1
|
Liang M, Xu J, Luo Y, Qu J. Epidemiology, pathogenesis, clinical characteristics, and treatment of mucormycosis: a review. Ann Med 2024; 56:2396570. [PMID: 39221718 PMCID: PMC11370679 DOI: 10.1080/07853890.2024.2396570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
AIM This review aims to summarize the epidemiology, etiology, pathogenesis, clinical manifestations, and current diagnostic and therapeutic approaches for mucormycosis. The goal is to improve understanding of mucormycosis and promote early diagnosis and treatment to reduce mortality. METHODS A comprehensive literature review was conducted, focusing on recent studies and data on mucormycosis. The review includes an analysis of the disease's epidemiology, etiology, and pathogenesis, as well as current diagnostic techniques and therapeutic strategies. RESULTS Mucormycosis is increasingly prevalent due to the growing immunocompromised population, the COVID-19 pandemic, and advances in detection methods. The pathogenesis is closely associated with the host immune status, serum-free iron levels, and the virulence of Mucorales. However, the absence of typical clinical manifestations complicates diagnosis, leading to missed or delayed diagnoses and higher mortality. CONCLUSION An enhanced understanding of the epidemiology, pathogenesis, and clinical presentation of mucormycosis, along with the adoption of improved diagnostic and therapeutic approaches, is essential for reducing mortality rates associated with this opportunistic fungal infection. Early diagnosis and prompt treatment are critical to improving patient outcomes.
Collapse
Affiliation(s)
- Mei Liang
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Xu
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanan Luo
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyan Qu
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Neoh CF, Slavin MA. Reassessment of the role of combination antifungal therapy in the current era. Curr Opin Infect Dis 2024; 37:443-450. [PMID: 39259717 DOI: 10.1097/qco.0000000000001063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW Given the high mortality and morbidity associated with invasive fungal diseases (IFDs), the use of combination antifungal therapies is often considered despite the dearth of data. This review aims to summarize the current state of literature of combination antifungal therapies, discussing the potential roles of newer antifungal combinations and key considerations for their clinical use. RECENT FINDINGS In infections other than cryptococcal meningitis or in the setting of empirical treatment for suspected azole-resistant Aspergillus infections, the utility of the combination antifungal approaches remains controversial given the paucity of well designed randomized controlled trials. Data on potential combined antifungal treatments have been primarily limited to in-vitro studies, animal models, case reports and/or observational studies. With availability of novel antifungal agents (e.g. ibrexafungerp, fosmanogepix), combination therapy to treat mould infections should be re-visited. A phase 2 clinical trial of ibrexafungerp combined with voriconazole to treat invasive pulmonary aspergillosis is on-going. SUMMARY There is a need to investigate the use of combination antifungal agents. This includes delineating the indication of these combined antifungal therapies and determining how to use them most appropriately in the clinical setting.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer
- Department of Infectious Diseases, Peter MacCallum Cancer Centre
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Monica A Slavin
- National Centre for Infections in Cancer
- Department of Infectious Diseases, Peter MacCallum Cancer Centre
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Vanbiervliet Y, Van Nieuwenhuyse T, Aerts R, Lagrou K, Spriet I, Maertens J. Review of the novel antifungal drug olorofim (F901318). BMC Infect Dis 2024; 24:1256. [PMID: 39511507 PMCID: PMC11542455 DOI: 10.1186/s12879-024-10143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
There is clearly a need for novel antifungal agents, not only concerning spectrum, but also oral bioavailability, tolerability, and drug-drug interactions. There is growing concern for antifungal resistance for current available antifungals, mainly driven by environmental fungicide use or long-term exposure to antifungals, in the setting of mould-active prophylaxis or for chronic antifungal infections, such as chronic pulmonary aspergillosis. Moreover, the incidence of breakthrough infections is increasing, because of the introduction of (mould-active) prophylaxis (1-4). There is emergence of difficult to treat invasive fungal infections, such as those caused by Lomentospora prolificans, cryptic species of Aspergillus, Scedosporium and Coccidioides. Olorofim (F901318) is the first-in class of the orotomides, a novel antifungal class targeting dihydroorotate dehydrogenase (DHODH), a key enzyme in the biosynthesis of pyrimidines. Olorofim shows good in vitro and in vivo activity against Aspergillus species, rare and difficult to treat moulds and endemic dimorphic fungi, including azole- and amphotericin-resistant isolates. It lacks activity against yeasts and the Mucorales species. It is only orally available and shows very promising results in ongoing clinical trials. In this review we will describe the mechanism of action of olorofim, the spectrum of activity in vitro and in vivo, pharmacokinetics, pharmacodynamics, drug-drug interactions, resistance, and clinical outcomes.
Collapse
Affiliation(s)
- Yuri Vanbiervliet
- Department of Haematology, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| | - Tine Van Nieuwenhuyse
- Pharmacy Department, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Robina Aerts
- Department of Haematology, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine and National Reference Center for Mycosis, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Isabel Spriet
- Department Of Pharmaceutical and Pharmacological Sciences, Pharmacy Department University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Johan Maertens
- Department of Haematology, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
4
|
Dash SK, Benival D, Jindal AB. Formulation Strategies to Overcome Amphotericin B Induced Toxicity. Mol Pharm 2024; 21:5392-5412. [PMID: 39373243 DOI: 10.1021/acs.molpharmaceut.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Fungal infection poses a major global threat to public health because of its wide prevalence, severe mortality rate, challenges involved in diagnosis and treatment, and the emergence of drug-resistant fungal strains. Millions of people are getting affected by fungal infection, and around 3.8 million people face death per year due to fungal infection, as per the latest report. The polyene antibiotic AmB has an extensive record of use as a therapeutic moiety against systemic fungal infection and leishmaniasis since 1960. AmB has broad-spectrum fungistatic and fungicidal activity. AmB exerts its therapeutic activity at the cellular level by binding to fungal sterol and forming hydrophilic pores, releasing essential cellular components and ions into the extracellular fluid, leading to cell death. Despite using AmB as an antifungal and antileishmanial at a broad scale, its clinical use is limited due to drug-induced nephrotoxicity resulting from binding the aggregated form of the drug to mammalian sterol. To mitigate AmB-induced toxicity and to get better anti-fungal therapeutic outcomes, researchers have developed nanoformulations, self-assembled formulations, prodrugs, cholesterol- and albumin-based AmB formulations, AmB-mAb combination therapy, and AmB cochleates. These formulations have helped to reduce toxicity to a certain extent by controlling the aggregation state of AmB, providing sustained drug release, and altering the physicochemical and pharmacokinetic parameters of AmB. Although the preclinical outcome of AmB formulations is quite satisfactory, its parallel result at the clinical level is insignificant. However, the safety and efficacy of AmB therapy can be improved at the clinical stage by continuous investigation and collaboration among researchers, clinicians, and pharmaceutical companies.
Collapse
Affiliation(s)
- Sanat Kumar Dash
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gandhinagar, Gujurat 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
5
|
Yeoh DK, Blyth CC, Clark JE, Abbotsford J, Corrente C, Cook S, Kotecha RS, Wang SS, Spelman T, Slavin MA, Thursky KA, Haeusler GM. Invasive fungal disease and antifungal prophylaxis in children with acute leukaemia: a multicentre retrospective Australian cohort study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 52:101201. [PMID: 39318715 PMCID: PMC11417227 DOI: 10.1016/j.lanwpc.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Background Invasive fungal disease (IFD) is a significant complication for children receiving treatment for leukaemia, contributing to morbidity and mortality. Recent regional paediatric epidemiological IFD data are lacking. Additionally uncertainty remains regarding the optimal prophylactic approach in this context. Methods In a multi-centre Australian cohort study of children diagnosed with de novo acute leukaemia between 1st January 2017 and 30th June 2020, we characterised antifungal prophylaxis prescribing and IFD prevalence. Impact of antifungal prophylaxis was assessed using Kaplan Meier curves and Cox-proportional hazards regression adjusting for known IFD risk factors. Findings A total of 434 children were included (47.2% female; median age 5.0 years, median follow-up 240 days). This cohort included 351 children with ALL (214 high-risk [HR-ALL]; 137 standard-risk [SR-ALL]), and 73 with AML. The prevalence of proven/probable IFD was 6.8% for AML, 14.0% for HR-ALL and 4.4% for SR-ALL. A mould was implicated as the causative pathogen in almost two thirds of cases. Antifungal prophylaxis was prescribed in 98.7% of chemotherapy cycles for AML, 56.7% for HR-ALL and 14.9% for SR-ALL. A mould-active agent was used in 77.4% of AML cycles and 21.2% of HR-ALL cycles. Mould-active prophylaxis was associated with a lower risk of IFD overall and increased IFD-free survival in AML. Interpretation These data demonstrate the persistent high regional burden of IFD in children with HR-ALL, and the potential for mould-active prophylaxis to ameliorate this. Strategies to increase uptake of appropriate prophylaxis are required in this cohort. Funding This study was supported by a Perth Children's Hospital Foundation grant (PCHF9973).
Collapse
Affiliation(s)
- Daniel K. Yeoh
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Christopher C. Blyth
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Australia
- Department of Microbiology, PathWest Laboratory Medicine WA, Perth, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| | - Julia E. Clark
- Infection Management Service, Queensland Children's Hospital, Brisbane, Australia
- School of Clinical Medicine, Children's Health Queensland Clinical Unit, The University of Queensland, Brisbane, Australia
| | - Joanne Abbotsford
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Australia
| | | | - Sara Cook
- Infection Management Service, Queensland Children's Hospital, Brisbane, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Australia
- Curtin Medical School, Curtin University, Perth, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Stacie S. Wang
- Murdoch Children's Research Institute, Melbourne, Australia
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Australia
| | - Tim Spelman
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Monica A. Slavin
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Karin A. Thursky
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- National Centre for Antimicrobial Stewardship, Department of Infectious Diseases, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Gabrielle M. Haeusler
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Royal Children's Hospital, Melbourne, Australia
- The Paediatric Integrated Cancer Service, Melbourne, Australia
| |
Collapse
|
6
|
Pechacek J, Schmitt MM, Ferrè EMN, Webb T, Goldberg J, Pathan S, Banerjee C, Barber P, DiMaggio T, Quinn A, Matkovits T, Castelo-Soccio L, Nussenblatt V, Lionakis MS. Successful Treatment of Refractory Cutaneous Protothecosis With MAT2203, an Oral Lipid Nanocrystal Formulation of Amphotericin B. Open Forum Infect Dis 2024; 11:ofae428. [PMID: 39091644 PMCID: PMC11292040 DOI: 10.1093/ofid/ofae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Prototheca wickerhamii is a rare cause of cutaneous and systemic infection that requires long treatment courses with potentially toxic medications. We describe a patient with cutaneous protothecosis refractory to triazole monotherapy who experienced clinical and radiographic improvement with the novel oral lipid nanocrystal formulation of amphotericin B without experiencing toxicity.
Collapse
Affiliation(s)
- Joseph Pechacek
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Monica M Schmitt
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elise M N Ferrè
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Taura Webb
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joel Goldberg
- Intramural Clinical Management and Operations Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabina Pathan
- Intramural Clinical Management and Operations Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Camellia Banerjee
- Intramural Clinical Management and Operations Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Princess Barber
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas DiMaggio
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne Quinn
- Intramural Clinical Management and Operations Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Leslie Castelo-Soccio
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Veronique Nussenblatt
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Little J, Rauseo AM, Zuniga-Moya JC, Spec A, Pappas P, Perfect J, McCarthy T, Schwartz IS. Clinical Mycology Today: Emerging Challenges and Opportunities. Open Forum Infect Dis 2024; 11:ofae363. [PMID: 39045011 PMCID: PMC11263878 DOI: 10.1093/ofid/ofae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The Mycoses Study Group Education and Research Consortium is a collective of clinicians, researchers, and educators with the common goal to advance awareness, diagnosis, and management of invasive fungal diseases. Clinical Mycology Today, the Mycoses Study Group Education and Research Consortium's biennial meeting, is dedicated to discussing the most pressing contemporary issues facing the field of clinical mycology, promoting clinical, translational, and basic science collaborations, and mentoring the next generation of clinical mycologists. Here, we review the current opportunities and challenges facing the field of mycology that arose from discussions at the 2022 meeting, with emphasis on novel host risk factors, emerging resistant fungal pathogens, the evolving antifungal pipeline, and critical issues affecting the advancement of mycology research.
Collapse
Affiliation(s)
- Jessica Little
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Stem Cell Transplant and Cellular Therapy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana M Rauseo
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julio C Zuniga-Moya
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peter Pappas
- Division of Infectious Diseases, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Todd McCarthy
- Division of Infectious Diseases, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
8
|
Dalton LM, Kauffman CA, Miceli MH. Oral Lipid Nanocrystal Amphotericin B (MAT2203) for the Treatment of Invasive Fungal Infections. Open Forum Infect Dis 2024; 11:ofae346. [PMID: 38989533 PMCID: PMC11234142 DOI: 10.1093/ofid/ofae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Amphotericin B (AmB) has broad fungicidal activity against many fungi, but the high incidence of adverse events, particularly nephrotoxicity, and the need for intravenous administration restrict its use for many patients. MAT2203, an investigational oral AmB formulation available under a compassionate use program, uses a lipid nanocrystal bilayer structure to deliver AmB with lower toxicity. We present a synopsis of clinical characteristics, treatment course, and outcomes for 5 patients who were treated with MAT2203. Outcomes were positive, with cure of infection noted in 4 patients and improvement in 1 patient who remains on therapy. MAT2203 was well tolerated with only modest gastrointestinal adverse effects. This new oral formulation might provide a safer treatment option for patients requiring extended courses of AmB.
Collapse
Affiliation(s)
- Liam M Dalton
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carol A Kauffman
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marisa H Miceli
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
10
|
Meya DB, Williamson PR. Cryptococcal Disease in Diverse Hosts. N Engl J Med 2024; 390:1597-1610. [PMID: 38692293 DOI: 10.1056/nejmra2311057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Affiliation(s)
- David B Meya
- From the Infectious Diseases Institute and the Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda (D.B.M.); the Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis (D.B.M.); and the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (P.R.W.)
| | - Peter R Williamson
- From the Infectious Diseases Institute and the Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda (D.B.M.); the Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis (D.B.M.); and the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (P.R.W.)
| |
Collapse
|
11
|
Gu Y, Gebremariam T, Alkhazraji S, Youssef E, El-Gamal S, Matkovits T, Cobb J, Mannino R, Ibrahim AS. Efficacy of an oral lipid nanocrystal formulation of amphotericin B (MAT2203) in the neutropenic mouse model of pulmonary mucormycosis. Antimicrob Agents Chemother 2024:e0154023. [PMID: 38687015 DOI: 10.1128/aac.01540-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Invasive mucormycosis (IM) is associated with high mortality and morbidity. MAT2203 is an orally administered lipid nanocrystal formulation of amphotericin B, which has been shown to be safe and effective against other fungal infections. We sought to compare the efficacy of MAT2203 to liposomal amphotericin B (LAMB) treatment in a neutropenic mouse model of IM due to Rhizopus arrhizus var. delemar or Mucor circinelloides f. jenssenii DI15-131. In R. arrhizus var. delemar-infected mice, 15 mg/kg of MAT2203 qd was as effective as 10 mg/kg of LAMB in prolonging median survival time vs placebo (13.5 and 16.5 days for MAT2203 and LAMB, respectively, vs 9 days for placebo) and enhancing overall survival vs placebo-treated mice (40% and 45% for MAT2203 and LAMB, respectively, vs 0% for placebo). A higher dose of 45 mg/kg of MAT2203 was not well tolerated by mice and showed no benefit over placebo. Similar results were obtained with mice infected with M. circinelloides. Furthermore, while both MAT2203 and LAMB treatment resulted in a significant reduction of ~1.0-2.0log and ~2.0-2.5log in Rhizopus delemar or M. circinelloides lung and brain burden vs placebo mice, respectively, LAMB significantly reduced tissue fungal burden in mice infected with R. delemar vs tissues of mice treated with MAT2203. These results support continued investigation and development of MAT2203 as a novel and oral formulation of amphotericin for the treatment of mucormycosis.
Collapse
Affiliation(s)
- Yiyou Gu
- The Lundquist Institute, Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
| | - Teclegiorgis Gebremariam
- The Lundquist Institute, Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
| | - Sondus Alkhazraji
- The Lundquist Institute, Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
| | - Eman Youssef
- The Lundquist Institute, Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
- Beni-Suef University, Beni Suef, Egypt
| | - Sabrina El-Gamal
- The Lundquist Institute, Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
| | | | - Jenel Cobb
- Matinas Biopharma, BedminsterBioPharma, Bedminster, New Jersey, USA
| | - Raphael Mannino
- Matinas Biopharma, BedminsterBioPharma, Bedminster, New Jersey, USA
| | - Ashraf S Ibrahim
- The Lundquist Institute, Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
12
|
Kriegl L, Egger M, Boyer J, Hoenigl M, Krause R. New treatment options for critically important WHO fungal priority pathogens. Clin Microbiol Infect 2024:S1198-743X(24)00118-6. [PMID: 38461942 DOI: 10.1016/j.cmi.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Yet often overlooked in public health discourse, fungal infections pose a crucial global disease burden associated with annual mortality rates approximately equal to tuberculosis and HIV. In response, the WHO published its first global priority list of fungal pathogens in 2022 assigning Aspergillus fumigatus, Candida albicans, Candida auris, and Cryptococcus neoformans to the critical group. OBJECTIVES This review provides succinct insights into novel antifungals in development, aiming to contribute valuable information and perspectives with a focus on recent clinical findings and new treatment approaches for critical members of the WHO fungal pathogen priority list. SOURCES PubMed literature search using 'Aspergillus fumigatus', 'Cryptococcus neoformans', 'Candida auris', and 'Candida albicans', along with the names of novel antifungal substances, including 'fosmanogepix', 'ibrexafungerp', 'opelconazole', 'oteseconazole', 'MAT2203', 'olorofim', and 'rezafungin' was conducted. CONTENT For each critical pathogen, current issues and global clinical data from recent trials are covered. The remarkable development of three new antifungal therapeutics recently receiving Food and Drug Administration approval (ibrexafungerp-June 2021, oteseconazole -April 2022, and rezafungin-March 2023) is outlined, with two more exciting new antifungal substances, namely, olorofim and fosmanogepix expecting approval within the next years. Ibrexafungerp, fosmanogepix, and rezafungin have additionally been granted orphan drug status by the European Medicines Agency in Europe (ibrexafungerp-November 2021, fosmanogepix-July 2022, and rezafungin-January 2024). IMPLICATIONS Although the limited number of targets and the emergence of resistance have posed challenges to antifungal treatment, new drugs such as ibrexafungerp, rezafungin, fosmanogepix, or olorofim have shown promising clinical efficacy. These drugs not only provide alternative options for invasive fungal infections but also alleviate treatment in outpatient settings. More clinical data, implementation of stewardship programmes, and surveillance, including utilization of drugs in agriculture, are necessary to prevent resistance development and to ensure the safety and efficacy of these new agents.
Collapse
Affiliation(s)
- Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
13
|
Barros N, Wheat LJ. Histoplasmosis in Solid Organ Transplantation. J Fungi (Basel) 2024; 10:124. [PMID: 38392796 PMCID: PMC10890191 DOI: 10.3390/jof10020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Histoplasma capsulatum, the etiological agent for histoplasmosis, is a dimorphic fungus that grows as a mold in the environment and as a yeast in human tissues. It has a broad global distribution with shifting epidemiology during recent decades. While in immunocompetent individuals infection is usually self-resolving, solid organ transplant recipients are at increased risk of symptomatic disease with dissemination to extrapulmonary tissue. Diagnosis of histoplasmosis relies on direct observation of the pathogen (histopathology, cytopathology, and culture) or detection of antigens, antibodies, or nucleic acids. All transplant recipients with histoplasmosis warrant therapy, though the agent of choice and duration of therapy depends on the severity of disease. In the present article, we describe the pathogenesis, epidemiology, clinical manifestations and management of histoplasmosis in solid organ transplant recipients.
Collapse
Affiliation(s)
- Nicolas Barros
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Infectious Diseases, Indiana University Health, Indianapolis, IN 46202, USA
- Miravista Diagnostics, Indianapolis, IN 46241, USA;
| | | |
Collapse
|
14
|
Eschenauer GA. Antifungal Therapies for Aspergillus spp.: Present and Future. Semin Respir Crit Care Med 2024; 45:61-68. [PMID: 38151025 DOI: 10.1055/s-0043-1776776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Currently available and recommended options for the treatment of pulmonary aspergillosis include the triazoles, echinocandins, and amphotericin B products. These therapies have significant limitations. Only the azoles are available orally, but their use is often limited by toxicities, drug-drug interactions, pharmacokinetic variability, and emerging resistance. While the echinocandins are safe agents and may have a role in combination therapy, they are unproven as monotherapy. Amphotericin B preparations are toxic and require intensive monitoring. Finally, aspergillosis continues to be a disease conferring substantial morbidity and mortality, and clinical trials have not identified a therapeutic approach clearly associated with improved outcomes. As a result, there is a great need for new options in the treatment of invasive aspergillosis. Ideally, such options would be safe, have high oral bioavailability, have favorable pharmacokinetics to sequestered sites and retain activity against azole-resistant isolates. Reassuringly, there is a robust pipeline of novel therapies in development. Rezafungin (a once-weekly dosed echinocandin) and ibrexafungerp (oral agent with same mechanism of action as echinocandins) will likely be reserved for combination therapy or refractory/intolerance scenarios with no other options. Inhaled opelconazole is an attractive option for combination therapy and prophylaxis of pulmonary aspergillosis. Development of an oral form of amphotericin B that avoids nephrotoxicity and electrolyte disturbances is an exciting development. Finally, olorofim and fosmanogepix, two agents with novel mechanisms of action and oral formulations, hold significant potential to challenge the triazole antifungals place as preferred therapies. However, many questions remain regarding these novel agents, and at the time of this writing, none of these agents have been robustly studied in Phase III studies of aspergillosis, and so their promise remains investigational.
Collapse
Affiliation(s)
- Gregory A Eschenauer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
15
|
Ioannou P, Baliou S, Samonis G. Nanotechnology in the Diagnosis and Treatment of Antibiotic-Resistant Infections. Antibiotics (Basel) 2024; 13:121. [PMID: 38391507 PMCID: PMC10886108 DOI: 10.3390/antibiotics13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The development of antimicrobial resistance (AMR), along with the relative reduction in the production of new antimicrobials, significantly limits the therapeutic options in infectious diseases. Thus, novel treatments, especially in the current era, where AMR is increasing, are urgently needed. There are several ongoing studies on non-classical therapies for infectious diseases, such as bacteriophages, antimicrobial peptides, and nanotechnology, among others. Nanomaterials involve materials on the nanoscale that could be used in the diagnosis, treatment, and prevention of infectious diseases. This review provides an overview of the applications of nanotechnology in the diagnosis and treatment of infectious diseases from a clinician's perspective, with a focus on pathogens with AMR. Applications of nanomaterials in diagnosis, by taking advantage of their electrochemical, optic, magnetic, and fluorescent properties, are described. Moreover, the potential of metallic or organic nanoparticles (NPs) in the treatment of infections is also addressed. Finally, the potential use of NPs in the development of safe and efficient vaccines is also reviewed. Further studies are needed to prove the safety and efficacy of NPs that would facilitate their approval by regulatory authorities for clinical use.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- First Department of Medical Oncology, Metropolitan Hospital of Neon Faliron, 18547 Athens, Greece
| |
Collapse
|
16
|
Bongomin F, Kwizera R, Namusobya M, van Rhijn N, Andia-Biraro I, Kirenga BJ, Meya DB, Denning DW. Re-estimation of the burden of serious fungal diseases in Uganda. Ther Adv Infect Dis 2024; 11:20499361241228345. [PMID: 38328511 PMCID: PMC10848809 DOI: 10.1177/20499361241228345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Background It is of utmost importance to monitor any change in the epidemiology of fungal diseases that may arise from a change in the number of the at-risk population or the availability of local data. Objective We sought to update the 2015 publication on the incidence and prevalence of serious fungal diseases in Uganda. Methods Using the Leading International Fungal Education methodology, we reviewed published data on fungal diseases and drivers of fungal diseases in Uganda. Regional or global data were used where there were no Ugandan data. Results With a population of ~45 million, we estimate the annual burden of serious fungal diseases at 4,099,357 cases (about 9%). We estimated the burden of candidiasis as follows: recurrent Candida vaginitis (656,340 cases), oral candidiasis (29,057 cases), and esophageal candidiasis (74,686 cases) in HIV-infected people. Cryptococcal meningitis annual incidence is estimated at 5553 cases, Pneumocystis pneumonia at 4604 cases in adults and 2100 cases in children. For aspergillosis syndromes, invasive aspergillosis annual incidence (3607 cases), chronic pulmonary aspergillosis (26,765 annual cases and 63,574 5-year-period prevalent cases), and prevalence of allergic bronchopulmonary aspergillosis at 75,931 cases, and severe asthma with fungal sensitization at 100,228 cases. Tinea capitis is common with 3,047,989 prevalent cases. For other mycoses, we estimate the annual incidence of histoplasmosis to be 646 cases and mucormycosis at 9 cases. Conclusion Serious fungal diseases affect nearly 9% of Ugandans every year. Tuberculosis and HIV remain the most important predisposition to acute fungal infection necessitating accelerated preventive, diagnostic, and therapeutic interventions for the management of these diseases.
Collapse
Affiliation(s)
- Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard Kwizera
- Infectious Diseases Institute, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Martha Namusobya
- Department of Clinical Epidemiology and Biostatistics, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Norman van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Bruce J. Kirenga
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David B. Meya
- Infectious Diseases Institute, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David W. Denning
- Manchester Fungal Infection Group, CTF Building, The University of Manchester, Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
17
|
McHale TC, Boulware DR, Kasibante J, Ssebambulidde K, Skipper CP, Abassi M. Diagnosis and management of cryptococcal meningitis in HIV-infected adults. Clin Microbiol Rev 2023; 36:e0015622. [PMID: 38014977 PMCID: PMC10870732 DOI: 10.1128/cmr.00156-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Cryptococcal meningitis is a leading cause of morbidity and mortality globally, especially in people with advanced HIV disease. Cryptococcal meningitis is responsible for nearly 20% of all deaths related to advanced HIV disease, with the burden of disease predominantly experienced by people in resource-limited countries. Major advancements in diagnostics have introduced low-cost, easy-to-use antigen tests with remarkably high sensitivity and specificity. These tests have led to improved diagnostic accuracy and are essential for screening campaigns to reduce the burden of cryptococcosis. In the last 5 years, several high-quality, multisite clinical trials have led to innovations in therapeutics that have allowed for simplified regimens, which are better tolerated and result in less intensive monitoring and management of medication adverse effects. One trial found that a shorter, 7-day course of deoxycholate amphotericin B is as effective as the longer 14-day course and that flucytosine is an essential partner drug for reducing mortality in the acute phase of disease. Single-dose liposomal amphotericin B has also been found to be as effective as a 7-day course of deoxycholate amphotericin B. These findings have allowed for simpler and safer treatment regimens that also reduce the burden on the healthcare system. This review provides a detailed discussion of the latest evidence guiding the clinical management and special circumstances that make cryptococcal meningitis uniquely difficult to treat.
Collapse
Affiliation(s)
- Thomas C. McHale
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - David R. Boulware
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - John Kasibante
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | | | - Caleb P. Skipper
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mahsa Abassi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
McHale TC, Akampurira A, Gerlach ES, Mucunguzi A, Nicol MR, Williams DA, Nielsen K, Bicanic T, Fieberg A, Dai B, Meya DB, Boulware DR. 5-Flucytosine Longitudinal Antifungal Susceptibility Testing of Cryptococcus neoformans: A Substudy of the EnACT Trial Testing Oral Amphotericin. Open Forum Infect Dis 2023; 10:ofad596. [PMID: 38143852 PMCID: PMC10745249 DOI: 10.1093/ofid/ofad596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Background The EnACT trial was a phase 2 randomized clinical trial conducted in Uganda, which evaluated a novel orally delivered lipid nanocrystal (LNC) amphotericin B in combination with flucytosine for the treatment of cryptococcal meningitis. When flucytosine (5FC) is used as monotherapy in cryptococcosis, 5FC can induce resistant Cryptococcus mutants. Oral amphotericin B uses a novel drug delivery mechanism, and we assessed whether resistance to 5FC develops during oral LNC-amphotericin B therapy. Methods We enrolled Ugandans with HIV diagnosed with cryptococcal meningitis and who were randomized to receive 5FC and either standard intravenous (IV) amphotericin B or oral LNC-amphotericin B. We used broth microdilution to measure the minimum inhibitory concentration (MIC) of the first and last cryptococcal isolates in each participant. Breakpoints are inferred from 5FC in Candida albicans. We measured cerebral spinal fluid (CSF) 5FC concentrations by liquid chromatography and tandem mass spectrometry. Results Cryptococcus 5FC MIC50 was 4 µg/mL, and MIC90 was 8 µg/mL. After 2 weeks of therapy, there was no evidence of 5FC resistance developing, defined as a >4-fold change in susceptibility in any Cryptococcus isolate tested. The median CSF 5FC concentration to MIC ratio (interquartile range) was 3.0 (1.7-5.5) µg/mL. There was no association between 5FC/MIC ratio and early fungicidal activity of the quantitative rate of CSF yeast clearance (R2 = 0.004; P = .63). Conclusions There is no evidence of baseline resistance to 5FC or incident resistance during combination therapy with oral or IV amphotericin B in Uganda. Oral amphotericin B can safely be used in combination with 5FC.
Collapse
Affiliation(s)
- Thomas C McHale
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Elliot S Gerlach
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Melanie R Nicol
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darlisha A Williams
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kirsten Nielsen
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tihana Bicanic
- Institute of Infection and Immunity, St Georges, University of London, London, UK
| | - Ann Fieberg
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Biyue Dai
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - David B Meya
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Gu Y, Gebremariam T, Alkhazraji S, Youssef E, El-Gamal S, Matkovits T, Cobb J, Mannino R, Ibrahim AS. Efficacy of an oral lipid nanocrystal (LNC) formulation of amphotericin B (MAT2203) in the neutropenic mouse model of pulmonary mucormycosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568278. [PMID: 38045251 PMCID: PMC10690265 DOI: 10.1101/2023.11.22.568278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Invasive mucormycosis (IM) is associated with high mortality and morbidity and commonly afflicts patients with weakened immune systems. MAT2203 is an orally administered lipid nanocrystal (LNC) formulation of amphotericin B, which has been shown to be safe and effective against other fungal infections. We sought to compare the efficacy of MAT2203 to liposomal amphotericin B (LAMB) treatment in a neutropenic mouse model of IM due to R. arrhizus var. delemar or Mucor circinelloides f. jenssenii DI15-131. Treatment with placebo (diluent control), oral MAT2203 administered as BID and QD or intravenous LAMB for 4 days, began 16 h post infection and continued for 7 and 4 days, respectively. Survival through Day +21 and tissue fungal burden of lung or brain in animals euthanized on Day +4 served as a primary and secondary endpoint, respectively. In both infection types, MAT2203 was as effective as LAMB in prolonging median survival time (MST) and enhancing overall survival vs. placebo-treated mice ( P <0.05 by Log-Rank). Furthermore, both MAT2203 and LAMB treatment resulted in significant ∼1.0-1.5-log reduction and ∼2.0-2.2-log in R. delemar or M. circinelloides lung and brain burden, vs. placebo mice, respectively. These results support the potential efficacy of oral MAT2203 as an alternative to LAMB. Continued investigation and development of this novel oral formulation of the amphotericin B for the treatment of mucormycosis is warranted.
Collapse
|
20
|
Tugume L, Ssebambulidde K, Kasibante J, Ellis J, Wake RM, Gakuru J, Lawrence DS, Abassi M, Rajasingham R, Meya DB, Boulware DR. Cryptococcal meningitis. Nat Rev Dis Primers 2023; 9:62. [PMID: 37945681 DOI: 10.1038/s41572-023-00472-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Cryptococcus neoformans and Cryptococcus gattii species complexes cause meningoencephalitis with high fatality rates and considerable morbidity, particularly in persons with deficient T cell-mediated immunity, most commonly affecting people living with HIV. Whereas the global incidence of HIV-associated cryptococcal meningitis (HIV-CM) has decreased over the past decade, cryptococcosis still accounts for one in five AIDS-related deaths globally due to the persistent burden of advanced HIV disease. Moreover, mortality remains high (~50%) in low-resource settings. The armamentarium to decrease cryptococcosis-associated mortality is expanding: cryptococcal antigen screening in the serum and pre-emptive azole therapy for cryptococcal antigenaemia are well established, whereas enhanced pre-emptive combination treatment regimens to improve survival of persons with cryptococcal antigenaemia are in clinical trials. Short courses (≤7 days) of amphotericin-based therapy combined with flucytosine are currently the preferred options for induction therapy of cryptococcal meningitis. Whether short-course induction regimens improve long-term morbidity such as depression, reduced neurocognitive performance and physical disability among survivors is the subject of further study. Here, we discuss underlying immunology, changing epidemiology, and updates on the management of cryptococcal meningitis with emphasis on HIV-associated disease.
Collapse
Affiliation(s)
- Lillian Tugume
- Infectious Diseases Institute, Makerere University, Kampala, Uganda.
| | - Kenneth Ssebambulidde
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John Kasibante
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Jayne Ellis
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Clinical Research Department, Faculty of Infectious and Tropical Diseases London School of Hygiene and Tropical Medicine, London, UK
| | - Rachel M Wake
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Jane Gakuru
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David S Lawrence
- Clinical Research Department, Faculty of Infectious and Tropical Diseases London School of Hygiene and Tropical Medicine, London, UK
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Mahsa Abassi
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Radha Rajasingham
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David B Meya
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David R Boulware
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|