize in the present paper. During this ICCMg7, we kept on following the progresses achieved worldwide that cover reproducibility in CMg, the advent of new technologies applied to the field of infectious diseases, innovative research in the field of the gut microbiota, and finally the expansion of CMg in the fields of clinical epidemiology with surveillance studies on emerging and known pathogens, but also on antibiotic resistance genes, in the environment and in the animal reservoirs.
Collapse
|
38
|
Packham A, Spence N, Bawa T, Srinivasan R, Goodman AL. The role of [18F]FDG-PET/CT in gram-positive and gram-negative bacteraemia: A systematic review. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:1066246. [PMID: 39354984 PMCID: PMC11440864 DOI: 10.3389/fnume.2022.1066246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/28/2022] [Indexed: 10/03/2024]
Abstract
Objectives Bacteraemia is associated with significant morbidity and mortality. [18F]FDG-PET/CT is increasingly used to detect infectious metastatic foci, however there remains international variation in its use. We performed a systematic review assessing the impact of [18F]FDG-PET/CT in adult inpatients with gram-positive and Gram-negative bacteraemia. Design The systematic review was performed according to PRISMA guidelines. Studies published between 2009 and December 2021 were searched in MEDLINE, EMBASE and Cochrane clinical trials database. Data extraction and quality assessment was performed using ROBINS-I and GRADE. Setting Eligible study designs included randomised-controlled trials, clinically-controlled trials, prospective trials, retrospective trials, case-control studies, and non-controlled studies. Participants Studies solely assessing adult inpatients with blood-culture confirmed bacteraemia with one cohort of patients receiving [18F]FDG-PET/CT were included. Main outcome measures primary outcomes were mortality, identification of metastatic foci and relapse rate. Studies not examining any of the pre-specified outcomes were excluded. Results Ten studies were included, of which five had a non-PET/CT control arm. Overall, there was low quality of evidence that [18F]FDG-PET/CT is associated with reduced mortality, improved identification of metastatic foci and reduced relapse rate. Six studies assessed Staphylococcus aureus bacteraemia (SAB) only; nine studies included Gram-positive bacteraemia only, and one study included data from Gram-negative bacteraemia. Two studies compared outcomes between patients with different types of bacteraemia. Four studies identified a statistically significant difference in mortality in [18F]FDG-PET/CT recipients and controls. Relapse rate was significantly reduced in patients with SAB who received [18F]FDG-PET/CT. Studies identified significantly higher detection of metastatic foci in [18F]FDG-PET/CT recipients compared to controls. [18F]FDG-PET/CT was the first to identify an infectious site in 35.5% to 67.2% of overall foci identified. Conclusions Further research is required to establish the role of [18F]FDG-PET/CT in bacteraemia, and its impact on management and mortality.
Collapse
Affiliation(s)
- Alice Packham
- Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Niamh Spence
- Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Tanveer Bawa
- Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Rohit Srinivasan
- Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Anna L. Goodman
- Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- MRC Clinical Trials Unit, University College London, London, United Kingdom
| |
Collapse
|
39
|
Chang SY, Santos CAQ. Could cell‐free DNA and host biomarkers assist in antimicrobial stewardship with organ transplant recipients? Transpl Infect Dis 2022; 24:e13971. [DOI: 10.1111/tid.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sandy Y. Chang
- Division of Infectious Diseases Department of Medicine Loma Linda University Loma Linda California USA
| | - Carlos A. Q. Santos
- Division of Infectious Diseases Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| |
Collapse
|
40
|
Zhang X, Li Y, Yin J, Xi B, Wang N, Zhang Y. Application of Next-Generation Sequencing in Infections After Allogeneic Haematopoietic Stem Cell Transplantation: A Retrospective Study. Front Cell Infect Microbiol 2022; 12:888398. [PMID: 35774403 PMCID: PMC9239075 DOI: 10.3389/fcimb.2022.888398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
This retrospective study aimed to determine the characteristics of infection and diagnostic efficacy of next-generation sequencing (NGS) in patients with fever after allogeneic hematopoietic stem cell transplantation (allo-HSCT). A total of 71 patients with fever after HSCT were enrolled in this study. Compared with conventional microbiological test (CMT), we found that the sensitivity of NGS versus CMT in peripheral blood samples was 91.2% vs. 41.2%, and that NGS required significantly less time to identify the pathogens in both monomicrobial infections (P=0.0185) and polymicrobial infections (P= 0.0027). The diagnostic performance of NGS was not affected by immunosuppressant use. Viruses are the most common pathogens associated with infections. These results indicated that the sensitivity, timeliness, and clinical significance of NGS are superior for the detection of infections. Although NGS has the advantage of identifying a wide range of potential pathogens, the positive rate is related closely to the sample type. Therefore, we recommend that, in the clinical application of NGS to detect pathogens in patients after allo-HSCT, an appropriate sample type and time should be selected and submitted to improve the positive rate and accuracy of NGS. NGS holds promise as a powerful technology for the diagnosis of fever after HSCT.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Yin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bixin Xi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yicheng Zhang, ; Na Wang,
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yicheng Zhang, ; Na Wang,
| |
Collapse
|
41
|
Wang Y, Li Y, Liang X, Xin S, Yang L, Cao P, Jiang M, Xin Y, Zhang S, Yang Y, Lu J. The implications of cell-free DNAs derived from tumor viruses as biomarkers of associated cancers. J Med Virol 2022; 94:4677-4688. [PMID: 35652186 DOI: 10.1002/jmv.27903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer is still ranked as a leading cause of death according to estimates from the World Health Organization (WHO) and the strong link between tumor viruses and human cancers have been proved for almost six decades. Cell-free DNA (cfDNA) has drawn enormous attention for its dynamic, instant, and noninvasive advantages as one popular type of cancer biomarker. cfDNAs are mainly released from apoptotic cells and exosomes released from cancer cells, including those infected with viruses. Although cfDNAs are present at low concentrations in peripheral blood, they can reflect tumor load with high sensitivity. Considering the relevance of the tumor viruses to the associated cancers, cfDNAs derived from viruses may serve as good biomarkers for the early screening, diagnosis, and treatment monitoring. In this review, we summarize the methods and newly developed analytic techniques for the detection of cfDNAs from different body fluids, and discuss the implications of cfDNAs derived from different tumor viruses in the detection and treatment monitoring of virus-associated cancers. A better understanding of cfDNAs derived from tumor viruses may help formulate novel anti-tumoral strategies to decrease the burden of cancers that attributed to viruses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yiwei Wang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xinyu Liang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China
| | - Mingjuan Jiang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yujie Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Senmiao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yang Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
42
|
Shishido AA, Noe M, Saharia K, Luethy P. Clinical impact of a metagenomic microbial plasma cell-free DNA next-generation sequencing assay on treatment decisions: a single-center retrospective study. BMC Infect Dis 2022; 22:372. [PMID: 35418022 PMCID: PMC9006594 DOI: 10.1186/s12879-022-07357-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Background Metagenomic next-generation sequencing of microbial cell-free DNA (mcfDNA) allows for non-invasive pathogen detection from plasma. However, there is little data describing the optimal role for this assay in real-world clinical decision making.
Methods We performed a single-center retrospective cohort study of adult patients for whom a mcfDNA (Karius©) test was sent between May 2019 and February 2021. Clinical impact was arbitrated after review and discussion of each case. Results A total of 80 patients were included. The most common reason for sending the assay was unknown microbiologic diagnosis (78%), followed by avoiding invasive procedures (14%). The test had a positive impact in 34 (43%), a negative impact in 2 (3%), and uncertain or no impact in 44 (55%). A positive impact was observed in solid organ transplant recipients (SOTR, 71.4%, p = 0.003), sepsis (71.4%, p = 0.003), and those receiving antimicrobial agents for less than 7 days prior to mcfDNA testing (i.e., 61.8%, p = 0.004). Positive impact was driven primarily by de-escalation of antimicrobial therapy. Conclusion Clinical impact of mcfDNA testing was highest in SOTR, patients with sepsis and patients who had been on antimicrobial therapy for less than 7 days. Positive impact was driven by de-escalation of antimicrobial therapy which may highlight a potential role for mcfDNA in the realm of stewardship. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07357-8. This is a retrospective study evaluating the clinical impact of mcfDNA testing at a single center. mcfDNA positively impacted clinical care in 43% of cases. Patients admitted with sepsis, patients receiving antibiotics for less than 7 days, and solid organ transplant recipients derived the most benefit from mcfDNA testing.
Collapse
Affiliation(s)
- Akira A Shishido
- Division of Infectious Diseases, University of Maryland Medical Center, Baltimore, MD, USA.
| | | | - Kapil Saharia
- Division of Infectious Diseases, University of Maryland Medical Center, Baltimore, MD, USA.,Institute of Human Virology, University of Maryland School of Medicine, 22 E Greene St, Baltimore, MD, USA
| | - Paul Luethy
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Zheng Y, Jin J, Shao Z, Liu J, Zhang R, Sun R, Hu B. Development and clinical validation of a droplet digital PCR assay for detecting Acinetobacter baumannii and Klebsiella pneumoniae in patients with suspected bloodstream infections. Microbiologyopen 2021; 10:e1247. [PMID: 34964298 PMCID: PMC8594765 DOI: 10.1002/mbo3.1247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
The relatively long turnaround time and low sensitivity of traditional blood culture-based diagnosis may delay effective antibiotic therapy for patients with bloodstream infections (BSIs). A rapid and sensitive pathogen detection method is urgently required to reduce the morbidity and mortality associated with BSIs. Acinetobacter baumannii and Klebsiella pneumoniae are two major microorganisms that cause BSIs. Here we report a novel droplet digital polymerase chain reaction (ddPCR) assay that can detect A. baumannii and K. pneumoniae in blood samples within 4 h, with a specificity of 100% for each strain and a limit of detection at 0.93 copies/μl for A. baumannii and 0.27 copies/μl for K. pneumoniae. Clinical validation of 170 patients with suspected BSIs showed that compared to blood cultures that detected four (2.4%) A. baumannii cases and seven (4.1%) K. pneumoniae cases, ddPCR detected 23 (13.5%) A. baumannii cases, 26 (15.3%) K. pneumoniae cases, and four (2.4%) co-infection cases, including the 11 cases detected via blood culture. In addition, patients who tested positive via ddPCR alone (n = 42) had significantly lower serum concentrations of procalcitonin and lactate, SOFA and APACHE II scores, and 28-day mortality than those reported positive via both blood culture and ddPCR (n = 11), suggesting that patients with less severe symptoms can potentially benefit from ddPCR-based diagnosis. In conclusion, our study suggests that ddPCR represents a sensitive and rapid method for identifying causal pathogens in blood samples and guiding treatment decisions in the early stages of BSIs.
Collapse
Affiliation(s)
- Yang Zheng
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Jun Jin
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Ziqiang Shao
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Jingquan Liu
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Run Zhang
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Renhua Sun
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Bangchuan Hu
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|